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ABSTRACT 

Ever since 1927, when Al Jolson spoke in the first “talkie” film The Jazz Singer, there had been little 

doubt that sound added a valuable perceptual dimension to visual media. However, despite the 

advances of over 80 years, and the complete integration of sound and vision that has occurred in 

entertainment applications, the use of sound to channel data occurring in everyday life has remained 

rather primitive, limited to such things as computer beeps and jingles for certain mouse and key 

actions, low battery alarms on a mobile devices, and other sounds that simply indicate when some 
trigger state has been reached – the information content of such sounds is not high.  

Non-binary, but still technically rather simple data applications include the familiar rattling sound of 

a Geiger counter, talking clocks and thermometers, or the sound output of a hospital EKG machine. 

What if deletion of larger and/or more recently accessed computer files resulted in a more complex 

sound than for deleting smaller or rarely accessed files, increasing the user’s awareness of the loss of 
larger or more recent work efforts? All of these are examples of data sonification.  

While sonification seems to be pursued mostly by those wishing to generate tuneful results, many are 

undertaking the process to simply provide another method of presenting data. Many examples are 

available at https://soundcloud.com/tags/sonification including some very tuneful arrangements of 

the Higgs Boson. Indeed, with complex data series one can often hear patterns or persistent pitches 

that would be difficult to show visually. Musical pitches are periodic components of sound and 

repetition over time can be readily discerned by the listener. Sonification techniques have been 

applied to a variety of topics (Pauletto and Hunt, 2009; Scaletti and Craig 1991; Sturm, 2005; Dunn 

and Clark, 1999). To the authors’ knowledge, Sonification has yet to be applied in any substantive 
way to economic data. 

Our goal is not to produce tuneful results. Rather, the purpose of this paper is to explore the potential 

application of Sonification techniques for informing and assessing the specification of econometric 

models for representing economic data outcomes. The purpose of this seminal and exploratory 

analysis is to investigate whether there appears to be significant promise in adding the data 

sonification approach to the empirical economists’ toolkit for interpreting economic data and 

specifying econometric models. In particular, is there an advantage to using both the empirical 
analyst’s eyes and ears when investigating empirical economic problems?  

JEL classifications: C01, C18, C52 

  

https://soundcloud.com/tags/sonification
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1.0 The What and Why of Data Sonification 

 

People process auditory information differently than visual information. Much has been written 

in the education literature about learning styles based in part on auditory versus visual delivery 

of information. Students of all ages and abilities have preferences for the ways in which they 

receive information. The education literature provides a number of sources examining the 

various learning styles of students. These are typically classified as visual (V), auditory (A), 

reading/writing (R) and kinesthetic (K) and are referred to in the rest of the paper by the 

abbreviation VARK. Typical findings show that while students may prefer a specific style of 

learning, many of them benefit from being presented with multiple modes (see for example 

Lujan and Dicarlo, 2005; Felder and Silverman, 1988; and Rumburuth and McCormick, 2001) 

As teachers of econometrics we have long suggested that our students look at their data 

by means of scatterplots - each variable, dependent and independent being examined as a 

function of other variables and by observation. Peter Kennedy (2008), in his popular 

econometrics textbook, advises “researchers should supplement their summary statistics with 

simple graphs: histograms, residual plots, scatterplots of residualized data and graphs against 

time.” The time students invest in examining the data prior to running simple regression models 

will typically inform their analysis by visualizing things like correlations, outliers and structural 

shifts. Kennedy also states “the advantage of graphing is that a picture can force us to notice 

what we never expected to see.” Instructors of econometrics have long suggested that students 

construct such graphs for just these reasons.  
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If the goal then is to specify and assess econometric models using visual depiction of 

various aspects of the model, then it seems logical to ask whether the analyst could reasonably 

engage other senses during this process. With the advent of massively increased computing 

power, larger and larger data sets, increasing complexity of model and system specifications, and 

with the attendant high dimensional multivariate nature of these models, understanding and 

interpreting model specifications, and their adequacy, has become increasingly more difficult. 

Indeed, the visual senses of most individuals become quickly overwhelmed once one leaves the 

familiar visualizable three-dimensional confines of the physical world. However, the auditory 

senses are comfortable and experienced with much higher dimensional simultaneous processing 

of inputs (sound signals and music). If sonification can be shown to provide potentially useful 

additional perspectives concerning multivariate relationships existent in economic data, the 

methodology could present a welcome addition to the methodology of empirical economics.  

 

1.1 The Meaning of Sonification 

What is the specific meaning of the term “sonification”? Thomas Hermann, whose influential 

PhD dissertation and continuing research has created significant increased interest in the 

possibility of the use of sonification for improving the effectiveness of data analysis (Hermann, 

2002), offered both a laymen’s definition, and a more formal definition of the term. Colloquially, 

and paraphrasing Hermann, sonification is the use of sound for representing or displaying data, 

and similar to scientific visualization, aims to enable human listeners to make use of their highly-

developed perceptual skills (in this case listening skills) for making sense of data (Herrmann, 

2012). Somewhat more formally, sonification is the transformation of data relations into 

perceived relations in an acoustic signal for the purposes of facilitating communication or 
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interpretation. Hermann went on to provide an axiomatic definition of sonification, which he 

expected would help position the methodology for use in scientific contexts, using the following 

characterization (with some minor editing to enhance clarity (Hermann, 2008)):  

 

Definition: Sonification. Any technique that uses data as input, and generates sound 

signals, may be called sonification iff  

A. The sound reflects objective properties or relations in the input data.  

B. The transformation is systematic, meaning that there is a precise definition of how 

data causes the sound to change.  

C. The sonification is reproducible: given the same data, the resulting sound must be 

structurally identical.  

D. The system can intentionally be used with different data, and also be used in 

repetition with the same data.  

 

1.2 Sonification Software:  Musicalgorithms 

Following Hermann’s definition we have maintained a precise and reproducible methodology for 

converting our econometric data into sound. All sonifications presented in this paper were 

accomplished using the “Musicalgorithms” software developed by Middleton (2005). The 

software was accessed through the Musicalgorithms website (http://musicalgorithms.org). 

Musicalgorithms converts data into sound by transforming data observations through both the 

timing and pitch of sounds, the latter being a function of the magnitude of data observations, 

where a higher-valued data point is transformed into a higher pitched sound. Sonification in this 

program environment requires that the data be converted from their original values and range to 

http://musicalgorithms.org/
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discrete numbers within the integer-valued range of 1 to 88. This is exactly the standard range of 

a modern piano keyboard, and it is to this instrument that we map our data.  

In our applications of sonification all of the data refer to OLS error vectors, although the 

residuals from any econometric model could be used following precisely the same approach. 

Apart from an initial artificial example that we present for illustrative purposes, we mapped error 

vectors to the range of the piano keyboard using the Musicalgorithms’ “division” option, which 

maps the numeric data proportionally throughout the 88 key range (Middleton, 2008). Using this 

approach, the data point with the smallest value will be mapped to the lowest key on the 

keyboard and the data point with the highest value will be mapped to the highest key on the 

keyboard. All other data points are mapped proportionally between these extreme values. This 

conversion process meets all of the requirements set forth in Hermann’s definition of sonification 

One also has the option of restricting the data transformation process further by constraining the 

sound output to a subset of the full piano keyboard, but in our substantive applications, for all 

error vectors displaying violations of the Gauss-Markov assumptions, the full range of 88 

semitones were used.  

 

2.0 Conversions of OLS Residuals to Sound 

In this section we present examples of sonifications of a number of error processes that represent 

various types of violations of general linear model assumptions. We begin with a simple but 

artificial econometric model that is designed to illustrate in a clear and straightforward manner 

how patterns in residual vectors, and concomitant violations of standard general linear model 

assumptions, can be recognized through an econometrician’s auditory perceptions. We then 

present a series of examples in a more typical and familiar model setting, where we alter the 
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structure of the underlying data generating process to generate new data sets that exhibit error 

processes violating standard general linear model assumptions in various ways.  

 

2.1 Omitted Variables: Mary Had a Little Lamb  

As the title of this subsection suggests, our first example of sonification is admittedly a 

somewhat tongue-in-cheek application, but it produces a vivid illustration of how sound can be 

used to detect error assumption violations, in this case, the problem of “omitted variables” from 

the specification of the conditional regression function. Consider a linear model of the form 

  

0 1 1 2 2t t t tY X X            (1) 

The error process is independent and identically distributed Bernoulli, with .5p  , translated to 

a zero mean, i.e., .5, ~ (.5), 1,...,i i iz z iid Bernoulli i n    . The data consists of 26n 

observations and can be assumed to satisfy all of the standard general linear model assumptions 

that lead to BLUE estimates of the  parameter vector.  

 The midi file Bernoulli.mid (http://webpages.uidaho.edu/mcintosh/Brenoulli.mid) 

contains the outcomes of the error terms. The sonification of the error process consists of two 

different notes, played in sequential random order. It is immediately apparent from the 

dichotomy of the sounds that the support of the error process is a dichotomy, suggesting that a 

scaled and translated Bernoulli-type process underlies the generation of the errors. The apparent 

lack of “runs” or groupings in the sounds played suggests that the errors are likely generated at 

random (i.e., independently).  

 Now consider an omitted variables version of the model, whereby   

0 1 1 2 2,t t t t t tY X v where v X           (2) 

http://webpages.uidaho.edu/mcintosh/Brenoulli.mid
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and the omitted component 2 2tX   that now appears in the error term tv  is such that the pattern 

of the observations in 2tX , scaled by the value of 2 , sonifies to the tune of “Mary Had a Little 

Lamb”. The sonification of the 26 outcomes in the error vector tv  is provided in the midi file 

OmittedMary.mid (http://webpages.uidaho.edu/mcintosh/OmittedMary.mid). In this sonification, 

one hears simultaneously the dichotomous sounds of the original error process in (1) together 

with the sounds of the omitted variable effect, suggesting there exists a systematic component to 

the error process, and signaling a misspecification of the conditional regression function.  

 While admittedly artificial, where the omitted variable component of the sonification 

turns out to be a highly familiar and recognizable tune, it is this type of auditory processing that 

lies at the root of the intent of econometric data sonification. While still in its infancy, one can 

conceive of a longer run context in which the song library of econometric misspecifications has 

been built up, and the associated tunes learned such that the use of auditory perception becomes 

a member of the econometrician’s toolkit for exploring the specification of econometric models.   

 

2.2 A Prototypical Econometric Model Setting 

In this subsection, we examine an econometric model in which the original data are based on an 

acreage response function for wheat using the price of wheat, price of barley and price of 

potatoes along with time as explanatory variables. The data generating process was based on the 

equation: 

 

     Wheat Acres Plantedt = 1050 + 35Pwheatt – 35Pbarleyt – 5Ppotatoest +10Timet + t       (3) 

 

 

http://webpages.uidaho.edu/mcintosh/OmittedMary.mid
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Data for the commodity prices used in this project are found in appendix B, Table B1. The time 

variable takes on integer values from one through fifty, corresponding to each observation. The 

error vector  1,..., n     , with 50n , was modified to create models exhibiting specific 

Gauss-Markov violations and generate a dependent variable vector that would cause an estimated 

OLS model to exhibit the specific Gauss-Markov violations. In particular, these violations 

consisted of first order autocorrelation, two types of heteroscedasticity, and omitted relevant 

variables. The autocorrelation process reflected a strong positively autocorrelated error 

evolution, with .9  . Regarding the two heteroscedastic error processes, the first represented a 

structural change in error variance occurring half-way through data series, and the second was an 

error variance structure that increased as the observation number increased. The omitted 

variables simulation involved a relevant time trend variable that was omitted from the structural 

part of the model specification. All simulations are based on 50n   observations and assume 

normally distributed errors. The data are generated by first drawing a random sample from the 

normal error process, and then applying the regression model in (3) to produce the dependent 

variable values. Then the simulated data was used to fit the parameters of the following general 

linear model specification: 

 

                                                                       (4) 

 

The OLS residuals from these regressions were then subjected to the sonification process. The 

analyzed scenarios are described in detail in the discussion that follows.  

The baseline error structure was initially defined as iid normal with mean zero and 

variance equal to 15. A data series was generated, an Ordinary Least Squares regression model 
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was then estimated, and the OLS residuals were sonified. The result of this baseline simulation is 

shown in Figure 1 and the sonification of the estimated residuals can be heard in audio file 1 

located at http://webpages.uidaho.edu/mcintosh/audio1normal.mid. This sequence is also shown 

in music notation for the musically adept econometrician in Appendix A as Figure A1. 

 

2.2.1 First Order Autocorrelation 

Redefining the error structure so that              where     (    ) and   is set equal to 

0.9 generates a data set whose OLS residuals exhibit a statistically significant amount of 

autocorrelation. These residuals were sonified by order of observations as well as sorted by the 

magnitude of     . Sorting by the magnitude of the lagged error vector is a commonly suggested 

method for determining first order autocorrelation. When a strong positive trend is exhibited, this 

would be indicative of positive first order autocorrelation (see for example Gujarati, 2011). 

These series are shown in Figures A2 and A3 and can be heard in audio files 2 and 3 located at 

http://webpages.uidaho.edu/mcintosh/audio2AR1obs.mid and  

http://webpages.uidaho.edu/mcintosh/audio3AR1et-1.mid 

The audio patterns from these two series are what one would expect to hear from a 

strongly positively autocorrelated data series. In particular, when ordered by observation number, 

the audio reflects the repeated peaks and valleys that one would expect from residuals generated 

from an AR1 process. When the data are ordered by magnitude of      and sonified the pitches 

begin in the lower register and steadily move higher, as expected. 

  

2.2.2 Heteroscedasticity 

As noted in the introduction to section 2, two types of heteroscedasticity were generated. The 

first is the result of a “structural change” in the error process with the first 25 observations 

http://webpages.uidaho.edu/mcintosh/audio1normal.mid
http://webpages.uidaho.edu/mcintosh/audio2AR1obs.mid
http://webpages.uidaho.edu/mcintosh/audio3AR1et-1.mid
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generated from a homoscedastic  (    ) population distribution and the last 25 observations 

being generated from a homoscedastic  (    ) population distribution. The residuals from this 

regression can be heard in audio file 4 located at  

http://webpages.uidaho.edu/mcintosh/audio4hetero.mid and shown in musical notation in 

Appendix Figure A4. 

 The change in the spread of the pitch between notes played in the first 25 observations 

and notes played in the last 25 observations is evident. This variation in pitch suggests that the 

spread of observations, i.e. the variance, changes midway through the set of observations, and 

thus is indicative of both heteroscedasticity, and of the type of heteroscedasticity, i.e., a structural 

shift in the variance of the process.   

The second set of heteroscedastic data were generated from an error vector distributed as  

 (        ). Thus as the observation number (time) increases, so does the variance. An OLS 

regression was estimated from this data and the resulting error vector can be heard in audio file 5 

located at http://webpages.uidaho.edu/mcintosh/audio5hetero.mid. This sonified error vector is 

shown in musical notation in Appendix Figure A5. 

In this sonification, a gradually growing spread in the pitch between notes is heard as the 

data observations progress. This variation in pitch suggests that the spread of observations, i.e., 

the variance, is widening over the observations in the data set, indicative of both 

heteroscedasticity, and the type of heteroscedasticity, i.e., a variance that has an upward drift as 

the observations progress over time.  

 

  

http://webpages.uidaho.edu/mcintosh/audio4hetero.mid
http://webpages.uidaho.edu/mcintosh/audio5hetero.mid
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2.2.3 Omitted Variable 

The case of an omitted explanatory variable was examined by estimating a regression based on 

the data with error terms defined as iid     (    ). A regression model omitting the time trend 

was then estimated from this data (the full correctly specified model results are found in audio 

file 1 and Figure A1). The residuals from the restricted model were then sonified. These can be 

found in audio file 6 located at http://webpages.uidaho.edu/mcintosh/audio6omitted.mid and are 

shown in musical notation in Figure A6.  

 The pitch of the sound of the error process gradually moves upward as the data series 

progresses, suggestive of an upward drift in the mean of the error process. The sonification 

suggests that there is an omitted variable error in the structural specification of the conditional 

mean function, and also suggests that the omitted influences represent an upward drift in the 

conditional mean of the regression function. 

 

3.0 Summary, Conclusions, and Future Potential 

 

To our knowledge this paper represents the first application of economic data sonification 

presented at a major economics conference. Our efforts here illustrate that sonification can 

indeed be used to identify patterns in error vectors. With respect to autocorrelation and 

heteroscedasticity we are hearing the patterns that we expected to hear in data series that violate 

the assumption of constant finite variances. Regarding omitted variables, we were able to hear an 

upward structural drift in the error observations that resulted from an omitted variable that 

exhibited such an upward drift.  

 

http://webpages.uidaho.edu/mcintosh/audio6omitted.mid
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 As econometricians, we often make use of visualization without considering the other 

potential options for exploring our data.  This paper serves to illustrate that the sonification 

approach can indeed generate output that is useful to the econometrician.  Sonification holds 

promise as an intuitive way of displaying patterns in the data particularly when graphical means 

cannot do justice to the data because of the level of dimensionality or the complexity of the 

underlying patterns. Econometricians are comfortable with graphical displays of data; it is 

something the discipline has been doing for a century or more. Sonification, on the other hand, is 

in its infancy. There is clearly a lot to learn about both data generating processes and the 

“sounds” associated with process outcomes.  

 While this may be the first application of sonification to economic data it will certainly 

not be the last. Mathematica now includes functions useful for sound synthesis and sonification. 

The R programming language has a sonification package known as playitbyr. As it currently 

stands, the process of sonifying data is less than straightforward. However, software packages 

such as these will undoubtedly aid in the expansion of sonification as a data analysis tool.  

 In conclusion, it is worth reiterating that the purpose of this paper was to explore the 

potential application of Sonification techniques for informing and assessing the specification of 

econometric models for representing economic data outcomes. Having completed this exercise it 

is our opinion that there does indeed appear to be significant promise in adding the data 

sonification approach to the empirical economists’ toolkit for interpreting economic data and 

specifying econometric models. It is likely that a great deal of interesting information will be 

revealed about data generating processes encountered in practice if we will only take the time 

and effort to listen to our data, and begin accumulating a historical record of what we heard. 
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Appendix A: Musical Notation 

 
Figure A1. OLS residuals from an appropriately specified regression based on simulated data 

with      (    ). 
 

 
Figure A2. OLS residuals in observation order from a regression based on simulated data with  

             where     (    ) and   = 0.9.   
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Figure A3. Figure A2. OLS residuals ordered by      based on simulated data with    
          where     (    ) and   = 0.9. 



17 

 

Figure A4. OLS residuals from a regression based on simulated data generated with the first 25 

observations      (    ) and the last 25 observations      (    ) 
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Figure A5. OLS residuals from a regression based on simulated data generated with      (    
    ) note that the abbreviation 15ma (15mb) indicates a note that is a two octaves, i.e. a 

fifteenth, above (below) the written note. 
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Figure A6. OLS residuals from a regression with the time trend omitted based on simulated data 

with      (    ) 
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Appendix B: Data 

 
Pwheat Pbarley Ppotatoes Time 

3.8461 2.5960 9.6346 1 

3.8490 2.0000 9.1509 2 

3.4629 1.8703 6.7592 3 

3.4000 1.5090 7.6727 4 

3.2678 1.6428 6.7142 5 

2.9473 1.4035 7.3333 6 

2.9298 1.5610 8.9122 7 

2.9322 1.4915 5.5080 8 

3.0163 1.4590 4.7377 9 

3.0785 1.5150 6.2650 10 

2.9375 1.5000 7.4062 11 

1.9390 1.3787 6.5606 12 

1.9260 1.3970 6.2500 13 

2.2142 1.3857 4.0714 14 

1.8611 1.4444 5.5694 15 

1.5676 1.2432 5.7432 16 

1.6800 1.1866 4.6000 17 

1.8289 1.2105 5.0921 18 

1.7837 1.3108 5.7020 19 

2.4743 1.3461 5.7690 20 

4.7792 1.7142 8.9220 21 

4.8433 2.8430 6.0722 22 

4.4102 3.6923 5.1282 23 

3.0740 2.8640 5.9012 24 

3.3000 2.5875 6.5300 25 

3.0048 2.3292 6.2430 26 

2.9235 2.3764 5.6230 27 

2.7258 2.7978 3.2921 28 

3.1932 3.3290 5.4780 29 

3.2584 2.9887 5.4166 30 

3.8777 2.7667 7.7259 31 

3.6304 3.0217 5.5452 32 

3.5274 2.7360 6.4570 33 

2.6483 2.5710 7.1080 34 

2.8172 2.2365 5.2240 35 

4.3080 2.3720 4.7535 36 

3.8421 2.9052 5.3754 37 

2.5918 2.7857 4.7653 38 

3.6000 2.6200 7.2608 39 

3.4653 2.7426 7.5248 40 

2.8173 2.7019 5.6129 41 

3.3964 2.4905 5.7303 42 

4.1389 2.2407 5.6774 43 

3.4695 2.6522 5.2927 44 

2.6218 2.6386 5.1519 45 

2.0176 2.4955 5.6954 46 

2.1891 2.1621 4.5105 47 

2.1293 2.2413 4.8491 48 

2.1400 2.2700 5.1700 49 

2.1678 2.1290 5.0190 50 

 


