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Abstract

Are futures prices exogenous to agricultural supply? It depends. We argue that crop
yield shocks were predictable during the 1961-2007 period because high planting-time
futures prices tended to indicate that yield would be below trend. This feature of the
data implies that regressions of production on futures prices would underestimate the
supply elasticity, i.e., endogeneity in the futures price biases the regression coefficient
down. However, this predictability has only a small effect on planted acreage. Thus,
estimating supply models with regressions of planted acreage on futures prices entails
a small endogeneity bias. Moreover, this small bias is mitigated by adding the realized
yield shock as a control variable to such a model as a proxy for the expected yield
shock. The marginal contribution of an instrumental variable to bias reduction is thus
small.
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1 Introduction

Since the seminal work of Wright (1928), weather has been recognized as an exogenous

supply shifter that can be used to identify the demand elasticity. It has been less common

to use demand shifters to identify the supply elasticity—perhaps because demand shifters

can explain little of the variation in agricultural prices between years. Instead, agricultural

supply analysis has typically used a planting-time measure of the price farmers expect to

receive and assumed that these expected prices are exogenous to supply. In his seminal

work, Nerlove (1958) motivates including a lagged price and a lagged dependent variable as

explanatory variables based on a supply model with adaptive expectations. Since the work

of Gardner (1976), it has become standard practice to use planting-time (or pre-planting)

futures prices of contracts for post-harvest delivery in econometric models of supply with the

rationalization that the futures price equals the farmer’s rational expectation of post-harvest

prices.

The plausible exogeneity of the futures price received little scrutiny until recent work

by Roberts and Schlenker (2013; henceforth RS), who argue that futures traders have some

expectation of production that affects the futures price and thereby makes the futures price

endogenous to supply. They propose using weather in the previous year as an instrumental

variable on the grounds that it affects the futures price through an inventory channel. They

approximate weather shocks using deviations of yield from trend and apply their model to

the world supply of calories from maize, soybeans, wheat, and rice from 1961-2007. Their

results indicate substantial endogeneity bias. They estimate supply elasticities in the range of

0.020–0.051 using ordinary least squares (OLS) compared with 0.087–0.102 using two-stage

least squares (2SLS).

Choi and Helmberger (1993) also raise concerns about the endogeneity of the futures

price in supply analysis. They estimate a system of equations for demand for consumption,

demand for inventory, the futures price, acreage, and demand for seed, which they apply
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to the U.S. soybean market. In apparent contrast to RS, Choi and Helmberger (1993) find

little difference in OLS and three-stage least squares estimates of acreage response to price.

Endogeneity bias in a regression model can be conceptualized as an omitted variables

problem. The omitted variables in a supply model are predictable factors that affect pro-

duction. Unpredictable weather and pest shocks do not bias coefficient estimates because

they are unknown to futures traders prior to planting and are therefore uncorrelated with

the futures price. Only factors that are predictable prior to planting must be included in

the regression to obtain unbiased estimates of the supply elasticity.

Instead of using supply shifters as control variables, researchers can mitigate endogeneity

bias by finding instrumental variables that isolate demand shocks. Although the novelty in

their work is the proposed instrument, RS use both approaches simultaneously. They use

the current-year realized yield shock as a control variable and the prior-year realized yield

shock as an instrument in their regressions. We show that the control variable does all the

work. When we estimate their model using OLS with the control variable, we obtain almost

identical results to those from 2SLS.

We also decompose the supply elasticity into components due to changes in (i) total

growing area, (ii) the composition of acreage across crops and countries, and (iii) deviations

of yield from trend. This decomposition reveals that the futures price is endogenous to total

production due to predictable yield shocks, but this predictability has little effect on growing

area. This result resolves the apparent contrast between the results of Choi and Helmberger

(1993), who model acreage, and RS, who model production.

To interpret our results, we derive expressions for the bias in the relevant OLS and 2SLS

estimators. We show that if endogeneity comes from predictable yield shocks, then using

prior-year yield shocks as an instrument produces no bias reduction once the current-year

yield shock is controlled for, and it could even increase bias. RS recognize that predictable

yield shocks (autocorrelation in yields) would invalidate their instrument, which is why they

control for the current-year yield shock. However, the realized yield shock is a noisy proxy for
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the predictable component of the yield shock, which is the omitted variable in the regression.

Thus, the control doesn’t eliminate the bias (Wooldridge 2002) and, because it reduces the

amount of noise in the model, it could magnify importance of the predictable component

of the yield shock in the model error thereby increasing bias. We conclude that, in the

application to world caloric supply, the instrument is mostly innocuous, although it results

in a much wider confidence interval than the preferred OLS estimate.

2 Bias in Econometric Models of Global Caloric Supply

2.1 Model Setup

RS model world production of calories from maize, soybeans, wheat and rice using a simple

regression equation. They regress the log of total caloric production on the log of a calorie-

weighted index of U.S. futures prices while controlling for deterministic trends and an index

of yield shocks.

A myriad of complexity underlies this supply equation. When a demand shock changes

the futures price index, farmers throughout the world respond to a greater or lesser extent by

altering the number of acres planted to these crops and changing the mix of crops within those

acres. When making these decisions, they take into account the heterogeneous productivity

of the land they operate and predictions about growing season weather. Moreover, differing

seasons across the globe mean that farmers may have some information about the likely size

of the crop in other parts of the world when making these decisions.

To understand the role of these various components, we decompose world caloric produc-

tion in year t into three components: (i) total growing area (At), (ii) average trend caloric

production per unit of land (trend yield; Yt), and (iii) the average proportional deviation

from trend yield (Ψt). These components are weighted averages of their country-crop coun-

terparts. For crop c in country i in year t, we write the growing area as Acit, the trend yield

as Ycit, and the proportional deviation from trend yield as Ψcit. Caloric production from

crop c in country i is Qcit = AcitκcYcitΨcit, where κc denotes the number of calories in one
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unit of crop c. We write world caloric production as Qt = AtYtΨt, where

At =
∑
i

∑
c

Acit, (1)

Yt =
∑
i

∑
cAcitκcYcit∑
i

∑
cAcit

, (2)

Ψt =
∑
i

∑
cAcitκcYcitΨcit∑

i

∑
cAcitκcYcit

. (3)

With this representation, we can decompose the supply response to a price shock into com-

ponents related to total growing area (equation 1), a component related to the composition

of that growing area (equation 2), and a component related to deviations of yield from

trend (equation 3). Using the notation that lower case objects represent the logarithm of

upper case objects, we work in the remainder of the paper with qt ≡ ln(Qt), at ≡ ln(At),

yt ≡ ln(Yt), and ψt ≡ ln (Ψt).

The final component of this decomposition is almost identical to the yield shock variable

(ωt) used by RS. They construct ωt as the average across countries of log yield deviations

from trend, whereas we define ψt as the log of average yield deviations from trend. The

difference between ωt and ψt does not matter much, empirically. The correlation between

the two proxies in our dataset is 0.997, and we show that estimates of the supply elasticity

are essentially identical using either proxy. We choose to work with ψt because it allows

us to use the decomposition in (1)–(3), which in turn allows us to decompose the channels

through which price affects caloric production.1

RS specify the country-level trend yield for each crop to be a deterministic function of

time. Even though trend yield for a particular crop in a particular country does not depend

on price, average trend yield (Yt) may be affected by price if the spatial variation in acreage

response to price is correlated with the spatial variation in yields. For example, if countries

with more productive climates and soils have a larger growing area response to price, then

average trend yield increases when price increases. Similarly, if countries that specialize in
1Because the average of a logarithm does not equal the log of an average, qt 6= at + yt + ωt.
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higher yielding crops have a larger growing area response to price, then average trend yield

increases when prices increase.

Log yield shocks (ψcit) are determined mostly by weather. An exceptionally hot and/or

dry growing season causes yield to be far below trend. RS assume that ψcit is independent of

growing area (acit) and trend yields (ycit), so the average deviation from trend yield (ψt) is

not affected by price. This assumption would fail if farmers respond to output price shocks

by changing inputs such as fertilizer and labor in ways that affect yield. It would also fail

if shocks to output prices cause expansion onto cropland of different-than-average quality

thereby causing country-level yield to deviate from trend. RS provide some evidence to

suggest that any yield response to price is likely negligible compared to yield variation due

to weather.2

With the exogeneity of ψcit, aggregate production responds to price only through changes

in the amount and composition of growing area. Farmers make growing area decisions based

on expectations of prices and expectations of yields at harvest, so these two expectations

affect total growing area directly, and they affect trend yield through their effects on the

compostion of growing area. We write linear regression equations for at and yt as follows:

at = αa + βapτt + γaψτt + fa (t) + uat , (4)

yt = αy + βypτt + γyψτt + f y (t) + uyt , (5)

where pτt ≡ ln (Eτ [pt]), ψτt ≡ ln (Eτ [ψt]), Eτ denotes expectations conditional on the

information available at Northern Hemisphere planting time, and f (t) is a trend. Thus, pτt

is the log of the expected harvest price and ψτt is the log of the expected yield shock at time

τ . Following RS, we assume that the futures market provides an unbiased expectation of

harvest prices, thus pτt denotes the log of a calorie-weighted average of harvest-time futures
2See their appendix section A1.1
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contracts trading at time τ . If yield shocks are not forecastable, then ψτt = 0 and the

associated term drops out of equations (4) and (5).

Total log production equals the sum of the logs of the three components in (1)–(3), i.e.,

qt = at + yt +ψt. Exogeneity of the yield shock combined with equations (4) and (5) implies

that a model for world caloric supply is:

qt = α + βpτt + γψτt + ψt + f (t) + ut, (6)

where β = βa + βy and similarly for other parameters of supply equation.

The supply elasticity parameter (β) in equation (6) could be estimated consistently by

OLS if two conditions were to hold: (i) the supply shocks embedded in ut were unpredictable

by futures traders (Eτ [ut] = 0), and (ii) yield shocks are either unpredictable (ψτt = 0) or

a suitable proxy exists for the predictable component of yield shocks. Neither of these

conditions are likely to hold exactly. Southern Hemisphere planted acreage is known at time

τ , as is the Northern Hemisphere planted acreage of winter wheat, so the supply shocks

embedded in ut are partially predictable. We show in this paper that yield shocks are

predictable, but have only small effects on growing area (i.e., γ is small).

2.2 Bias of IV and OLS Estimators

Predictability of ut and ψt and the implied OLS bias suggest that instrumental variables may

provide an alternative estimation strategy. RS argue that the previous year’s yield shock

affects the futures price through interannual storage but should not directly affect production

decisions. They suggest using the lagged yield shock as an instrument for the futures price.

An alternative, or complementary, approach would be to use the observed yield shock ψt to

proxy for ψτt.
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We thus have three possible regression equations with which to estimate β in equation

(6):

qt = α1 + β1pτt + f1 (t) + u1t, (7)

qt = α2 + β2pτt + γ2ψt + f2 (t) + u2t, (8)

qt = α3 + β3pτt + γ3ψt + δ3ετt + f3 (t) + u3t, (9)

where ετt denotes errors from the first stage regression

pτt = θ0 + θ1ψt−1 + θ2ψt + g (t) + ετt (10)

Equations (7)–(9) are defined such that the errors ujt are uncorrelated with the right hand

side variables, and therefore that the parameters represent the probability limit of the OLS

estimator. Equation (9) is the second stage of a 2SLS estimation procedure, for which (10) is

the first stage, i.e., it is an instrumental variables estimator that uses ψt−1 as an instrument

for price. We assume that the exclusion restriction holds to make ψt−1 as RS define it, i.e.,

E [ψt−1ut|ψt] = 0.

We derive the conditions under which each β1, β2, and β3 equal β. We define νt such

that E [ετtνt] in the equation ut ≡ δετt + νt, where δ < 0. This condition implies that we

can write the equation of interest (6) as

qt = α + βpτt + γψτt + ψt + δετt + f (t) + νt, (11)

where νt is uncorrelated with the right hand side variables. We can now treat (7)–(9) as

regressions with omitted variables relative to (11) and apply standard omitted variable bias

formulas. Specifically, the bias in β1, β2, and β3 equals the dot product of coefficients in (11)

on any omitted variables with the coefficients on pτt in auxiliary regressions of each omitted

variable on the included variables.

7



Understanding the bias requires expressions for the parameters in these auxiliary regres-

sions. To this end, we define ηt as the surprise in the yield shock, such that Ψt = Eτ [Ψt]ηt,

where Eτ [ηt] = 1. It follows that

ψt = ψτt + ln(ηt), (12)

where cov[ψτt, ln(ηt)] = 0 as long as ηt is independent of information available at τ . In

addition, because it is an important parameter in characterizing the bias, we define the

parameter π as the coefficient on price in the following hypothetical regression

ψτt = µ+ πpτt + h (t) + et. (13)

Replacing ψτt with ψt in this regression would produce the same price coefficient π because ηt

is independent of information available at τ . We expect π < 0 because predictable increases

in yield will cause the futures price to decrease.

Using these definitions, omitted variables bias formulas (e.g., Wooldridge 2002, p. 64)

imply that

β1 = β + (1 + γ)φ11 + δφ12 (14)

β2 = β + γφ21 + δφ22 (15)

β3 = β + γφ31 (16)

where

φ11 = π, φ12 = σ2
ε

σ2
pτ

(17)

φ21 =
πσ2

η

σ2
ψ − σ2

pτπ
2 , φ22 =

σ2
εσ

2
ψ

σ2
pτσ

2
ψ − σ4

pτπ
2 (18)

φ31 =
πσ2

η − πρ1σ
2
ψ − σ2

η (π − π1ρ1) (1− ρ1)−1

σ2
ψ − σ2

τpπ
2 − σ−2

τp σ
2
ψσ

2
ε

, (19)
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where σ2
ε ≡ var [ετt], σ2

η ≡ var [ln(ηt)], σ2
ψ ≡ var [ψt],σ2

τp ≡ var [pτt] is the variance of

detrended prices, π1 ≡ E [p̃τtψt−1]σ−2
τp is the coefficient from a regression of ψt−1 on p̃τt, and

ρ1 ≡ E [ψt−1ψt]σ−2
ψ = E [ψt−1ψτt]σ−2

ψ is the first order autocorrelation coefficient for ψt.

Equations (14)–(16) reveal that all three estimators underestimate the supply elasticity

in general, but are consistent in some special cases. The parameters π, γ, and δ are critical

for determining the magnitudes of the bias. First, π equals zero if yield shocks are not

predictable by futures traders and is negative if such shocks are partially predictable. If

π = 0, then yield shocks must have zero autocorrelation ρ1 = 0. In this case, the 2SLS

estimator in (9) is a consistent estimator and the two OLS estimators in (7) and (8) are

biased only if supply shocks embedded in ut are predictable (i.e., δ < 0). Thus, in this case,

the 2SLS framework introduced by RS produces consistent estimates of supply parameters.

Moreover, this case implies that controlling for current yield shocks (ψt) has no effect on the

OLS estimator, i.e., β1 = β2 because φ12 = φ22.

If γ = 0 and π < 0, then yield shocks are predictable but they have no effect on land

allocation. In this case, 2SLS is again consistent but there is a significant difference between

the two OLS estimators. When the current yield shock is omitted from the model, the

coefficient on price (β1) has a greater bias because the omitted variable is correlated with

price. The difference between β2 and β3 in this setting depends on the value of δ. If δ is

small, then β2 and β3 will be similar. A small δ means that the endogeneity bias comes

mostly from correlation between expected yield shocks and prices. Controlling for yields

shocks removes this component of bias leaving little bias for 2SLS to correct.

If δ = 0, but γ > 0 and π < 0, then 2SLS would have a smaller bias than the OLS

estimator that controls for the current yield shock if φ31 were less negative than φ21. On the

other hand, if φ31 were more negative than φ21, then 2SLS would have a greater bias than

OLS. Comparing, φ21 and φ31, we see that φ31 has a less negative numerator but also a less

positive denominator, so the relative bias is unsigned in general.3 We also note at this point
3The 2SLS bias would be worse than OLS if, after we control for ετt, the correlation between price and

the predictable component of yield becomes stronger. Put another way, ψt−1 is not quite a valid instrument
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that the bias expressions we derive are for the probability limit of the estimator. Thus, for

2SLS is essentially assumes that the instrument is infinitely strong. The finite sample bias

of the 2SLS estimator is likely worse than the asymptotic bias.

The assumed exogeneity of yield shocks implies that we interpret π < 0 as indicating that

predicted yield shocks cause prices. Suppose this assumption fails and that the causation

runs in the opposite direction, i.e., a negative π reflects the response of yield shocks to

price through substitution between lands of different qualities.4 The supply elasticity in this

case is β + (1 + γ)π, which is the sum of the price effects on growing area and on yield.

If growing area shocks are exogenous to price (δ = 0), then equation (14) shows that the

simple regression in (7) produces a consistent estimate of the supply elasticity. Adding the

yield shock control as in (8) or instrumenting using the lagged yield shock as in (9) cause

the elasticity to be biased upwards by partialling out the component of the price effect that

works through yield. These latter estimators would over-estimate the elasticity by omitting

the tendency of yield to decrease when acreage increases. We explore this possibility in our

empirical section, along with the other cases discussed above.

2.3 Decomposing the Supply Elasticity

Equation (6) essentially includes ψt on both the left and right hand sides. On the left hand

side, we write total caloric production as qt = at + yt + ψt, but then we controlled for ψt

because of the possibility that it is predictable. Given that this variable is assumed to be

exogenous to prices, there seems little reason to include it on the left hand side of the model.

It would be cleaner to model the acreage allocation directly using (1) and (2), or the sum

for price because it likely has a small correlation with production through the predictable component of
yield shocks. Put another way, ετt is an imperfect proxy for ψτt. This correlation becomes more of an issue
after we remove the noise in yield by controlling of the current yield shock. A similar thing happens when
comparing β1 and β2 for the case with δ = 0 and π > 0. Adding the current yield shock as a control makes
the bias worse (φ22 > φ12) because controlling for ψt increases the partial correlation between price and ετt.
See (e.g., Wooldridge 2002, p. 64) for more on the conditions under which imperfect proxies can worsen bias.

4Price could increase yield deviations from trend (i.e., yield shocks) by changing the use of inputs such as
fertilizer, or it could decrease yield shocks by encouraging expansion of acreage onto marginal land thereby
causing average yield to deviate from trend. We focus here on the latter case (δ<0) because it matches our
empirical finding of a negative correlation between yield and price.
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of these two equations, rather than adding the noise induced by ψt only to take it back out

again. Even if the yield shock does respond to price because farmers adjust inputs in ways

that affect deviations of yield from trend, this effect is eliminated from the model once we

control for ψt.

In the models in (8) and (9), which control for ψt, the effect of price on production works

partially through its affect on total growing area as in (1) and partially through its effect on

trend yield through changing the composition of the growing area as in (2). To estimate the

relative importance of these two channels, we estimate the following analogs of (8) and (9):

at = αa2 + βa2pτt + γa2ψt + fa2 (t) + ua2t (20)

at = αa3 + βa3pτt + γa3ψt + δa3ετt + fa3 (t) + ua3t (21)

yt = αy2 + βy2pτt + γy2ψt + f y2 (t) + uy2t (22)

yt = αy3 + βy3pτt + γy3ψt + δy3ετt + f y3 (t) + uy3t. (23)

By construction, the sums of the parameters across dependent variables in these equations

equal their analog in (8)–(9), e.g., βa2 + βy2 = β2. Thus, these models provide a simple

decomposition of the estimated price responses. Analogous bias expressions to those in (15)

and (16) can be obtained by replacing β and γ with their analogs from (4) and (5).

The model in (7) does not control for ψt so the implied effect on production from this

model could work through all three components, at, yt, and ψt. To estimate the relative

importance of these three channels, we estimate the following analogs of (7) for at and yt:

at = αa1 + βa1pτt + fa1 (t) + ua1t (24)

yt = αy1 + βy1pτt + f y1 (t) + uy1t, (25)

along with (13), which is the analogous equation for ψt. The relevant bias expressions are

those in (14) except with (1 + γ) replaced by γ.
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It is common for agricultural economists to estimate some form of (24). The potential

source of endogeneity in this equation is that futures traders may have knowledge of factors

affecting the growing area that will affect the futures price. RS motivate this source of

endogeneity with the example of soybean rust in the United States. The discovery of soybean

rust in the United States before planting may have caused farmers to reduce their intended

planting of soybeans and thus affected the futures price. This discussion applies to the

literature that uses panel data where the dependent variable is the share of a region planted

to crops (e.g., Wu and Segerson 1995; Hardie and Parks 1997; Holt 1999; Miller and Plantinga

1999) or where the dependent variable is a discrete variable indicating the crop planted (e.g.,

Wu et al. 2004; Lubowski, Plantinga, and Stavins 2008; Hendricks, Smith, and Sumner 2012).

The estimate of π in (13) provides direct evidence on predictability of the yield shock.

Even if the true yield response to price is zero, OLS estimation of π will likely produce

negative coefficient on the futures price if yield shocks are forecastable. To some extent,

growing-season weather may be predictable before planting. For example, some droughts

persist over several years. In addition to predictions of weather, yield forecasts may also

reflect other factors such as pest pressure. The discovery of soybean rust in the United

States provides one such example. The futures price used by RS reflects expectations of

crop yields prior to planting in the Northern Hemisphere, but also reflects realized crop yield

shocks in the middle of the growing season in the Southern Hemisphere.

2.4 Which Futures Price to Use?

One issue in specifying the regression is choosing the timing of the futures contract. Sev-

eral studies use the price of a harvest-time contract traded at planting-time (e.g., Gardner

1976; Choi and Helmberger 1993; Goodwin, Vandeveer, and Deal 2004; Hausman 2012) while

others use the price of a harvest-time contract traded prior to planting (e.g., Orazem and

Miranowski 1994; Holt 1999; Wu et al. 2004; Hendricks, Smith, and Sumner 2012). Gardner

(1976) viewed this choice primarily as an issue of determining when production decisions
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were made. A more relevant consideration for the econometrician is to choose a price that is

subject to fewer endogeneity concerns. Futures traders have greater knowledge of exogenous

factors affecting planted area—such as excess rainfall preventing planting—at the time of

planting than in the months preceding planting. In the United States, the National Agri-

cultural Statistics Service (NASS) releases a prospective plantings report the last week of

March. Based on this consideration it seems preferable to use a futures price traded prior

to March to reduce endogeneity concerns in the United States. This point was also made by

Orazem and Miranowski (1994).

In their empirical application, RS estimate world supply of calories using the price of

a December or November contract (depending on the commodity) traded one year prior

to delivery. For example, the futures price for maize in 2007 is the December 2006 price

of the December 2007 contract. Their production data is from the Food and Agricultural

Organization (FAO), which reports crop production by country according to the calendar

year the crop was harvested. For example, Brazilian soybeans planted in October 2006 and

harvested in April 2007 would be recorded by FAO as 2007 production. While the RS futures

price reflects expectations prior to planting in the Northern Hemisphere, their futures price

also reflects realized growing area in the Southern Hemisphere as well as planted winter-

wheat acreage in the Northern Hemisphere.

3 Results

3.1 Comparison of IV and OLS Estimates

We replicate the supply results of RS to better understand the sources of endogeneity that

they find. We do not replicate their demand analysis since we are only concerned with the

supply analysis for this paper. We also only replicate results using production data from the

Food and Agriculture Organization (FAO) of the United Nations.

Total caloric production is the sum of the production of maize, rice, soybeans, and wheat

using the caloric conversion factors from Williamson and Williamson (1942). Two-stage least
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squares estimates use data for the period 1961–2007. One period is lost because the lagged

yield shock is used an an instrument, so there are 46 observations. In OLS regressions we use

the same 46 years, 1962–2007. We construct the RS yield shock ωt as the weighted average

of country and crop-specific log yield shocks as described in their paper. We construct the

yield shock ψt as the log of the weighted average of country and crop-specific yield shocks

as we describe in the previous section.

The futures price is the caloric weighted average of the price of maize, soybeans, and

wheat.5 We use futures contracts with a delivery month of December for maize and wheat

and a delivery month of November for soybeans. The futures price is the average price in

December one year prior to delivery. Where price data are missing, we use the monthly

average futures price nearest to December of the year prior to the harvest year.

Panel A of table 1 reports 2SLS estimates (equation (9)). Results in columns (1a)–(1c)

in table 1 use ωt as the yield shock while results in columns (2a)–(2c) use ψt as the yield

shock. Our estimates in columns (1a)–(1c) of panel A are remarkably close to replicating

supply estimates in columns (1a)–(1c) of table 1 of RS. Estimates of the supply elasticity

differ little whether we use ωt or ψt as the yield shock. In the rest of our discussion, we focus

on using ψt as the yield shock because it allows us to apply the decomposition in (1)–(3).

Panel B of table 1 reports OLS estimates of equation (8), which includes the yield shock

as a control. From the bias expressions in the previous section, we expect a substantial

difference between the estimates in panels A and B if growing-area shocks are predictable

(i.e., if δ < 0). A natural source of such predictability comes from the fact that Southern

Hemisphere planted acreage is known at time τ , as is the Northern Hemisphere planted

acreage of winter wheat. The OLS estimates, however, are very similar to 2SLS estimates

implying that the effect of such predictability on growing area is small (i.e., γ is close to

zero). In fact, OLS estimates are slightly larger than 2SLS estimates in columns (2a) and

(2c). We also report the p-value from a Hausman test of endogeneity that tests between the
5RS do not use the futures price of rice when constructing an average price because rice futures did not

trade before 1986.
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models in panel A and panel B. We cannot reject the null hypothesis of exogeneity for any

of the specifications of spline knots.

Panel C of table 1 reports OLS estimates of equation (7), which omits the yield shock.

Our estimates in columns (1a)–(1c) are again remarkably close to replicating OLS estimates

in columns (1a)–(1c) of table 4 from RS. OLS estimates of the supply elasticity that omit

the yield shock are much smaller than results in panel A or panel B, indicating that there

is substantial predictability in yield shocks. If such predictability were not present (π = 0),

then our bias expressions imply that panels B and C would produce similar estimates. We

report the p-value from a test for omitted variable bias that tests between the models in

panel B and panel C.6 We reject the null hypothesis of no omitted variable bias at the 1

percent level for all the specifications of spline knots.

In summary, the futures price is endogenous to total production due to predictable yield

shocks (π < 0), but this predictability has little effect on growing area (γ is small). Pre-

dictable shocks to growing area have little influence (δ ≈ 0), so there is little need to apply

instrumental variables estimation once current yield shocks are controlled for. Moreover,

because the 2SLS estimates of standard errors are roughly 75 percent larger than standard

errors of OLS, these results argue against using 2SLS. This conclusion holds under the RS

assumption that yield shocks do not respond to price. In the next section, we address this

assumption and decompose the econometric biases in supply elasticity estimation due to

acreage, trend yield, and yield shocks as described in Section 2.3.

3.2 Decomposing the Bias

Table 2 shows our results for decomposing the sources of endogeneity by estimating equations

(20)–(25) and (13). The supply elasticity estimates in panel A are 2SLS estimates with the

yield shock as a control and the lagged yield shock as an instrument, panel B are OLS
6We perform this test by treating (7) and (8) as a pair of seemingly unrelated regressions. We stack the

regressions, estimate by OLS, and compute a t-statistic for equality of the β coefficients. We cluster the
standard errors by year.
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estimates with the yield shock as a control, and panel C are OLS estimates that omit the

yield shock as a control.

The difference between estimates in panels A and B of table 2 are small. OLS estimates of

growing area response to price that control for the yield shock are slightly smaller than 2SLS

estimates, but p-values for a test of endogeneity are between 0.315–0.778. The comparison of

results in panels A and B reinforces the notion that predictable supply shocks embedded in

ut are minimal (δ ≈ 0). OLS estimates of average trend yield response to price are actually

larger than 2SLS estimates.

Comparing columns (1a–1c) to columns (2a–2c) in panel B, we see that 70% of the esti-

mated supply response is due to changes in total growing area (0.063/(0.063 + 0.026) = 0.7)

and the remainder is due to changes in average trend yield. The effect on average trend yield

reveals changes in the composition of growing area. The composition of the growing area

may change if area response to price is heterogeneous and correlated with trend yields. Two

stage least squares estimates in panel A indicate that roughly 82% of the supply response is

due to changes in total growing area.

Table 2 provides some evidence that the futures price is partially endogenous to growing

area (γa > 0 and γy > 0). Elasticity estimates of the growing area response to price are about

0.012 smaller (a 13–19% reduction) if the yield shock is omitted as a control (columns 1a–1c

of panels B and C) and elasticity estimates of the average trend yield are about 0.005 smaller

(columns 2a–2c of panels B and C; a 13–19% reduction). These sources of endogeneity may

arise if producers adjust their planted acreage in anticipation of a yield shock and futures

prices respond to the anticipated change in planted acreage. We conduct a test for omitted

variable bias for each growing area model and obtain p-values in the range of 0.055–0.095.

For the average trend yield models, the corresponding p-values lie in the range of 0.102–0.138.

Table 2 indicates roughly 75% of the difference between the supply elasticity estimates

with and without the yield shock control (panels B and C) is due to the predictability of

yield shocks. Regressing the yield shock on the futures price gives an elasticity estimate
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of roughly -0.050. This estimate is an order of magnitude too large to be interpreted as a

yield response to price. Such an interpretation would require that new land brought into

production in response to a price rise has close to zero yield. To see this, note that the

estimated growing-area responses in columns (1a–1c) are 0.051–0.070; it is only possible to

increase acreage and decrease yield by the same percentage if the marginal land has zero

yield. This interpretation becomes even less plausible in the next section, when we report

that most of the supply response in these estimates comes from the U.S.

It seems clear that the reason for a negative estimated yield elasticity is because future

traders likely have some forecast of the expected yield shock, so the futures price is higher

in years with a negative yield shock. Assuming that the true elasticity is zero, a statistical

test for endogeneity is simply to test whether the coefficient on log futures price is equal to

zero. In table 2 we report p-values for this test in the range of 0.003–0.006.

In summary, these results suggest that regressions of world growing area on futures prices

may have a bias of up to 20% that can be mitigated by controlling for realized yield shocks.

Regressions of total production on futures prices are subject to a much greater bias because,

although yield shocks are predictable, this predictability has a relatively small effect on land

allocation.

3.3 Country-specific Growing Area Results

By construction, the supply response estimated by RS works entirely through growing area

response to price. The world supply response to price is not, however, equal to the world

area response to price because area response to price changes the composition of the growing

area. Our decomposition picks up this component through the log-average-trend-yield term

(yt). An alternative method to estimate the world supply response to price is to calculate a

weighted average of country-specific estimates of area response to price, where weights are

equal to the trend caloric production of each country (AitYit).7 Zellner (1969) showed that
7An estimate of the world area response to price can also be calculated as a weighted average of country-

specific estimates of area response to price, but using growing area of each country (Ait) as weights instead.
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regression estimates with aggregate time series data and the average of regression estimates

with disaggregate data are both consistent estimators of the aggregate coefficient in the case

of a linear, static model with heterogeneous coefficients.8

We construct a panel dataset of caloric production using the FAO production data. To

maintain consistent production regions through the sample period we aggregate production

from countries that were formerly part of the Union of Soviet Socialist Republics (USSR)

or formerly part of the Socialist Federal Republic of Yugoslavia (Yugoslav SFR). Countries

that produced less than 0.5% of world caloric production on average were aggregated into

one of two regions—“Rest of North” or “Rest of South”–depending on hemisphere. We

assigned each country to the northern or southern hemisphere based on the average planting

and harvest dates for maize and rice from Sacks et al. (2010). We group countries into the

northern hemisphere if the planting date is earlier than harvest date within a calendar year.9

Our dataset is a balanced panel of 31 countries or regions during the period 1961–2007.

Table 3 shows estimates of the aggregate supply elasticity using the production-weighted

average of country-specific regressions. We estimate country-specific regressions using the

same three estimators used previously: 2SLS with ψt as a control, OLS with ψt as a control,

and OLS omitting ψt. These regressions are specified exactly the same as before, except that

the left-hand-side variable is the growing area in the country or region.10 Standard errors

for the aggregate supply elasticities are generated using a bootstrap, clustered by year, with

1,000 replications.

Estimates of the aggregate supply elasticity in panels A and B of table 3 are similar to

estimates in panels A and B of table 1. The weighted-average yield shock coefficients in

panels A and B of table 3 are similar to estimates in panels A and B of table 1 minus one
8Our aggregate regressions are not exactly the sum of country-specific regressions because the sum of logs

is not equivalent to the log of a sum, but this is not likely to be a major concern in practice.
9In other words, countries are grouped into the northern hemisphere if planting of maize and rice occurs

early in the calendar year and harvest occurs late in the calendar year. We use the dates for the crop that
represents the largest portion of total production in the few cases where the crop calendar for maize and rice
give conflicting results for the hemisphere.

10Results are similar if we use the log yield shock of the country or region as a control ψit instead of the
log world average yield shock ψt.
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because the yield shock is not included in the LHS in the results in table 3. Results in panel

C of table 3 that omit the yield shock as a control are much larger than estimates in panel C

of table 1. As in table 2, most of the endogeneity of the futures price with respect to caloric

production is because yield shocks are forecastable and affect the futures price—estimating

area response to price mitigates this endogeneity concern.

The OLS estimates in panel C of table 3 are still smaller than estimates in panel B indi-

cating that, as in table 2, there may still be some endogeneity concerns related to expected

yield shocks affecting anticipated growing area. There is also an endogeneity concern that

growing area in the southern hemisphere is known at the time the futures price is trading

(δ < 0). Two stage least squares estimates may reduce the bias from this endogeneity, but

results differ little in panels A and B in table 3.

Figure 1 shows estimates of the supply elasticity for each country or region with 95

percent confidence intervals where the trend in the regressions is specified with 5 spline

knots. For some countries 2SLS gives larger estimates of the area response to price, but for

others 2SLS gives smaller estimates. Generally, estimates do not differ substantially if we

include the yield shock or omit the yield shock from OLS regressions.

The estimates of those countries that produce most of the world’s calories are particularly

relevant. The top five countries or regions produce roughly 65 percent of the world’s calories

from these crops: USA (23%), China (20%), India (9%), former USSR (7%), and the Rest

of the North (7%). Estimates of supply response in China, India, and the Rest of the North

are minimal. Supply response in the former USSR is larger, but the largest estimated supply

response is in the United States.

Table 4 shows results for growing area response to price in the United States for the

different estimators and different specifications of spline knots. The 2SLS estimates in panel

A of our table 4 are very similar to the results reported by RS in panel B of their table

3.11 OLS estimates that include the yield shock as a control (panel B of table 4) are slightly
11One difference in our specification is that we use ψt as the yield shock instead of ωt, but this makes a

minor difference in the results.
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larger than 2SLS estimates when we use 3 or 5 spline knots in the trend. Hausman tests do

not reject the null hypothesis of the exogeneity of the futures price. OLS estimates that omit

the yield shock as a control (panel C of table 4) give smaller estimates and we can reject

the null hypothesis of no omitted variable bias at the 5 percent level for trend specificiations

with 3 or 4 spline knots. Since the dependent variable is growing area in these regressions,

all of the omitted variable bias is due to the endogeneity of the futures price with growing

area. The world supply elasticity due to area response to price in the United States is

the area response multiplied by the proportion of caloric production in the United States

(0.295× 0.23 = 0.068). Therefore, roughly 77 percent (0.068/0.088 = 0.77) of the estimated

world supply elasticity is due to area response to price in the United States.

We also considered a specification in which we estimated country-specific area response

to price using different futures prices for countries in the northern and southern hemispheres

(results not reported). The futures price used for each hemisphere is the price of a contract for

delivery after harvest trading prior to planting for the respective planting and harvest periods

for the northern and southern hemisphere. This futures price should reduce endogeneity

concerns for the southern hemisphere because the futures price is trading before growing

area is known. Results using different futures prices for each hemisphere differed little with

our results in table 3. One explanation for the small difference between these results is that

most of the caloric production (87%) occurs in the northern hemisphere.

4 Conclusion

We argue that the aggregate crop supply elasticity can be well estimated by OLS regression

of growing area on a futures price with a control for a flexible trend and realized deviations

of yield from trend. This recommendation should not be applied without qualification. A

regression estimate of supply elasticity is specific to the type of price variation in the sample

(annual shocks vs long swings), the location in space of the price measured, and the time

period covered.
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Appendix

We derive the conditions under which each of β1, β2, and β3 in (7)–(9) equal β in

qt = α + βpτt + γψτt + ψt + δετt + f (t) + νt,

where νt is uncorrelated with the right hand side variables.

Bias in (7)

The model is

qt = α1 + β1pτt + f1 (t) + u1t.

From Wooldridge (2002), we have

β1 = β + (1 + γ)φ11 + δφ12,

where φ11 and φ12 are the coefficients on price in the following auxiliary regressions of the

excluded on the included variables:

ψτt = φ11p̃τt + e11τt,

ψt = φ11p̃τt + e11t,

ετt = φ12p̃τt + e12t,

where p̃τt ≡ pτt − gp(t) is the detrended price. From standard OLS geometry, the coefficient

on pτt in a multiple regression that includes the trend terms is the same as the coefficient

in a simple regression on the detrended price. The first two equations have identical price

coefficients because ψt = ψτt + ln(ηt), where ln(ηt) is independent of information available

at τ .
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By the definition of π in (13), we have φ11 ≡ π. Defining the variance of detrended prices

as σ2
τp ≡ var [p̃τt] we have

φ12 = E [p̃τtετt]
σ2
τp

= E [(θ1ψt−1 + θ2ψt + ετt) ετt]
σ2
τp

= σ2
ε

σ2
τp

,

where σ2
ε ≡ E [ε2

τt]. The second and third lines follow from the fact that the error is uncor-

related with the right-hand-side variables in (10).

Bias in (8)

The model is

qt = α2 + β2pτt + γ2ψt + f2 (t) + u2t.

From Wooldridge (2002), we have

β2 = β + γφ21 + δφ22,

where φ21 and φ22 are the coefficients on price in the following auxiliary regressions of the

excluded on the included variables:

ψτt = φ21p̃τt + λ21ψt + e21t,

ετt = φ22p̃τt + λ22ψt + e22t.

We do not need to detrend ψt because by definition it is a deviation from trend.
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We have

 φ21 φ22

λ21 λ22

 =

 σ2
τp E [p̃τtψt]

E [p̃τtψt] σ2
ψ


−1  E [p̃τtψτt] E [p̃τtετt]

E [ψtψτt] E [ψtετt]



where σ2
ψ ≡ var [ψt]. Now,

E [p̃τtψt] = E [p̃τt (ψτt + ln(ηt))]

= E [p̃τtψτt]

= πσ2
τp.

Note also that E [ψtψτt] = E [(ψτt + ln(ηt)ψτt)] = var [ψτt] because E [ln(ηt)ψτt] = 0. Defin-

ing σ2
η ≡ var [ln(ηt)] and using σ2

ψ = var [ψτt] +σ2
η, we write E [ψtψτt] = σ2

ψ−σ2
η. Also, from

above, E [p̃τtετt] = σ2
ε . Finally, the term E [ψtετt] because the error in (10) s uncorrelated

with the right-hand-side variables, one of which is ψt.

We now have

 φ21 φ22

λ21 λ22

 =

 σ2
τp πσ2

τp

πσ2
τp σ2

ψ


−1  πσ2

τp σ2
ε

σ2
ψ − σ2

η 0



= 1
σ2
τpσ

2
ψ − σ4

τpπ
2

 σ2
ψ −πσ2

τp

−πσ2
τp σ2

τp


 πσ2

τp σ2
ε

σ2
ψ − σ2

η 0



= 1
σ2
τpσ

2
ψ − σ4

τpπ
2

 πσ2
τpσ

2
η σ2

εσ
2
ψ

σ2
τpσ

2
ψ − σ4

τpπ
2 − σ2

τpσ
2
η −πσ2

τpσ
2
ε



Bias in (9)

The model is

qt = α3 + β3pτt + γ3ψt + δ3ετt + f3 (t) + u3t.
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From Wooldridge (2002), we have

β3 = β + γφ31,

where φ31 is the coefficient on price in the following auxiliary regression of the excluded

variable on the included variables:

ψτt = φ31p̃τt + λψ31ψt + λε31ετt + e31t,

We do not need to detrend ψt and ετt because by definition they are deviations from trend.

We have


φ31

λψ31

λε31

 =


σ2
τp E [p̃τtψt] E [p̃τtετt]

E [p̃τtψt] σ2
ψ E [ψtετt]

E [p̃τtετt] E [ψtετt] σ2
ε



−1 
E [p̃τtψτt]

E [ψtψτt]

E [ετtψτt]



=


σ2
τp πσ2

τp σ2
ε

πσ2
τp σ2

ψ 0

σ2
ε 0 σ2

ε



−1 
πσ2

τp

σ2
ψ − σ2

η

E [ετtψτt]



= 1
σ2
τpσ

2
ψσ

2
ε − σ4

τpπ
2σ2

ε − σ2
ψσ

4
ε


σ2
ψσ

2
ε −πσ2

τpσ
2
ε −σ2

ψσ
2
ε

−πσ2
τpσ

2
ε σ2

εσ
2
τp − σ4

ε πσ2
τpσ

2
ε

−σ2
ψσ

2
ε πσ2

τpσ
2
ε σ2

τpσ
2
ψ − σ4

τpπ
2




πσ2

τp

σ2
ψ − σ2

η

E [ετtψτt]



where we plug in quantities derived above.

Next, we derive an expression for E [ετtψτt].

E [ετtψτt] = E [(p̃τt − θ1ψt−1 − θ2ψt)ψτt]

= E [p̃τtψτt]−
[
E [ψt−1ψτt] E [ψtψτt]

]  θ1

θ2

 .
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The parameters θ1 and θ2 are

 θ1

θ2

 =

 E
[
ψ2
t−1

]
E [ψt−1ψt]

E [ψt−1ψt] E [ψ2
t ]


−1  E [p̃τtψt−1]

E [p̃τtψt]



=

 σ2
ψ E [ψt−1ψτt]

E [ψt−1ψτt] σ2
ψ


−1  E [p̃τtψt−1]

πσ2
τp

 ,

= 1
σ4
ψ − E [ψt−1ψτt]2

 σ2
ψE [p̃τtψt−1]− πσ2

τpE [ψt−1ψτt]

πσ2
τpσ

2
ψ − E [p̃τtψt−1]E [ψt−1ψτt]



= 1
σ4
ψ − ρ2

1σ
4
ψ

 π1σ
2
ψσ

2
τp − πρ1σ

2
τpσ

2
ψ

πσ2
τpσ

2
ψ − π1ρ1σ

2
τpσ

2
ψ

 .

where we define π1 ≡ E [p̃τtψt−1]σ−2
τp to be the coefficient from a regression of ψt−1 on p̃τt

and ρ1 ≡ E [ψt−1ψt]σ−2
ψ = E [ψt−1ψτt]σ−2

ψ to be the first order autocorrelation coefficient for

ψt.

Thus, we have

E [ετtψτt] = πσ2
τp −

ρ1σ
2
ψ

(
π1σ

2
ψσ

2
τp − πρ1σ

2
τpσ

2
ψ

)
− (σ2

ψ − σ2
η)
(
πσ2

τpσ
2
ψ − π1ρ1σ

2
τpσ

2
ψ

)
σ4
ψ − ρ2

1σ
4
ψ

= σ2
τp

(
π −

ρ1σ
2
ψ (π1 − πρ1)− (σ2

ψ − σ2
η) (π − π1ρ1)

σ2
ψ − ρ1σ2

ψ

)

= σ2
τpσ

−2
ψ

(
πρ1σ

2
ψ + σ2

η (π − π1ρ1) (1− ρ1)−1
)

Putting the pieces together implies

φ31 =
πσ2

η − σ−2
τp σ

2
ψE [ετtψτt]

σ2
ψ − σ2

τpπ
2 − σ−2

τp σ
2
ψσ

2
ε

=
πσ2

η − πρ1σ
2
ψ − σ2

η (π − π1ρ1) (1− ρ1)−1

σ2
ψ − σ2

τpπ
2 − σ−2

τp σ
2
ψσ

2
ε
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Tables

Table 1: Estimates of World Caloric Supply with Alternative Models

ωt as Yield Shock ψt as Yield Shock
(1a) (1b) (1c) (2a) (2b) (2c)

Panel A. Two Stage Least Squares
Supply Elast. 0.107∗∗∗ 0.104∗∗∗ 0.088∗∗∗ 0.108∗∗∗ 0.103∗∗∗ 0.088∗∗∗

(0.024) (0.025) (0.019) (0.024) (0.025) (0.020)

Shock 1.202∗∗∗ 1.240∗∗∗ 1.222∗∗∗ 1.315∗∗∗ 1.356∗∗∗ 1.335∗∗∗

(0.131) (0.117) (0.094) (0.145) (0.128) (0.105)

Panel B. OLS Including ψt as Yield Shock
Supply Elast. 0.110∗∗∗ 0.089∗∗∗ 0.088∗∗∗ 0.112∗∗∗ 0.090∗∗∗ 0.089∗∗∗

(0.013) (0.014) (0.012) (0.013) (0.014) (0.012)

Shock 1.216∗∗∗ 1.194∗∗∗ 1.223∗∗∗ 1.334∗∗∗ 1.313∗∗∗ 1.338∗∗∗

(0.111) (0.106) (0.087) (0.121) (0.114) (0.096)

Panel C. OLS Omitting Yield Shock
Supply Elast. 0.049∗∗ 0.023 0.022 0.049∗∗ 0.023 0.022

(0.023) (0.026) (0.026) (0.023) (0.026) (0.026)

p-value for Hausman
test (H0=exogeneity)

0.873 0.490 0.995 0.881 0.530 0.995

p-value for test of
omitted variable bias
(H0=no bias)

0.007 0.007 0.009 0.006 0.006 0.008

Observations 46 46 46 46 46 46
Spline Knots 3 4 5 3 4 5

∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 2: Decomposition of Supply Estimates

at as LHS Variable yt as LHS Variable ψt as LHS Variable
(1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c)

Panel A. Two Stage Least Squares
Supply Elast. 0.086∗∗∗ 0.082∗∗∗ 0.072∗∗∗ 0.021∗∗ 0.021∗ 0.017 0 0 0

(0.021) (0.021) (0.018) (0.011) (0.011) (0.011)

Shock 0.263∗∗ 0.288∗∗∗ 0.274∗∗∗ 0.052 0.068 0.061 1 1 1
(0.122) (0.109) (0.093) (0.064) (0.06) (0.057)

Panel B. OLS Including ψt as Yield Shock
Supply Elast. 0.081∗∗∗ 0.064∗∗∗ 0.063∗∗∗ 0.031∗∗∗ 0.026∗∗∗ 0.026∗∗∗ 0 0 0

(0.011) (0.012) (0.010) (0.006) (0.007) (0.006)

Shock 0.242∗∗ 0.227∗∗ 0.246∗∗∗ 0.092∗ 0.086 0.092∗ 1 1 1
(0.102) (0.095) (0.084) (0.052) (0.053) (0.051)

Panel C. OLS Omitting Yield Shock
Supply Elast. 0.070∗∗∗ 0.053∗∗∗ 0.051∗∗∗ 0.026∗∗∗ 0.022∗∗∗ 0.021∗∗∗ -0.048∗∗∗ -0.051∗∗∗ -0.050∗∗∗

(0.010) (0.011) (0.010) (0.005) (0.006) (0.006) (0.015) (0.018) (0.017)

Panel B - Panel A -0.005 -0.018 -0.008 0.010 0.005 0.009 0 0 0
Panel C - Panel B -0.011 -0.012 -0.012 -0.004 -0.004 -0.005 -0.048 -0.051 -0.050
p-value for Hausman
test (H0=exogeneity)

0.778 0.315 0.588 0.326 0.625 0.342 N/A N/A N/A

p-value for test of
omitted variable bias
(H0=no bias)

0.086 0.095 0.055 0.106 0.138 0.102 0.003 0.006 0.006

Observations 46 46 46 46 46 46 46 46 46
Spline Knots 3 4 5 3 4 5 3 4 5

∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 3: Estimates of World Caloric Supply as the Production Weighted Average of Country-
Specific Estimates of Growing Area Response to Price

(1) (2) (3)
Panel A. Two Stage Least Squares

Supply Elast. 0.096∗∗∗ 0.093∗∗∗ 0.087∗∗∗

(0.028) (0.032) (0.026)

Shock 0.283∗ 0.311∗ 0.300∗∗

(0.171) (0.173) (0.141)

Panel B. OLS Including ψt as Yield Shock
Supply Elast. 0.102∗∗∗ 0.088∗∗∗ 0.088∗∗∗

(0.012) (0.014) (0.013)

Shock 0.307∗∗∗ 0.293∗∗∗ 0.305∗∗∗

(0.097) (0.096) (0.095)

Panel C. OLS Omitting Yield Shock
Supply Elast. 0.087∗∗∗ 0.073∗∗∗ 0.073∗∗∗

(0.015) (0.017) (0.017)

Observations 46 46 46
Spline Knots 3 4 5

∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 4: Estimates of Growing Area Response to Price in the United States

(1) (2) (3)
Panel A. Two Stage Least Squares

Supply Elast. 0.300∗∗∗ 0.293∗∗∗ 0.285∗∗∗

(0.067) (0.071) (0.069)

Shock 0.853∗∗ 0.914∗∗ 0.892∗∗

(0.398) (0.368) (0.368)

Panel B. OLS Including ψt as Yield Shock
Supply Elast. 0.320∗∗∗ 0.291∗∗∗ 0.295∗∗∗

(0.036) (0.041) (0.041)

Shock 0.938∗∗∗ 0.909∗∗∗ 0.927∗∗∗

(0.334) (0.331) (0.336)

Panel C. OLS Omitting Yield Shock
Supply Elast. 0.275∗∗∗ 0.245∗∗∗ 0.249∗∗∗

(0.034) (0.040) (0.040)

p-value for Hausman
test (H0=exogeneity)

0.744 0.980 0.877

p-value for test of
omitted variable bias
(H0=no bias)

0.038 0.047 0.055

Observations 46 46 46
Spline Knots 3 4 5

∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Figures
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Figure 1: Country-Specific Estimates of Growing Area Response to Price
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