

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Optimal Pricing of Online Group-buying: An Empirical Analysis of Food-Away-From-Home in China

Jiang, Meng
Harbin Institute of Technology Shenzhen Graduate School
HIT campus, Nanshan District, Shenzhen, Guangdong Province, China
Email: christinajiang400@gmail.com
Ge, Jiaoju
Harbin Institute of Technology Shenzhen Graduate School
HIT campus, Nanshan District, Shenzhen, Guangdong Province, China Email: jiaoge@hitsz.edu.cn

Gao, Zhifeng
Food and Resource Economics Department, University of Florida Email: zfgao@ufl.edu

Selected Poster prepared for presentation at the Agricultural \& Applied Economics Association's 2013 AAEA \& CAES Joint Annual Meeting, Washington, DC, August 4-6, 2013.

Copyright 2013 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Optimal Pricing of Online Group-buying: An Empirical Analysis of Food-Away-From-Home in China

Jiang, Meng; Ge, JiaoJu¹; Gao, Zhifeng²

${ }^{1}$ Harbin Institute of Technology Shenzhen Graduate School Email: jiaoge@hitsz.edu.cn
2University of Florida

INTRODUCTION

Problems

Fierce competition within merchants
Low survival rate of online group buying websites

Situations of China Online group buying 2012

$4.566_{\text {人̇* }}$	
	min

$\rightarrow+$

Groupon
Vs
Chinese Online Group buying websites

Similarities:

Similarities: Intuding vaue, discount, you save, coupon price, time left to Incturing aviue, discount, you save, coupon price, itim
Dithershold number, intornation of titem and restararan
Diferences. Differences: Croupon: Detain information provided by words; todays
deal, usually one day

Research question
Every though itseems that China is experiencing an
increasing develosment of online group buying website,
Double huddle Panel Probit Regression According to the literature review, we find out the factors
that influence deal size of onine group buying items. that influence deal size of online group buying items.

$$
d s s= \begin{cases}1 & \text { if } d s>0 \\ 0 & \text { if } d s=0\end{cases}
$$

${ }_{D S}=\beta_{0}+\beta_{1} C P+\beta_{2} A E+\beta_{3} A E^{2}+\beta_{3}, I S+\beta_{3}$ DATE $+\beta_{s}$ EEATURED
DS: Deal size, amount of items have been sold DS: Deal size, amount
DSSS: Dummy variable CP: Coupon price, price after discount AE: Average expenditure, coupon price/numbers of customers
AE2: Square of average expenditure
DIS: Discount set by merchants
DATE: Duration posted online
DEATURED: Featured or ort, dummy variable

Data Collection
 Of each tem; seocondy, by inear regression model, we can
estimate each parameter
not then, take the ootimal price estimate each parameier, and hhen, take the opitimal price
of each titem to to the inear regrission model, and stimate the deal size next term.
Undercut-proof Equilibrium (UPE) In 2000, Oz Shy and Peter Morgan propose an In 2000, Oz Shy and Peter Morgan propose an
equilibrium concept, called Undercut-Proof equilibrium, for
price competition between firms producing price competition between firms producing differentiated brands.
In an In an Undercut-Proof equilibrium, each firm chooses its
price so as to maximize profit while ensuring that its price is price so as to maximize profit while ensuring that its price is
sufficiently low that any rival firm would not find it profitable to set a lower price in order to grab all of the first firm's
customers.
$-\quad$ For two merchants only

For general model
optimal p_{A} and p_{B}

$p_{j}^{U} N_{j} \geq\left(p_{i}-S\right)\left(N_{i}+N_{j}\right)$ for every restaurant $j, j \neq i ;$

Preliminary RESULTS
Double huddle Panel Probit Regression - Firstly, we use dummy variable dsss to do probit panel regression, to see when dsss=1 or 0 , how the factors influence deal size.
Secondly, when dsss=1, we apply panel model to do fixed-effect regression, random-effect regression and between-effect regression.
Thirdly, by Hausman Test, we reject null hypothesis of Thirdly, by Hausman Test, we reject null hypothesis of
no correlation, then apply between effect regression. Results

$\left.\right\|_{\substack{\text { beto } \\ \text { crou }}}$	iten				sous	${ }_{93}^{799}$
$\begin{aligned} & \text { q: withir } \\ & \text { betwe } \end{aligned}$	-0.3990 $=0.4988$				min	$\underset{\substack{85.7 \\ 19}}{\substack{\text { che }}}$
stcuii avge	i.)) $=1.23$			$\underset{\substack{\text { F } \\ \text { Prob } \\ \text { Pri }}}{ }$		0.0000
logds	coef.	std. Err.	t	P>> 11	c95x cor	Interval]
					--01082811	
${ }_{\text {ae2 }}^{\text {ais }}$	-..0009456	.0001690	-0.27	${ }^{0.785}$	${ }^{-.0003774}$.000282
dotured	${ }_{\substack{1.69497 \\ 0.377285}}^{1.3}$		S.05	-.0200	coiorex	
-cons	${ }_{1}^{1.307256}$		${ }_{2.02}$	${ }^{0.946}$.022146	502379

From the results table above, coefficient of coupon price is negative and significant, with the higher price, less deal size; similar to coefficient of discount, with higher discount, less \%off; however, it is not significant,
which means customers don't pay much attention to the whicount. Coefficients of featured and date are positive and significant, indeed they have positive effects on deal

Discussion \& Following Study

Discussion \& Following Study Later, we will concentrate on the UPE model, find out the
optimal price under different numbers of merchants. Also continue to deep research on the demand model.
Contribution \& Innovation:
Use fixed pricing mechanism to solve online group
buying optimal pricing buying optimal pricing issue. Also we apply a d
model to analyze a new online buying method.

