
Liang Li, Paul Preckel, James Eales
Department of Agricultural Economics, Purdue University, West Lafayette, IN 47906

Copyright 2013 by Liang Li, Paul Preckel, James Eales. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Errors are assumed to be multivariate normal with mean vector \(\mu \) and covariance matrix \(\Sigma \).

As the primary input to food production, allocation of cropland is an important factor in determining the supply of food. Modeling cropland change is vital in understanding how land is allocated among crops and predicting future land allocation patterns when economic conditions change. The key parameter for cropland allocation process is the elasticity of land use with respect to expected net returns. It reflects the speed and magnitude of land supply adjustments in response to changes in product price or cost. The literature on cropland allocation can be categorized into two types. One utilizes econometrics to estimate a hypothesized statistical relationship between various economic variables and cropland supply for one or a few crops. The other type employs economic modeling where the total cropland supply is accounted using a convex function with assumed parameters. In this paper, we will include major crops in a coherent system and directly estimate the Constant Elasticity of Transformation function that governs the land allocation.

We model cropland allocation as an annual decision. The changes in cropland allocation across crops are motivated by farmers' net revenue maximizing choices subject to a land constraint while taking into account the conversion cost. To build a more flexible structure for cropland allocation, the paper proposes a multi-level nested CET function \(f(\ldots, \ldots) \) to handle the cropland allocation. There is a single elasticity of transformation associated with each nest, so that the structure has the ability to distinguish the ease of land transformation among crops within different nests. The problem is reformulated as:

Maximize \(\sum_{i=1}^{n} \left(\frac{NR_{i}(L_{i} - C(TPL_{i}))}{TPL_{i}} \right) \omega_{i} \)

subject to \(\sum_{i=1}^{n} \omega_{i} = 1 \)

Where \(NR_{i} \) is the net revenue per unit of land net revenue generated to grow crop \(i \), the amount of land allocated to crop \(i \); \(\omega_{i} \) represents total number of crop types; \(\omega_{i} \) is the shadow value of cropland. The Lagrangian for this optimization problem at time \(t \) is:

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} \left(\omega_{i} \frac{\partial}{\partial \omega_{i}} f(L_{i}, \ldots) - \omega_{j} \frac{\partial}{\partial \omega_{j}} f(L_{j}, \ldots) \right) = 0
\]

Assuming an interior solution, first order optimality conditions for this problem are:

\[
\frac{\partial C_i}{\partial \omega_i} = NR_i - \frac{\partial}{\partial \omega_i} f(L_i, \ldots) = 0 \quad \forall i = 1, \ldots, n
\]

Only the first order condition is observable from which the parameters can be estimated. To eliminate the need for estimating the time-varying parameters, the estimation expressions are expressed as ratios of first order conditions with one equation taken as the divisor. By using each of the crops as the divisor in turn and stacking the resulting equations, we obtain a system whose estimates are invariant to choice of divisor. With \(n \) crops generating \(n \) first order conditions, each ratio system contains \(n(n-1) \) equations, and with \(n \) potential divisors, the resulting system contains equations. Thus, when equation \(i \) is chosen as the divisor, the parameter estimates from seemingly unrelated regression

\[
\text{Parameter Estimates from Seemingly Unrelated Regression}
\]

\[
\frac{\partial C_i}{\partial \omega_i} = \frac{NR_i}{f(L_i, \ldots)} - \frac{\partial}{\partial \omega_i} f(L_i, \ldots) = 0
\]

Errors are assumed to be multivariate normal distributed as \(N(0, \Sigma) \).

Despite the small number of observations, we find some evidence in support of the nested structure as opposed to a single level CET.

The work here may be useful for econometrically measuring the substitution possibilities among different crops.

We can also further apply this model at a subnational level.

Results

- Descriptive Statistics of Collected Data
- Parameter Estimates from Seemingly Unrelated Regression
- Shadow Price of Cropland Constraint vs. Total Productivity Adjusted Land
- Transformation Frontiers with Different Constant Elasticity of Transformation

Methodology

- Introduction
- Data
- Estimation
- Conclusion