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Abstract 

This paper explores the farmer’s general decision to adopt a clean agricultural production 

technology and the particular role of pro-social behavior. We hypothesize that pro-social 

behavior may influence farmers’ individual valuation of clean technologies through two 

channels, their beliefs about the technology’s public benefits and their preferences for 

environmental quality. A linear characteristics model is developed to illustrate how a pro-social 

preference structure may lead to different adoption outcomes as compared to the standard profit-

maximization framework. We test this possibility using mail survey data on ex ante bioenergy 

crop adoption in southwestern Wisconsin. The contingent valuation empirical strategy estimates 

farmers’ distribution of willingness-to-accept values (i.e., minimum biomass reservation prices) 

as a function of expected pro-social behavior, factors that constrain short-run technological 

change, and other standard adoption influences. We find that the observed heterogeneity in WTA 

values is partially and significantly explained by expected pro-social behavior. 

 

Key words: bioenergy, contingent valuation, corn stover, linear characteristics, switchgrass, 

technology adoption and diffusion 

 

1. Introduction 

This paper contributes to recent literature on the adoption of clean agricultural production 

technologies, with a particular focus on the role of pro-social behavior in farmers’ individual 

start-up or conversion decision. Here, we consider ‘clean’ production technologies to be distinct 

in the sense that they impart or are perceived to impart some social or environmental benefit to 
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the adopting farmer, other nearby residents, and/or society more generally. Pfaff, Chadhuri and 

Nye (2004) define one class of clean agricultural production technologies as those that are less 

environmentally-degrading as compared to a conventional or ‘dirty’ technology (i.e., they 

produce fewer harmful emissions and thus improve the quality of some amenity stock). Another 

class may be broadly conceptualized as those that aid in the achievement of some social 

objective such as clean energy goals, regardless of whether the technology itself has any 

environmental effect at the local level. 

Previous research by Lewis, Barham and Zimmerman (2011) treats the clean technology 

conversion decision in a real options context involving sunk costs, uncertainty and learning. In 

this case, the optimal conversion decision depends on the clean technology satisfying an 

expected ‘reservation’ return whose net present value (NPV) exceeds that for the simple 

‘breakeven’ return at which it first becomes profitable. The authors show that spatial spillovers 

allow for reductions in transaction and learning costs and drive the agglomerated patterns of 

organic dairy adoption in southwestern Wisconsin. In this respect, the findings by Lewis, 

Barham and Zimmerman (2011) fit into the classical diffusion literature which shows that 

dynamic economic factors may delay or constrain farmer’s adoption of seemingly profitable 

technologies (e.g., Feder, Just and Zilberman, 1985; Dixit and Pindyck, 1994; Foster and 

Rosenzweig, 2010). 

Our contribution in this paper is to suggest that farmers’ individual valuation of clean 

technologies may be influenced by pro-social behaviors, and that this behavior may partially 

offset the return ‘premium’ that appears as a wedge between the farmers’ reservation and 

breakeven decision thresholds. In doing so, we seek to answer the question, “Does pro-social 

behavior drive the early adoption of clean agricultural technologies?” Our model assumes that 
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farmers behave as utility-maximizing agents whose preferences are represented by a multi-

attribute utility function that contains a private composite good (i.e., profit) and a composite 

environmental public good (e.g., fulfillment of a clean energy goal or enhancement of a local 

natural resource stock). Casting the problem in terms of a linear characteristics model, we 

analyze the comparative static effect of introducing the clean technology among the landowners’ 

portfolio of land use choices. This setup provides useful insight into clean technology adoption 

decision by illustrating how pro-social preference structures can lead to different predictions 

about adoption outcomes as compared to the standard profit-maximization framework.  

For an empirical application, we apply this framework to the case of farmer bioenergy 

crop adoption in southwestern Wisconsin. The contingent valuation empirical strategy we 

employ allows us (1) to estimate the distribution of farmers’ individual willingness-to-accept 

(WTA) values (i.e., reservation prices) for conversion to a bioenergy cropping system, and (2) to 

explain the observed variation as a function of expected pro-social behaviors and traditional 

adoption variables. In this manner, we are able to develop explicit empirical tests of the 

theoretical predictions of the farmer’s choice model, and to demonstrate how they improve the 

performance of the estimations and deepen our understanding of the likely patterns of clean 

technology diffusion across heterogeneous farms and pro-social behavioral preferences. 

Bioenergy crops fit the notion of a clean agricultural production technology in two ways. 

First, they are grown and harvested as a source of renewable fuel. As a result, the farmers who 

produce these crops may view themselves as contributing directly to regional or national energy 

goals or indirectly to other related public benefits of bioenergy development such as rural 

economic growth or reductions in greenhouse gas emissions. Second, bioenergy crops such as 

perennial grasses or trees may enhance the quality of agricultural resource stocks (e.g., soil, 
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water, biotic resources) that may directly improve the well-being of the farmer though yield 

gains or indirectly thorough enhancement of some on-farm or nearby amenity (e.g., improved 

wildlife habitat, recreational opportunities or scenic vistas). If farmers attach values to these 

social outcomes (e.g., via altruism or the less pure “warm glow” effect) then pro-social behavior 

with respect to these attributes may play a central role in early phases of the diffusion process. In 

addition, transitions to bioenergy cropping systems involve potentially major changes to land 

management practices (e.g., crop/livestock mix, contractual arrangements, feed purchasing and 

storage, new investments and equipment purchases) and are thus also expected to be influenced 

by the previously discussed dynamic economic factors such as sunk costs, uncertainty, and 

learning (Song, Zhao and Swinton, 2011; Bocquého and Jacquet, 2010). 

Data are from an ex ante survey on bioenergy crop adoption mailed to farm landowners 

in 2011, which contains rich information on biophysical land attributes, land management 

activities, demographic and social indicators. One unique feature of the questionnaire is a CV 

module designed to elicit landowners’ reservation prices for land conversion to corn stover and 

switchgrass as bioenergy crop technologies. The specific CV elicitation approach implemented is 

the well-developed double-bounded dichotomous choice (DB-DC) format popularized by 

environmental economists for non-market valuation purposes. A second unique feature are two 

sets of questions that gauge respondents’ beliefs about the social benefits of alternative energy 

development and environmental preferences, respectively. Our econometric analysis exploits 

these data to estimate the role of current land use, enterprise activity, and proxy variables for 

expected pro-social behavior on farmers’ individual valuation of these technologies. 

The estimation results lend support for a theory of pro-social motivations in farmers’ 

bioenergy crop adoption decisions. In addition to the standard set of static and dynamic factors 
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that are typically used to explain farmers’ adoption decisions, we find that farmers’ social beliefs 

and environmental attitudes also influence their valuation of ‘clean’ bioenergy crop technologies. 

The findings are nuanced in that they provide empirical insights on pro-social behaviors that are 

relatively pure (or altruistic) like climate change and more impure like water quality or soil 

quality outcomes (that affect both the farm and the surrounding environment). Remaining 

questions for future work are to determine the extent to which they might influence expected 

bioenergy crop diffusion patterns, and whether these insights might be leveraged to improve 

policy design as it relates to the environmental management of farm landscapes. 

 

2. Background 

Here we focus our discussion of relevant literature to economic models that incorporate pro-

social behavior into individual decision-making but it is important to note that other disciplines 

such as social psychology have also made substantial progress in this realm (e.g., value-belief-

norm theory [Stern et al., 1999], theory of planned behavior [Ajzen, 1991]). Turaga, Howarth 

and Borsuk (2010) provide a review of literature in both the economic and social psychology 

fields and discuss the considerable degree of integration occurring between them in recent years. 

This literature distinguishes among several broad motivations for engaging in pro-social 

behavior. One is altruism, or moral concern for the well-being of others without the expectation 

of compensation or personal benefit (direct or indirect). This contrasts with egoism where the 

individual strictly behaves according to selfish interests. Another is impure altruism where the 

individual appears to engage in altruistic behavior but only because they derive some direct or 

indirect egoistic benefit as a derivative of their action. 
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Most economic models of pro-social behavior build upon the notion of private provision 

of public goods (Bergstrom, Blume and Varian, 1986). In this now classic work, the consumer 

chooses how to allocate its income between a private good and donations to a pure public good. 

Utility is gained via consumption of the private good and the overall level of provision for the 

public good. In a related article, Andreoni (1990) develops an economic theory of impure 

altruism called “warm glow” giving. Here, individual’s preference structures contain a taste for 

warm glow they feel due to the social recognition or personal satisfaction they get from doing the 

right thing. As reviewed by Turaga, Howarth and Borsuk (2010) other economic models exist 

that explain similar impure altruistic benefits such as prestige, social approval and self-image 

(e.g., Hollander, 1990; Rege, 2004; Brekke, Kvernkokk and Nyborg, 2003). 

In recent years, these models have spawned a growing amount of literature in the applied 

areas of clean energy consumption (e.g., Ek and Soderholm, 2008; Kahn, 2007; Kotchen and 

Moore, 2007) and the environment/agriculture interface (e.g. Bonnieux et al., 1998; Chouinard et 

al, 2008; Dupraz et al., 2003; Ma et al., 2011; Sheeder and Lynne, 2011; and Weaver, 2006). 

Some of these studies utilize a linear characteristics framework in order to incorporate the notion 

of ‘tastes’ for impure public characteristics of certain goods into models of private decision 

making. The impure public good is typically defined as a private consumption good with public 

characteristics. Consumption of the impure good generates utility both directly via increased 

consumption of private market goods and indirectly from its contribution to the public good.  

Our model is developed in a similar vein and is closely related to two previous studies. 

Kotchen (2006) investigates the case of ‘green’ markets in which items such as fair-trade coffee 

or green electricity are modeled as the impure public good. In another study, Pfaff, Chaudhuri, 

and Nye (2004) explored the effects of introducing a clean technology on household production 
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decisions. Our model is most similar to Pfaff, Chaudhuri and Nye (2004) in that clean 

technology adoption enhances some amenity stock. 

 

3. The Clean Technology Adoption Model 

Our model considers the simple case of an individual farm household’s private adoption 

decision, and is developed in three parts. We first introduce the clean production technology and 

define the household land constraint. Next we describe how farmers may integrate pro-social 

behavior into the traditional profit-maximizing model of farm decision making. The third section 

characterizes the model and explores its implications. 

 

3.1. Household Production Technology and Land Constraint 

Let the farm household’s total land holdings L be fixed. Each unit of L may be allocated to an 

agricultural use A or non-agricultural use M, such that the farm faces the constraint	� = � +�. 

For each agricultural land unit A, the farm household also faces the choice over production 

technology � ∈ 		
, � where c represents the new clean technology and d is the conventional or 

dirty technology. The household is thus bound by the land constraint � = �� + �� where �� and 

�� represent the acres of land devoted to the clean and dirty technologies, respectively. 

Agricultural production using either technology provides a joint-output that includes a vector of 

private market goods y (e.g., contains crops and animal products as its elements) and a vector of 

non-market externalities e (e.g., contains normalized coefficients for soil loss, nutrient runoff, 

habitat depreciation as elements). The household’s agricultural profit is thus given by � =
���� + ���� where �� is the net return ($/acre) to technology j defined as the product �� = ���� −


� for a given output price vector	�� and cost 
�. Similarly, aggregate emissions are � = ���� +
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���� where �� ∈ �0,1� is the normalized per-acre level of externality. To lend ‘clean’ technology 

with a practical interpretation we maintain the assumption �� > ��. 

 

3.2. Landowner Preferences 

The landowner is assumed to derive utility from characteristics of the land use rather than from 

land use itself. For simplicity let such preferences be represented by the concave and strictly 

increasing utility function ���,  � where π is household income (i.e., a composite market good) 

and z is a public or environmental (i.e., non-market) amenity service flow. Here, we define �	 =
� + ! where R is as described and I is off-farm income. We also allow for z to vary depending on 

an initial endowment level and the external effects of agricultural production e. For the purpose 

of this analysis we normalize the household’s initial environmental endowment to equal total 

landholdings	" = � − �	. In this sense, z relates the degree to which the household’s land 

holdings are degraded from their natural state. 

This normalization lends a useful ‘ecological’ interpretation that amenity services are 

maximized when there is no agricultural production and land is in its most natural state	"#$% 	=
	�. In this case R = 0 and all utility is derived via the environmental amenity and off-farm 

income. By contrast, amenity services are minimized when all land is allocated to agriculture 

under the dirty technology	"#&' 	= 	��1 − (��. In this case agricultural profits are maximized 

(assuming	�� > ��). Notice that  #&' > 0 implies the farm household always enjoys some 

positive level of amenity services regardless of their land allocation. Note also that this 

framework is just one example of the way in pro-social preferences may operate and that the 

preference structure may vary for different behaviors. 
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3.3 The Farm Household’s Decision Problem 

The farm household’s decision problem becomes that of choosing A and ���, ��� to maximize 

utility subject to the constraints, 

max,,�-.,-/�
���, "� 

subject to, 

 (1) Land constraints: � = � +� where � = �� + �� 

 (2) Profit equation: � = � + ! where  � = ���� + ���� 

 (3) Damage function: � = ���� + ����		 

 (4) Amenity service: " = � − �	 
where L is exogenously determined and the clean technology assumption (� > (� is imposed.  

To further explore how farmers’ combined land use and technology decision affects their 

environmental milieu, we can first recast this problem in terms of the production scale A and 

technique 0 where 0 = �� ��� + ���⁄  (i.e., the share of agricultural land devoted to the clean 

technology). Combining constraints (1), (3) and (4) and using the definition of 0, we obtain the 

following expression for the level of environmental amenities, 

(5)     " = � + �21 − �� − 0��� − ���3 

which has the desired scale effect,	454, < 0, and technique effect: 
45
47 > 0. Holding the proportion 

of land allocated to the clean technology, the scale effect shows that any expansion in 

agricultural land area degrades environmental quality. By contrast, the technique effect shows 

that the amenity is enhanced by increasing the share of land allocated to the clean technology 

holding the total amount of land constant. Similar results were also obtained by Pfaff, Chaudhuri 

and Nye (2004) but in a different context. 

 



11 
 

3.4 The Problem in (�, ") Characteristic Space 

Relying on the earlier notions of the private provision of public goods and the linear 

characteristics model, we can recast the farmers’ maximization problem as a choice over 

characteristics of land use rather than land use itself. Figure 1 illustrates the static comparative 

effect of introducing a clean technology among the portfolio of land use choices enjoyed by the 

private landowner. Initially, the option of a clean technology is not available to the landowner. 

Rather, they are faced only with the choice of allocating land to the conventional technology. In 

this case, the constraint set is linear along the segment	89::::. At point w, the landowner allocates 

all of their land to agriculture under the dirty technology (i.e., A = L, 0 = 0). The landowner still 

enjoys a positive level of the environmental amenity albeit at its minimum level. At point x, the 

landowner allocates all of their land to open space (A = 0). Both interior and corner solutions are 

possible. If the landowner derives no utility from the environmental amenity, the indifference 

curve will be vertical and the only solution is the corner solution at point w. In this case, the 

landowner behaves as a profit maximizing firm. Alternatively, an interior solution along 

segment	89:::: may arise if the landowner’s strength of preferences for the environmental amenity 

is sufficient to equate the MRS and slope of the constraint set. 

Introduction of the clean technology expands the landowner’s constraint set. Here, the 

point y represents the case where the landowner allocates all of their land to agriculture but under 

the clean technology (A = L, 0 = 1). The landowner now obtains an intermediate level of the 

environmental amenity and profits. The solution in this case again could take the form of an 

interior solution or a corner solution depending on the strength of the landowners preferences. 

Note that this figure as illustrated maintains several implicit assumptions, such as the assumption 
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that the clean technology is less profitable than the dirty technology. The point y could appear in 

different locations relative to w under different circumstances. 

 

 

4. Bioenergy Crop Adoption in Southwestern Wisconsin 

In the empirical application below, we apply the model to the case of ex ante bioenergy crop 

adoption in southwestern Wisconsin. Bioenergy crops are defined here to be plant residues, 

perennial grasses or short-rotation trees that are grown and harvested specifically for sale as raw 

material or ‘biomass’ for the bioenergy sector. In most cases this biomass is expected to be 

combusted for heat and electricity generation or converted into a transportation fuel. These crops 

are often viewed as socially-beneficial in the sense that they represent a source of domestic 

renewable energy yet avoid several of the major social and environmental pitfalls associated with 

the use of corn grain for ethanol production (e.g., food versus fuel and indirect land use change 

concerns). In addition, perennial bioenergy crop technologies are viewed as sustainable or 

conservation-friendly in that they provide a range of environmental benefits such as soil 

conservation, reduced runoff, wildlife habitat and aesthetic appeal. 

Southwestern Wisconsin’s diverse agricultural resource base and varied physical 

geography make it a possible center of bioenergy crop production (U.S. DOE, 2011; Gelfand et 

al., 2013). Principal farming activities in the region include grain and forage crops and livestock 

production. Cultural practices vary widely, with many growers practicing long term crop 

rotations and reduced rather than conventional tillage. Much of the region lies in the un-glaciated 

Driftless Area, and is thus comprised of many winding ridges, steeply sloped ravines, and 

sandstone bluffs. As a result, a significant proportion of the land area is enrolled in USDA-

Conservation Reserve Program (CRP). The presence of a well-developed transportation 
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infrastructure with highways, rail lines, and river ways adds to the region’s potential as a center 

of bioenergy crop production. 

However, farmer adoption of bioenergy crops in this region is uncertain. The majority of 

farms in the area operate integrated crop-livestock enterprises, such as dairies, and have large 

investments and other on-going commitments to competing activities. To the extent that they are 

present on a given farm, these sunk costs and economies of scope are expected to act as a short-

run (or perhaps more binding) constraint on bioenergy crop adoption. In addition, markets for 

agricultural biomass do not currently exist in the area, nor have they in the recent past. Bioenergy 

crops require different management and marketing approaches than food and feed crops, and are 

thus outside the current range of experience for most farmers. Nor do they have neighbors from 

whom they might obtain information to reduce this uncertainty. Finally, pro-social behaviors are 

expected to play a role. Some farmers may view bioenergy crops as major step toward meeting the 

challenges of energy independence or environmental sustainability and attach related values to 

them.  

 

5. Survey Data 

Data used in the analysis are from the 2011 Wisconsin Bioenergy Crop Production Study, a mail 

survey of 1,543 prospective farm operations in Iowa, La Crosse, Richland and Sauk Counties 

(Mooney et al., 2013). Unique features of the study questionnaire include (1) a contingent 

valuation module designed to elicit farmers’ ex ante participation rates in bioenergy markets for 

corn stover and switchgrass, and (2) two questions that summarize respondents’ beliefs about the 

social benefits of alternative energy development and attitudes towards the environmental land 
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stewardship, respectively. We describe each of these features in more detail below, but first 

provide background on the farm selection and mailing process. 

 

5.1 Farm Selection and Sample Returns 

The study targeted active farm landowners who raised grain crops, forage, or livestock during the 

2010 growing season. These farms manage the majority of cultivable land in the area, and are 

thus the most important in terms of understanding the overall impact of bioenergy crops at a 

regional scale. This leaves out some active farmers who exclusively raise vegetables, fruit crops, 

or other products but there are relatively fewer of them and they tend to operate smaller farms. 

Thus, their management decisions affect only a small portion of the total land in farms. 

Farm selection process followed a clustered, stratified sampling design.  First, a selected 

set of townships within each county (i.e., clusters) were selected based on the relative abundance 

of marginal cropland and marginal non-crop land, and proximity to transportation corridors. This 

step relied on a geographic information system (GIS), and data layers from the USDA-NRCS 

soil survey (SSURGO) and the USDA-NASS Cropland Data Layer. Second, individual farms 

within these townships were stratified according to CRP participation based on a list frame 

maintained by the Wisconsin Agricultural Statistics Service (WASS) at the Wisconsin 

Department of Agriculture, Trade and Consumer Protection. All farms enrolled in the CRP as of 

2007 (most recent year for which data are available) were automatically included in the study. 

An additional set of farms was then drawn at random from the remaining population.  

The final sample comprised a total of 1,543 farms, including 348 in Iowa County, 249 in 

La Crosse County, 397 in Sauk County, and 449 in Richland County. Questionnaires were 

mailed in April 2011, with a reminder post card and two follow-up mailings conducted in May 
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and June of the same year. Slightly over half of those contacted (n = 784) returned their 

questionnaire. Among the returns, a large share were unusable due to a change in farming status 

from active to inactive (n = 302), non-eligibility of the farm due to the type of farming activity 

pursued (n = 32), partially incomplete (n = 51) or because the respondent declined to participate 

(n = 121). The primary factor behind the large number of inactive and non-eligible responses is 

likely the amount of time that elapsed between compilation of the WASS mailing list (in 2007) 

and the time of this survey mailing (in 2011). This report summarizes data from 253 returned and 

completed questionnaires by active farm landowners, for a useable response rate of 21% after 

removing the inactive an ineligible responses from the population frame. 

 

5.2 CV Module 

The module asked respondents if they would be willing to participate in a hypothetical market 

program for different sustainable biofuel crop technologies—including corn stover and 

switchgrass—and to report on how much, if any, land they would convert from its current use to 

biofuels production. The module followed a DB-DC format, with separate series of questions for 

each of the crops considered. The first question asked, “At $[biomass purchase offer]/dry ton, 

would you enroll any acres in this program?” If they responded yes to the initial offer, the 

biomass purchase offer in the second question decreased. Similarly, if they responded no then the 

follow-up offer increased. It asked, “If the price increased (decreased) to $[biomass purchase 

offer]/dry ton and all other contract provisions remain the same, would you now (still) enroll in 

the corn stover program, albeit with fewer acres?”  

Three sets of biomass purchase offer prices were used (Table 1). Low version prices were 

determined by reviewing existing literature on production costs (e.g., extension crop budgets, 
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academic studies) and then setting the lowest price to fall just below the average cost of 

production. High version prices were based on input from knowledgeable professionals in the 

field, at prices slightly greater than what a bioenergy facility would be able to pay and still 

breakeven relative to sourcing from other fuels (e.g., coal or petroleum). Upon agreeing to enroll, 

respondents also indicated how many acres they would convert to the new technology and the 

location where it would be planted. The location options given were: (i) land currently in a short-

term grain rotation, (ii) land currently in a long-term forage rotation, (iii) land currently in a CRP 

contract, (iv) land that is newly rented-in (i.e., expand cropland operated without replacing a 

current activity), (v) land currently in permanent pasture, and (vi) land that is cultivable but not 

currently farmed (i.e., unfarmed open space). The acreage and location questions helped ensure 

that responses were consistent with existing land constraints and are hypothesized to minimize 

incentive compatibility issues associated with the DB-DC format (Haab and McConnell, 2003). 

Finally, the CV module provided a basic introduction, background on the market program 

(e.g., enrollment, compensation), and a description of each crop. The crop description included 

agronomic information (e.g., yields, management practices), a description of expected 

environmental outcomes, and a photograph. This allowed the farmer respondents to form an 

expectation of the profitability and associated environmental benefits/costs for each biofuels crop 

technology, to use when weighing each option against their portfolio of current land uses. To 

provide a reference point for the opportunity cost of land, respondents were asked to make their 

allocation decisions based on a corn grain price of $5.20 per bushel.  
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5.3 Questions to Proxy Pro-Social Behavior 

Here we proxy for farmers’ expected pro-social behavior in the empirical analysis that follows 

using two distinct but similarly constructed sets of index variables. The first set of indices seeks 

to capture respondents’ beliefs about the social or ‘public’ benefits of alternative energy 

development. Variable construction is based on whether respondents agreed to the following 

statements: “Meeting our renewable energy goals is key to rural economic growth,” “Meeting 

our renewable energy goals is key to slowing climate change,” and “Meeting our renewable fuel 

standards is key to reducing our dependence on foreign energy sources.”  

The second set of index variables gauges respondent’s environmental preferences. In 

particular, they serve to identify farmers who behave according to land stewardship principals. 

Here, we follow the notion developed by Chouinard et al. that a stewardship farmer is willing to 

trade profits for improvements to environmental quality. The statements used are: “I would 

accept increased uncertainty in net return if local wildlife populations increase,” “I would accept 

increased uncertainty in net returns if soil quality on my farm increased,” and “I would accept 

increased uncertainty in net returns if water quality improves in nearby lakes or streams.”  

For both sets, we construct individual indices for each statement that take on a value of 

one if the respondent agreed with the statement and zero, otherwise. In addition, we construct an 

aggregate index equal to the sum of the individual indices. Thus, these aggregate indices may 

range in value from zero to three. 

 

6. Empirical Strategy 

One empirical challenge to implementing the model arises because the implicit costs imposed by 

the dynamic factors at play in farmers’ technology adoption decisions may more than offset the 
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utility gains from engaging in pro-social behavior as illustrated in the static framework above. To 

overcome this challenge, we employ a CV approach that estimates farmers’ individual valuation 

of bioenergy crop technologies as a function of these factors in addition to pro-social behavior.  

 

6.1 Proxy Variables for Expected Pro-Social Behavior 

Before describing the CV model and estimation approach, we first explore our proxy measures 

for expected pro-social behavior to demonstrate their ‘independence’ from the other observed 

variables. Table 2 provides sample means for the proxy variables. Overall, respondents agreed 

with the statements about the social benefits of alternative energy development than the 

statements regarding environmental preferences. Notably, over two thirds of respondents agreed 

with the statements that alternative energy development is important for rural economic growth 

and energy security. In contrast, only half though it was important for slowing climate change. 

For the environmental preferences, only one-third of respondents indicated a willingness to trade 

economic returns for soil and water quality. The exception here is wildlife habitat where just 

under half of respondents agreed. To explore these proxy variables further, we specified probit 

and poisson regression models for the individual and aggregate indexes, respectively. The results 

are shown in Table 3. The main observation from this table is that only two variables (education 

and livestock ownership) are found to be significant, and even here only for environmental 

preferences. This suggests that expected pro-social behavior is explained largely by unobserved 

factors and thus ‘independent’ from other observed variables. 
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6.2 Reservation price estimation 

Data from the contingent valuation survey module allow for direct estimation of landowners’ ex 

ante WTA. The specific elicitation question format employed in the module followed the double-

bounded dichotomous choice (DB-DC) format described by Hanemann, Loomis and Kanninen 

(1991). This approach treats farmers’ WTA as a random variable and uses maximum likelihood 

estimation to obtain the mean and variance as a function of explanatory variables. An advantage 

of this approach is that the regression coefficients are directly interpreted as marginal effects on 

landowners’ reservation prices. 

The DB-DC approach allows the analyst to recover the mean and variance of farmers’ 

reservation price, or distribution of WTA values. It is obtained by mapping individuals’ responses 

to the dichotomous choice survey questions into a probability density function. Let ;<=�; ?@ be 

some statistical distribution function with parameter vector ? and let p denote the associated 

probability. Then, for a given biomass offer price j, utility maximization implies, 

A�BCD	to	=�G ⟺ A�BIJ� > =�G ⟺ �K�=� = 1 − ;<=�; ?@ 

A�B��L	to	=�G ⟺ A�BIJ� ≤ =�G ⟺ �N<=�@ = ;<=�; ?@ 

Extending this logic to the case of a two-question response sequence as follows and letting � =
	�, 0, O as described above, the probability of a yes-yes response is then given as, 

�NN = A�	IJ� ≤ =P	and	IJ� ≤ =S 
Applying the definition of conditional probability gives, 

�NN = 	A�	IJ� ≤ =P|IJ� ≤ =SA�	IJ� ≤ =S 
Next, note that A�	IJ� ≤ =P|IJ� ≤ =S = 1 because =S < =P, which leads to the simplified 

expression, 

�NN = A�	IJ� ≤ =S = ;�=S; ?� 
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Furthermore, we assume for this analysis that farmers’ WTA follows a lognormal distribution. 

This appears reasonable in that it is bounded at zero and allows for a varying proportion of 

density in the upper tail. In addition, this distribution is attractive from an analytical perspective 

because the mean and variance are sufficient to recover the probability density function. Letting 

U� = VC<=�@ and ? = 	W, X, and imposing the assumption and standardizing, we get, 

�NN = ΦZ[\]^2_`,3
a2_`,3 b  

Finally, assuming a constant variance and conditional mean �2IJ�|c3 = dec, the expression 

may be simplified to, 

�NN = ΦZ[\]fgc
a b. 

Following the same arguments, the probability of a no-no response sequence is given by, 

�KK = 	A�	Ah ≥ =P	and	Ah ≥ =j 
= A�	Ah ≥ =P|Ah ≥ =jA�	Ah ≥ =j 

= A�	Ah ≥ =j = 1 − ΦZ[k]fgc
a b. 

In the case of a yes-no response, we have the interval, 

�NK = A�	=S ≤ IJ� ≤ =P	 = ;�=P; ?� − ;�=S; ?� = ΦZ[l]fgc
a b − ΦZ[\]fgc

a b. 

Similarly, for a no-yes response,  

�KN = A�	=P ≤ IJ� ≤ =j	 = ;�=j; ?� − ;�=P; ?� = ΦZ[k]fgc
a b − ΦZ[l]fgc

a b. 

Next, considering N respondents in the survey sample, the log-likelihood to estimate the mean 

and variance of the probability density function is,  

ln ��?� = n B�o
NN ln �NN�UoP, UoS� +	�oKK ln �KK�UoP, Uoj�

p

oqr
 

+	�o
NK ln �NK�UoP, UoS� +	�o

KN ln �KN�UoP, UoS�G 
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where �o
NN

, �oKK, �o
NK

, �o
KN

 are binary indicator variables equal to one if the respective response 

sequence holds and zero otherwise. An advantage of this specification is that the model allows 

for the mean WTA to be estimated as a linear function of the explanatory variables,  

(1)       IJ� = dec + � 

where d is the parameter vector to be estimated and e is a normally distributed error term. The 

estimated coefficients d in this model are interpreted directly as the marginal effect of the 

explanatory factor on the farm’s WTA in dollar terms. This contrasts with a regular probit 

assessment, which yields parameter estimates only up to a factor of proportionality (Haab and 

McConnell, 2002). 

 

6.3 Variables 

For the CV estimation, Table 4 reports the specific explanatory variables that are used in 

unrestricted and restricted versions of the WTA model. The restricted version relies on a smaller 

and more parsimonious set of explanatory variables. The key sets of variables are the bioenergy 

attitudes and environmental preference questions to proxy for expected pro-social behavior. The 

unrestricted model includes a separate variable for each individual attitude and preference 

statement. The restricted model uses the aggregate index values representing the total number of 

statements with which the respondent agreed. 

Other explanatory variables include those hypothesized in the technology adoption 

literature to constrain spatial and temporal diffusion. Smaller farms and farms with less land area 

devoted to agricultural production are expected to have less flexibility in terms of land use. 

Livestock may similarly constrain bioenergy crop adoption because these farms typically have a 

high degree of integration among the crop and animal enterprises. In addition, they may 
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represent a source of large investments (particularly for dairies) and thus constrain transitions to 

other enterprises in the short-run. Previous experience growing a crop similar to the candidate 

bioenergy crop and/or a high degree of integration within the farming operation is likewise 

expected to be a factor excluding some farms from adopting biofuels in the short run. Finally, 

age and a lack of current awareness about biofuels is expected to limit the consideration given to 

biofuels. 

 

7. Preliminary Results 

Maximum likelihood results for the willingness-to-accept reservation price estimation are 

presented in Table 5. For corn stover, the full model has one or more variables that are 

statistically significant in each conceptual category of the estimation, except animal operations. 

Farm size has a negative effect on WTA, indicating that larger farm operations have a lower 

reservation price for participation. Age is found to increase WTA but education is found to lower 

it, both of which are consistent with many other technology adoption estimations. In addition, 

farms with poor soils and sloped farmland are found to have a lower WTA, or, that is, demand a 

lower price to adopt. One possible explanation for this finding is that corn production on low 

quality soils is less productive, and earning the additional revenue for stover may be appealing to 

those farmers. However, this result also suggests that markets for stover could adversely impact 

the on-farm environment if more stover is removed from these environmentally-sensitive parcels.  

In relation to the main hypothesis of the paper, both environmental tastes and political 

attitudes are found to significantly influence landowners’ WTA for corn stover. In particular, a 

preference for better water quality outcomes is found to lower WTA and a similar one for 

wildlife is found to increase WTA. The former is somewhat counter intuitive, because corn 
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stover removal potentially increases the amount of soil and other runoff that filters into local 

waterways. Perhaps it is explained by the idea that biomass production might be viewed as better 

for the overall environment, and the water quality question reflects a broader preference for 

environmental outcomes. By comparison, the positive coefficient on wildlife habitat is not 

surprising because landowners may view stover as complementary to wildlife if it provides feed 

to wildlife or pockets of shelter to hide from prey for wildlife during the winter months. In terms 

of the political attitudes, positive views of government support for bioenergy and the sector’s 

likely effect on rural economic development prospects also lowered farmers’ WTA. Combined, 

these two sets of results suggest that to the extent that environmental and political attitudes might 

be socially and  spatially concentrated, biomass adoption might be targeted effectively based on 

finding ‘hot spots’ of support from farmers and landowners in certain regions of the state. 

Next examining the full switchgrass model, some notable differences arise relative to the 

corn stover model. First, farm size and cropland area are significant in explaining WTA. All else 

equal, larger farms have a lower WTA but those with a greater emphasis on crop production 

have a higher WTA. This contrast with corn stover is understandable, as a larger farm size may 

indicate greater availability land for experimentation with a new crop whereas an increased 

concentration in crop activity may indicate less land for a perennial crop such as switchgrass. 

The number of livestock is found to be positive and significant, indicating a potential conflict 

between the on-farm use of agricultural outputs and the possible production of bioenergy crops 

for cash sales. Combined, these two sets of results on agricultural land and livestock operations 

both cut severely against the prospects for switchgrass in these regions, which are dominated by 

dairy and cattle operations that have a strong emphasis on both crop and forage production for 

feed. While corn stover can potentially be complementary in some respects to these farms 
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because it does not require a direct substitution away from feed production, switchgrass does 

almost regardless unless it were to be encouraged as a substitute for conservation land uses, such 

as CRP and other non-ag lands. 

For the switchgrass WTA estimations using the ‘full model’, environmental and political 

attitudes are generally of the same sign as in the corn stover WTA estimations. However, they 

are considerably smaller and only in one case, a positive view of government policy to support 

bioenergy, is the coefficient estimate statistically significant. In the reduced form model that uses 

aggregated indices, both positive preferences for environmental stewardship and policies 

supporting the bioenergy sector are strongly and statistically correlated with a decreased WTA.  

Thus, again, there is evidence to suggest that biomass production strategies might be more 

effective if they can be targeted toward hot spots of support for cultivation. Farmers’ willingness 

to adopt varies significantly based on these types of environmental and social-stewardship 

values. Whether they are sufficient to overcome some of the structural barriers associated with 

other farm enterprise choices and farmer characteristics is a topic worthy of deeper exploration. 

 

8. Concluding Remarks 

This paper explores the farm landowner’s decision to adopt a ‘clean’ production technology. In 

particular, it develops a theoretical model of the landowner’s reservation price for converting a 

parcel of land from its current use to the clean technology. Clean technologies are distinct in that 

they protect against the degradation of the farmer’s surrounding natural environment as 

compared to a conventional or dirty technology. In this sense, clean technology may be viewed 

as an impure public good because of its ability to generate profit and enhance natural amenities. 

The empirical application is to estimating farmers’ WTA (i.e., reservation price) for corn stover 
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and switchgrass adoption in southwestern Wisconsin. An ex ante approach is utilized here, 

because no markets for these crops exists. As predicted by the model, landowners expected to 

engage in pro-social behavior based on positive bioenergy attitudes or preferences for 

environmental quality have a lower WTA reservation price. Future research should explore to 

what extent these results might affect predicted diffusion patterns and whether they might inform 

policy design to improve environmental management on private agricultural lands. 
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Table 1. Initial and follow-up biomass purchase price offers 

 Bioenergy crop (price offer)  Questionnaire Version (biomass offer price, $/ton) 

 Low Middle High 

Corn Stover    

Initial offer 30 60 90 

Low follow-up offer 20 50 80 

High follow-up offer 45 75 105 

Switchgrass    

Initial offer 45 75 105 

Low follow-up offer 30 60 90 

High follow-up offer 65 95 125 

 

 

Table 2. Summary of proxy variables representing farmers’ expected pro-social behavior 

  All  Corn stover  Switchgrass 

    No Yes  No Yes 

Number of observations 304       
        
Social beliefs regarding alternative energy development       

Agree that renewable energy development will reduce 
our dependence on foreign energy (1=yes,0=no) 

0.77  0.74 0.89  0.71 0.87 

Agree that renewable energy development promotes 
rural economic growth (1=yes,0=no) 

0.64  0.57 0.91  0.54 0.83 

Agree that renewable energy development will help 
slow climate change (1=yes,0=no) 

0.49  0.45 0.64  0.40 0.67 

Aggregate beliefs index (integer from 0 to 3)        
       
Environmental/land stewardship attitudes       

Willing to trade economic returns for improved soil 
quality (1=yes,0=no) 

0.35  0.31 0.54  0.26 0.53 

Willing to trade economic returns for improved 
wildlife habitat (1=yes,0=no) 

0.49  0.44 0.67  0.36 0.73 

Willing to trade economic returns for improved water 
quality (1=yes,0=no) 

0.31  0.27 0.47  0.25 0.42 

Aggregate stewardship index (integer from 0 to 3)        
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Table 3. Probit and poisson regression results for variables that proxy expected pro-social behavior 

  Environmental tastes  Perceived social benefits 

 Probit Poisson  Probit Poisson 

  
SOIL WILD- 

LIFE 
WATER ENV 

INDEX 
 ECON-

OMY 
CLIM-
ATE 

SECUR-
ITY 

ATT 
INDEX 

Age of household 
head (years) 

0.000 -0.003 -0.001 -0.001  -0.004 -0.005 -0.009 -0.003 

(0.02) (0.42) (0.10) (0.24)  (0.53) (0.71) (1.00) (0.74) 

Education of 
household head 
(years) 

0.151 0.067 0.119 0.080  0.003 0.052 0.027 0.014 

(4.34)** (2.07)* (3.64)** (4.18)**  (0.11) (1.63) (0.76) (0.83) 

Off-farm 
employment 
(hours/week) 

0.004 0.006 0.002 0.003  -0.001 0.004 -0.002 0.000 

(0.98) (1.31) (0.41) (1.11)  (0.14) (0.92) (0.34) (0.18) 

Income 
(categorical, 1 to 
6) 

0.544 0.283 0.492 0.383  -0.122 0.159 1.104 0.168 

(0.73) (0.37) (0.67) (0.77)  (0.17) (0.22) (1.31) (0.41) 

CRP (1=enrolled, 
0=otherwise) 

0.108 0.319 0.098 0.146  0.095 0.332 0.104 0.098 

(0.51) (1.49) (0.47) (1.09)  (0.45) (1.60) (0.44) (0.85) 

Years farm held 
in family (years) 

-0.009 0.003 0.007 0.000  -0.008 0.001 -0.011 -0.004 

(0.41) (0.14) (0.31) (0.01)  (0.39) (0.06) (0.50) (0.31) 

Grows forage 
(1=yes, 0=no) 

0.046 0.167 0.027 0.038  0.018 0.279 0.198 0.085 

(0.19) (0.70) (0.11) (0.26)  (0.08) (1.20) (0.77) (0.65) 

Grows corn 
(1=yes, 0=no) 

0.367 -0.276 0.105 0.041  0.179 -0.237 -0.110 -0.023 

(1.80) (1.35) (0.52) (0.31)  (0.90) (1.19) (0.48) (0.21) 

Has livestock 
(1=yes, 0=no) 

-0.522 -0.625 -0.556 -0.415  -0.244 -0.456 -0.263 -0.169 

(2.28)* (2.84)** (2.50)* (3.11)**  (1.10) (2.09)* (1.06) (1.44) 

Constant -2.704 -1.576 -2.631 -1.385  1.221 -0.663 -0.606 0.512 

 (1.26) (0.72) (1.25) (0.98)  (0.58) (0.32) (0.25) (0.44) 

Observations 253 253 253 253   253 253 253 253 

Absolute value of z statistics in parentheses 

* significant at 5%; ** significant at 1% 
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Table 4. Explanatory variables in the CV willingness-to-accept model 

Category (Variable) Description Full 
model 

Reduced 
model 

Land resources    

TOTAL_AREA Farm size (acres) x x 

CROPLAND Cropland operated (acres) x x 

PASTURE Pasture operated (acres) x x 

Land with marginal physical land characteristics   

POORSOIL Cropland with marginal soils (acres) x  

SLOPE Cropland with slope >6% (acres) x  

MARGINAL Index of marg. cropland area (MARG + SLOPE)  x 

Livestock operations   

DAIRY Number of dairy cows raised on farm (head) x  

BEEF Number of beef cows raised on farm (head) x  

LIVESTOCK Livestock index (DAIRY + BEEF) (head)  x 

Sociodemographic characteristics   

AGE Age of household head (years) x x 

EDUC Education of household head (coded) x x 

Environmental tastes   

SOIL Taste for soil quality (1=yes; 0=no) x  

WATER Taste for water quality (1=yes; 0=no) x  

WILDLIFE Taste for wildlife habitat (1=yes; 0=no) x  

ENV_INDEX Environmental index (sum of tastes [1 to 3])  x 

Political attitudes    

GOVERNMENT Believes government should do more to promote bioenergy (1=yes; 
0=no) 

x  

ECONOMY Believes biofuels will promote rural economic growth (1=yes; 0=no) x  

CLIMATE Believes biofuels will help slow climate change (1=yes; 0=no) x  

ENERGYINDP Believes biofuels will help national energy independence (1=yes; 
0=no) 

x  

ATT_INDEX Attitude index (sum of attitudes [1 to 4])  x 
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Table 5. Maximum likelihood estimates for willingness-to-grow corn stover and switchgrass for bioenergy   

Variable Corn stover   Switchgrass   

 Full model   Reduced model  Full model   Reduced model   

  Coef. p-value   Coef. p-value   Coef. p-value   Coef. p-value   

Land resources             

FARM_SIZE -0.074 (0.06) ** 0 (0.99)  -0.054 (0.04) ** -0.043 (0.15)  

CROPLAND 0.069 (0.23)  -0.008 (0.81)  0.095 (0.03) ** 0.064 (0.08) * 

PASTURE 0.109 (0.35)  -0.01 (0.89)  -0.016 (0.82)  -0.021 (0.76)  

Biophysical land attributes             

POORSOIL -0.169 (0.02) **    -0.074 (0.33)     

SLOPED -0.120 (0.06) **    -0.022 (0.22)     

MARGINAL    -0.215 (0.02) **    -0.106 (0.12)  

Animal operations             

DAIRY 0.118 (0.26)     0.090 (0.34)     

BEEF 0.200 (0.33)     0.326 (0.09) *    

LIVESTOCK    0.047 (0.47)     0.234 (0.02) ** 

Sociodemographic factors             

AGE 1.087 (0.02) ** 0.403 (0.24)  0.887 (0.05) ** 0.868 (0.03) ** 

EDUC -7.160 (0.04) ** -4.732 (0.16)  -7.691 (0.02) ** -9.311 (0.01) *** 

Environmental tastes             

SOIL 11.83 (0.46)     0.68 (0.96)     

WATER -51.74 (0.01) ***    9.62 (0.52)     

WILDLIFE 30.46 (0.02) **    -9.59 (0.39)     

ENV_INDEX    -9.415 (0.01) ***    -6.173 (0.06) * 

Political attitudes             

GOVERNMENT -32.51 (0.03) **    -23.87 (0.08) *    

ECONOMY -40.95 (0.00) ***    -17.62 (0.16)     

CLIMATE 5.77 (0.59)     -15.39 (0.16)     

ENERGYINDP 16.56 (0.29)     21.77 (0.14)     

POL_INDEX    -1.991 (0.52)     -5.59 (0.05) ** 

Other             

CONSTANT 115.4 (0.00) *** 112.7 (0.00) *** 109.0 (0.00) *** 136.5 (0.00) *** 

SIGMA 24.3 (0.00) *** 29.5 (0.00) *** 37.8 (0.00) *** 46.2 (0.00) *** 
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Figure 1. The farmer’s constraint set in (Z, �) characteristic space.  
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