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Abstract

This paper studies the divergence in the planning and equilibrium solutions for a multicell
aquifer with heterogeneity in cell depths. A spatial model is developed that explicitly accounts
for the lateral movement of water between cells. The optimal planning problem maximizes the
discounted stream of rents earned from irrigation over an infinite horizon. The optimal steady
state of this problem is derived and compared to the competitive equilibrium steady state, which
results from myopic rent maximization among users. Studying the steady-state conditions in the
two outcomes allows for the nature the spatial externalities to be characterized and reveals the
effects of varying cell depths. In a two-cell specification of the model, closed-form expressions
are derived for the difference in optimal steady state water table elevations between the two
cells. The gap in optimal heights is shown to depend on an interaction between the speed of
lateral flows in the aquifer, the asymmetry in cell depths, and the curvature properties of the
irrigation benefits function. The 2-cell model is then applied numerically to quantify the spatial
externalities and asymmetry effects in Sheridan County, Kansas, which overlies the Ogallala
aquifer. Simulated welfare losses in this model are relatively large and are sensitive to the
asymmetry in cell depths.

Introduction

Based on the seminal model of Gisser and Sanchez (1980), groundwater use has traditionally been
analyzed under the assumptions that (a) there are a large number of identical resource users and (b)
the resource itself is a bathtub aquifer – a basin with parallel sides and a flat bottom in which changes
in the groundwater level are transmitted instantaneously to all users. Under these assumptions, the
location of users in the area overlying the aquifer is immaterial, and a representative user exists.

∗This research was funded in part by United States Department of Agriculture (USDA-NIFA Multistate Research
Project W-2190) and in part by the National Science Foundation (grant GEO0909515).
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These models capture the common pool externalities in groundwater use. When there are no pol-
icy restrictions on extraction rates, individual users have an incentive to extract more quickly than
the socially efficient rate, because most of the future costs of current extraction are transferred to
others. Although the competitive and planning solutions differ analytically in these models, empir-
ical studies based on this framework typically find that the gap between them is small (Koundouri,
2004). One implication discussed in the literature is that the welfare gains from policies to conserve
groundwater for future uses are limited, so that policy attention should be focused on allocating
water to the highest valued uses in each period (Gisser, 1983).

An emerging literature, however, is beginning to reconcile the intertemporal and cross-sectional
allocation issues in a cohesive framework. A number of recent studies have relaxed the assumptions
of the traditional models, considering settings where lateral flows are not instantaneous and/or
where resource conditions are spatially heterogeneous. Brozović et al. (2010), Pfeiffer and Lin
(2012), and Saak and Peterson (2007) develop models based on hydrological principles where the
speeds of lateral flow are finite. Wang and Segarra (2011)and Saak and Peterson (2012) consider user
heterogeneity in land productivity and farm size, respectively. Athanassoglou et al. (2012) consider
both finite transmissivity and user heterogeneity, where users may differ in land productivity and
in the transmissivity to neighboring aquifer cells.

This research has revealed that spatial heterogeneity adds a new dimension to the underlying
common pool externalities. When users are heterogeneous, the socially optimal solution will involve
different pumping rates and water table heights across locations. In general, the planner will assign
higher pumping rates to cells where water has higher marginal benefits, partly because of the
inherent productivity advantage, but also because higher pumping temporarily lowers the water
table height in that cell and induces a lateral flow of groundwater toward the locations where it
can be used most beneficially. The speed of lateral flows then determines both the magnitude of
the optimal gap in water table heights as well as the spatial extent over which externalities are
transmitted.

In this paper, we address an unexplored source of variation by studying a multicell aquifer
with varying cell depths. This source of variation is important in many aquifers. For example,
in contrast to the relatively flat land surface and homogenous soils overlying large portions of the
High Plains aquifer in the central United States, the bedrock floor of the aquifer is very uneven;
the measured saturated thickness of the aquifer in 1980 ranged from less than one foot to over 1000
feet (Miller and Appel 1997). We formulate a spatial model that explicitly accounts for the lateral
movement of water between cells, which results from spatial differences in water table heights. We
then develop the optimal planning problem, which maximizes the discounted stream of rents earned
from irrigation over an infinite horizon. The optimal steady state of this problem is derived and
compared to the competitive equilibrium steady state, which results from myopic rent maximization
among users. By studying the steady-state conditions in the two outcomes, we can characterize the
nature of the spatial externalities and the way they are affected by variation in cell depths.

To sharpen the analysis, we also develop a two-cell specification of the model, from which we can
derive closed-form expressions for competitive steady state water table heights and for the difference
in optimal steady state heights. The gap in optimal heights is shown to depend on an interaction
between the speed of lateral flows in the aquifer, the asymmetry in cell depths, and the curvature
properties of the irrigation benefits function. The 2-cell model is then applied numerically to
quantify the spatial externalities and asymmetry effects in Sheridan County, Kansas, which overlies
the Ogallala aquifer. Simulated welfare losses in this model are relatively large and are sensitive to
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Figure 1: Physical characteristics of an aquifer cell.
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the asymmetry in cell depths.

Model

Consider a region with a flat land surface underlain by an aquifer with an uneven bottom. The land
surface is divided into i = 1, . . . , n equally sized cells. Figure1 shows the relevant physical measures
on a cross section of the ith cell of the aquifer. The mean elevation of the bottom of the aquifer
across all cells is normalized to h = 0, while h̄ > 0 is the constant elevation of the land surface.
This implies the mean cell has a depth from the land surface to aquifer base of h̄. Cell i’s depth is
bi = h̄ + εi, where εi is the deviation from mean depth (

∑n
i=1 εi = 0), and the elevation of the cell

base is h̄− bi = −εi.
The height of the water table in each cell can vary continuously over time, t ∈ [0,∞), which

affects users’ welfare over time due to changing saturated thickness and pumping lifts. Letting hi(t)
denote the elevation of the water table in cell i at instant t, saturated thickness is defined as the
difference in water table and base elevations,

si(t) = hi(t) + εi. (1)

Finally, pumping lift is the elevation difference between the land surface and water table, or

zi(t) = h̄− hi(t). (2)

Let wi(t) be the rate of water withdrawal from cell i at instant t. We normalize our units so that
withdrawals are measured as changes in water table height; one unit of wi is defined as the volume
of water stored in a 1-unit thick horizontal slice of aquifer in cell i. This normalization avoids the
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need to convert between volumes and depths based on the storativity and cell area. The water table
height in cell i changes over time according to

ḣi = r − wi +

n∑
j=1

θji(hj − hi), i = 1, . . . , n (3)

where time arguments have been suppressed to simplify notation, r is the rate of natural recharge
(assumed constant across cells), and θji is a transfer coefficient measuring the horizontal flow of
water from cell j to cell i per unit of gradient (difference in water table elevations). θji depends on
hydrologic properties as well as the distance between cells. This specification of hydrologic flow is
similar to those employed by Athanassoglou et al. (2012), Brozović et al. (2010), Pfeiffer and Lin
(2012), among others.

The landholder of cell i (hereafter, user i) earns economic rents from pumping and applying
water to irrigate crops. The gross benefits of extracted water for cell i is given by F (wi, si), which
depends on water applied as well as saturated thickness. F (·) is assumed to be increasing and
(weakly) concave in both its arguments with Fws ≥ 0; i.e., saturated thickness improves total
benefits and also has a nondecreasing effect on marginal benefits of extracted water. While much
of the literature on groundwater economics ignores the potential effect of saturated thickness on
revenue, a number of studies have found it is potentially important. Greater thicknesses increase
the benefits of water use because it increases well yields (extraction rates per pumping hour), thus
allowing irrigators to keep up with the peak water demands of water-intensive crops during critical
growth stages (O’Brien et al., 2001; Peterson and Ding, 2005).

The cost of pumping is given by C(wi, zi), which is assumed to be increasing and weakly convex
in both its arguments, with Cwz ≥ 0; increased lifts raise total as well as marginal extraction costs.
Substituting (1) and (2) into the benefit and cost functions, the rent earned from cell i can be
written

πi(wi, hi) = F (wi, hi + εi)− C(wi, h̄− hi), (4)

with marginal effects of

∂πi
∂wi

= Fw(wi, hi + εi)− Cw(wi, h̄− hi) (5)

∂πi
∂hi

= Fs(wi, hi + εi) + Cz(wi, h̄− hi). (6)

Based on the properties of B(·) and C(·), rents are concave in both wi and hi and are globally
nondecreasing in hi (Fs + Cz ≥ 0 ∀ (wi, hi)). The differences in cell depths create heterogeneity in
the rent functions and their marginal effects, which can characterized by differentiating (5) and (6)
with respect to εi:

∂2πi
∂wi∂εi

= Fws(wi, hi + εi) ≥ 0 (7)

∂2πi
∂hi∂εi

= Fss(wi, hi + εi) ≤ 0. (8)

Thus, for two cells i 6= j with i having a greater depth (εi > εj) but with equal water table elevations
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and pumping rates (hi = hj , wi = wj), we must have

∂πi
∂wi

≥ ∂πj
∂wj

(9)

∂πi
∂hi

≤ ∂πj
∂hj

. (10)

The marginal value of extraction is larger in the deeper cell, while the marginal value of water
table height is larger in the shallow cell. The first inequality derives from the cross-partial of F (·)
(equation (7)). The second inequality arises from the concavity F (·) (equation (8)) and the fact
that equal water table elevations implies a smaller saturated thickness in a shallow cell. All else
equal, a given increase in the water table height will be of greater value to users in shallow cells
who are pumping from thin saturated zones.

Competitive (myopic) pumping

Following a number of studies on common-pool aquifer use (see Koundouri (2004) for a review),
we first characterize the competitive equilibrium assuming that all users behave myopically. This
assumption is a polar case in which each user believes there is no causal link between current
pumping in his cell, wi(t), and the water table height in future periods, hi(τ) (τ > t). Rather, each
user believes hi(t) to be exogenously determined at each t due to the pumping decisions of others.
This behavioral assumption leads to the largest possible divergence between the competitive and
optimal rents, so that the rent difference is an upper bound on the common-property welfare losses.

Under these assumptions, each user solves a sequence of time-independent optimization prob-
lems. At each t, user i solves maxwi πi(wi, hi), so that competitive water use satisfies

∂πi
∂wi

(wi, hi) = 0 i = 1, . . . , n. (11)

While users do not anticipate changing water table heights in their decisions, the water use in all
cells will nevertheless induce changes in hi through time. A long-run competitive equilibrium can
be understood as a steady state of the resource and water-use rates. By definition, a steady state
will be achieved when water table heights remain constant in all cells, ḣi = 0 ∀i. By equation (3),
pumping rates and water table heights rates must then satisfy

wi = r +

n∑
j=1

θji(hj − hi) i = 1, . . . , n. (12)

We define a steady-state competitive equilibrium as a set of pumping rates, ŵ = (ŵ1, . . . ŵn), and
water table heights, ĥ = (ĥ1, . . . , ĥn) that satisfy the 2n equations in (11) and (12). We note that
the competitive steady state, as well as the optimal steady state we define below, are likely to involve
spatially differentiated water table heights and pumping rates. These differences are sustained in
what is known as a “flux equilibrium” because it involves continuos lateral resource flows (Sanchirico
and Wilen, 2005).

Optimal pumping

Again following previous work (Koundouri, 2004), we now consider the optimal planning problem,
in which a planner maximizes the discounted stream of aggregate rents. This problem takes the
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form

max
{wi,hi}

´∞
0

[∑n
i=1 πi(wi, hi)

]
e−δtdt

subject to (3), where δ > 0 is the planner’s discount rate. The current-value Hamiltonian for this
problem is

H̃ =
∑n

i=1 πi(wi, hi) + µi

[
r − wi +

∑n
j=1 θji(hj − hi)

]
,

where µi is the current-value costate variable pertaining to the water table height in cell i. The
Maximum Principle conditions include

∂πi
∂wi

(wi, hi)− µi = 0 i = 1, . . . , n (13)

µ̇i − δµi = −∂πi
∂hi

(wi, hi)−
n∑
j=1

θji(µj − µi) i = 1, . . . , n (14)

as well as equation (3).
A comparison of (13) to (11) immediately reveals the nature of the common pool externality.

The planner sets extraction at each period where marginal rents in cell i are equal the costate
variable, µi, which is the marginal user cost of the resource or the the implicit value of a unit
conserved in cell i for future periods. Under competitive pumping, however, the marginal user cost
is ignored and pumping rates are set where marginal rents are equal to zero.

A fuller understanding of the externalities and their spatial structure can be seen in the optimal
steady state. An optimal steady state is a a set of costate values, µ∗ = (µ∗1, . . . , µ

∗
n), a set of pumping

rates, w∗ = (w∗1, . . . , w
∗
n) and a set of water table heights, h∗ = (h∗1, . . . , h

∗
n) satisfying equations

(13), (14), and (3) when ḣi = µ̇i = 0 for all i = 1, . . . , n. Equation (13) implies that µ∗i = ∂πi/∂wi.
Substituting this relationship into (14), imposing µ̇i = 0, and rearranging yields

∂πi
∂wi

=
1

δ

∂πi
∂hi

+

n∑
j=1

θji

(
∂πj
∂wj

− ∂πi
∂wi

) i = 1, . . . , n. (15)

Equation (15) is a version of the Fundamental Equation of Renewable Resources, which determines
the optimal steady state as a balance between the marginal gains and losses of changing the resource
stock in each cell. The left side of the equation represents the monetary asset value of a one-time
extraction in cell i that would permanently lower its height by one unit. The right-hand side
represents the value of the last unit of height kept in the aquifer. The terms inside brackets are a
flow of extra earnings that would accrue each period in the future, so they are multiplied by the
capitalization factor, 1/δ, to convert them to an asset value. ∂πi/∂hi represents the direct benefit
of an increase in height in cell i, which comes from both revenue gains and cost savings as shown
in equation (6). The sum inside the brackets arises from the spatial connections to other cells. An
increased height in cell i changes the gradients toward other cells in a way that that increases net
outflow from cell i: the outflow to surrounding cells at lower water table heights quickens while the
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Figure 2: Physical characteristics in the 2-cell model.

inflow received from surrounding cells with higher heights slows. In a steady-state, each unit of flow
into a cell is pumped. Each term in the sum then measures the social gain from the increased net
flow from cell i to j, as θji is the quantity transferred and the term in parentheses is the difference
in marginal benefits of pumping between the two cells.

The expression on the right side of equation (15) is the optimal steady state value of the user
cost , µ∗i , which varies across cells. By (7) and (8), the shallowest cells in the aquifer will have the
smallest values of ∂πi/∂wi and the largest values of ∂πi/∂hi. These facts imply that the shallowest
cells will be assigned the largest marginal user costs, µ∗i , in the planner’s solution, and that the gap
between the competitive and planning solutions will be greatest in those cells. In this general multi-
cell setting, further results about the effects of heterogeneity on the spatial externalities cannot be
derived. Sharper results, however, can be obtained from a 2 cell model with particular functional
forms, which is presented in the next section.

2-Cell Specification

We now consider a specification with n = 2 adjacent cells as depicted in Figure 2, where cell 1 is
arbitrarily defined to be the shallower cell. To simplify notation, we define ε ≡−ε1 = ε2, so that the
saturated thicknesses are s1 = h1 − ε and s2 = h2 + ε (equation (1)). Similarly, θ ≡ θ12 = θ21, so
that the equations of motion, (3), become

ḣ1 = r − w1 + θ(h2 − h1) (16)
ḣ2 = r − w2 + θ(h1 − h2) (17)
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The benefit function is specified as F (w, s) = π̄+αw+βs− γ
2s

2, where α > 0 is the constant marginal
benefits of irrigation, and β > 0, γ ≥ 0 are parameters capturing the effects of saturated thickness.
In what follows, γ, which indicates the curvature in benefits with respect to saturated thickness, will
play an important role. To avoid unbounded solutions with constant marginal benefits, we impose
the feasibility constraint that w ∈ [0, w̄] in both cells, where w̄ > r can be interpreted either as the
irrigation requirement for the crops grown or the maximum authorized use on water rights. The
cost function is specified from the standard engineering equation C(w, z) = φzw, where φ > 0 is
the energy cost of lifting one unit of water one unit of distance. The definitions above imply rent
functions of

π1(w1, h1) = π̄ + αw1 + β(h1 − ε)− γ
2 (h1 − ε)2 − φ(h̄− h1)w1 (18)

π2(w2, h2) = π̄ + αw2 + β(h2 + ε)− γ
2 (h2 + ε)2 − φ(h̄− h2)w2 (19)

We first consider the competitive equilibrium. Each farmer solves maxwi{πi(wi, hi) : wi ∈ [0, w̄]}.
At an interior solution, the optimal value of wi satisfies the first order condition

α− φ(h̄− hi) = 0, i = 1, 2

which in turn implies that
h1 = h2 = h̄− α

φ
. (20)

In the competitive equilibrium steady state, pumping rates in the two cells must be such that
ḣ1 = ḣ2 = 0. By substituting this condition along with equation (20) into (16) and (17), we obtain
the result that steady-state competitive pumping rates are

w1 = w2 = r. (21)

Thus, even though the two cells are asymmetric with respect to their depths, the competitive
equilibrium steady state is symmetric with respect to both water table heights and pumping rates.

The planner’s problem is

max
w1,w2h1,h2

´∞
0 [π(w1, h1) + π2(w2, h2)]e

−δtdt,

subject to (16), (17), and wi ∈ [0, w̄] (i = 1, 2). The Maximum Principle conditions with respect to
wi and hi are a special case of those in equations (13) and (14), which lead to an optimal steady-state
condition corresponding to equation (15):

α− φzi =
1

δ
[β − γsi + φwi − θ(φzj − φzi)] , i = 1, 2. (22)

In steady state, ḣ1 = ḣ2 = 0 and equations (16) - (17) imply that pumping rates must satisfy

wi = r + θ(hj − hi) i = 1, 2. (23)

Substituting (23) into (22) and simplifying yields an expression for the difference in the optimal
steady-state cell heights:

h∗1 − h∗2 =
2γε

γ + 4φθ + φδ
≥ 0, (24)
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where the inequality follows from the assumptions that all parameters are all non-negative. Thus,
in the optimal steady state, a difference in cell heights is maintained in a flux equilibrium. In the
special case of ε = 0 where the cells are symmetric, (24) implies that h∗1 = h∗2. Equal cell heights
also results from the case of γ = 0, where there is no curvature in benefits with respect to saturated
thickness.

Numerical application

In this section we apply the 2-cell specification to numerically analyze the effects of differing cell
depths in the northwest Kansas portion of the Ogallala aquifer. Our parameter values are broadly
representative of the region but are chosen to most closely represent Sheridan County, which contains
a relatively deep and productive patch of the aquifer with highly intensive groundwater use and
rapid water level decline rates (Steward et al., 2009). We abstract from particular sites for our two
cells, rather interpreting them as relatively shallow and deep parts of an intensively irrigated area
in the county. We assume that water rights are fully appropriated in both cells, so that the full area
overlying the two cells is irrigated. We also assume that there are a large number of users in each
cell and that their competitive behavior is approximated by myopic pumping.

Table 1 presents the model parameter values. Specific yield varies spatially, but in northwest
Kansas the most typical values are between 0.05 and 0.1 (Hecox et al., 2002). Here, we set specific
yield near the middle of this range, 0.083 ≈ 1

12 , as a convenient choice to convert water stored in
the aquifer to volumes of water pumped and applied to crops. Given the assumption that the cell
surfaces are fully irrigated, the water stored in a 1-foot thick slice of the aquifer becomes one inch
of irrigation water uniformly applied to the surface. In what follows, we make this transformation
implicit by measuring irrigation in inches and water table heights in the aquifer in feet. We consider
the two extreme cases for the speed of lateral groundwater flow, with θ = 0 representing hydraulically
independent cells and θ = 0.5 representing the case where the height difference between cells is fully
dissipated in one period given symmetric pumping rates (Saak and Peterson, 2007). The depth to
the aquifer base varies across Sheridan County from under 100 to over 200 feet (Figure 3). As our
cells are assumed to be situated in the deepest and most productive areas of the county, we set the
mean depth to h̄ = 220 feet and allow each cell to vary from this value by increments ranging from
ε = 0 to ε = 20. Recharge is set at 0.75 inches per year based on (Sophocleous and Schloss, 2000).

The economic parameters include the marginal cost of pumping per foot of lift, φ, and the
coefficients of the benefits function, (̄π, α, β, γ). The pumping cost parameter was computed from
the tables and formulas in Martin et al. (2011), assuming a system operating pressure of 20 psi and
a natural gas price of $15/mcf. In this specification, α becomes a somewhat arbitrary parameter
because, with known values of φ and h̄, it is linearly related to the steady state competitive cell
height, ĥ1 = ĥ2 = h̄ − α/φ (equation (20)). The role it plays in the model is one of inducing an
equilibrium pumping cost. For water table heights such that marginal pumping cost, φ(h̄ − hi), is
less than α, farmers will optimally set pumping at the maximum rate, wi = w̄; if marginal pumping
costs are above α, pumping would be set to zero; and only when marginal pumping cost equals α
can we obtain an interior equilibrium or the “singular value” determining the steady state. Here,
we set α = 6.8, which implies a competitive steady state cell height of ĥ1 = ĥ2 = 50 feet. For the
largest degree of asymmetry (ε = 20) this implies a steady state saturated thickness of 30 feet in the
shallow cell, a value that farmers in the region commonly assume to be a minimum viable threshold
to support irrigation.
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Table 1: Parameter values
Parameter Units Value

Aquifer specific yield 0.083
θ 0,0.5
h̄ feet 220
ε feet 0, 1, . . . , 20

r inches 0.75
φ $/acre-inch/foot 0.04
α $/acre-inch 6.80
β $/foot 31.213
γ $/foot2 0.4274
π̄ $/acre -618.94
δ 0.04

Figure 3: Variation in depth to aquifer base

http://www.kgs.ku.edu/HighPlains/HPA_Atlas/Aquifer%20Basics/index.html#Depth%2520to%2520Base%2520of%2520HPA.jpg
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Figure 4: Calibrated benefits versus saturated thickness
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The remaining parameters require knowledge of the relationship between aquifer saturated thick-
ness and irrigation returns. O’Brien et al. (2001) is among the few studies that have quantified this
relationship. Using weather data from Sheridan County, a crop model, and a linked irrigation
scheduling model, irrigated corn yields were simulated under five different well pumping capacities
ranging from 15 L/s (237 gal/min) to 37 L/s (586 gal/min). The results revealed an increasing,
concave relationship between yield and well capacity. For our purposes, the well capacities must be
translated back to the saturated thickness of the aquifer, which was accomplished by interpolating
from the results in Hecox et al. (2002).1 Figure 4 displays the resulting data points plotted as
irrigation benefits versus saturated thickness, where benefits are calculated as O’Brien et al.’s pre-
dicted yields multiplied by an assumed corn price of $6/bu less non-water variable production costs
of $576/acre (Dumler et al., 2010). We then calibrated the parameters β and γ to approximate the
shape of the data, using the conditions that the fitted line pass through the endpoints of the data
and with enough curvature to pass through the middle observation. The reported value of π̄ is the
intercept of the benefits function implied by the shape parameters, which plays only a passive role
in the analysis. Finally, we set the discount rate to δ = 0.04.

Competitive and optimal steady states were simulated for each combination of ε and θ in Table
1. The competitive solution was calculated directly from equations (20) and (21), while the opti-

1Hecox et al. calculated and reported the minimum saturated thickness required to support various pumping
capacities, under different assumptions about aquifer properties, pumping duration, and well spacing. We interpolated
from their results based on a hydraulic conductivity of 100 feet per day, 90 days of pumping, and wells spaced on
quarter-section centers. These conditions are representative of groundwater use in Sheridan County.
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Table 2: Simulated water table height and saturated thickness, competitive and optimal solutions

mal steady state was obtained from numerical solution of the system of equations (22) and (23).
Each solution consists of pumping rates and water table heights in each cell, from which saturated
thickness levels and economic rents were also computed.

Table 2 reports the simulated water table height and saturated thickness for the full set of
combinations of θ and ε. The competitive solution is independent of θ, and always yields a steady-
state water table height of 50 feet in both cells. Identical heights, however, implies different saturated
thickness levels, with the gap depending on the assumed level of ε. At the maximum asymmetry of
ε = 20, the gap in saturated thickness, by definition, is 40 feet.

While the competitive solution has equal water table heights with unequal thickness, the optimal
solution has the opposite pattern. As illustrated in Figure 5, the optimal planning solution is to
maintain similar saturated thicknesses in the two cells, which implies an optimal gap in water table
heights. In the case of θ = 0, this gap is maintained simply because there is assumed to be no
hydraulic connection between the cells. At each level of ε, the optimal saturated thickness in the
two cells are virtually identical to each other (Table 2); a slight difference between cells emerges with
extreme asymmetry, which reflects the large difference in pumping lifts affecting pumping rates. In
the case of θ = 0.5, the optimal difference in cell heights must be maintained in a flux equilibrium,
and the difference in heights is not as large.

The economic rents and implied welfare losses from common pool externalities are in Table 3. As
expected, rents in each cell are larger under optimal management than under competitive pumping,
with the difference reflecting the common-pool welfare losses. As also expected, rents are always
higher in cell 2 than in cell 1 because of the resource endowment advantage. Rents in the two cells
are very similar, however, in the case of optimal management when θ = 0. In this case the profits
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Figure 5: Competitive versus optimal solutions

in the two cells can be managed independently, yielding similar levels of saturated thickness (Table
2) and hence similar rents. The inequality in rents is largest under competitive pumping, implying
that optimal management will not only improve total gains but would reduce inequality as well.

Welfare losses are computed as the difference in rents between the optimal solutions and can be
equivalently termed the gains from optimal management. Combined welfare losses are larger for the
case of hydraulically connected cells (θ = 0.5) than for independent cells (θ = 0). This difference
reflects the spatial portion of the externality due to the connection between cells. In the case of
θ = 0 there are still common pool externalities within each cell, with associated (combined) welfare
losses ranging from $215/acre to $386/acre. When cells are hydraulically connected, the common
pool externalities are exacerbated, resulting in joint welfare losses from $215/acre to $404/acre. In
essentially all cases, farmers in both cells would gain from optimal management policies, although
the larger gain would be felt by those in the shallower cell.

Conclusions

This paper has studied the divergence in the planning and equilibrium solutions for a multicell
aquifer with heterogeneity in cell depths. Using this framework we characterized the effects of the
standard common pool resource externalities and the separate effects brought about by resource
asymmetry. In particular, we determined the degree of over-pumping (or under-pumping) in each
cell as a function of the asymmetry, as well as the effects of asymmetry on joint welfare losses and
the distribution of these losses across the two users.

For policy purposes, this framework provides insight on how policies to control groundwater use
should be targeted. Our numerical application to northwest Kansas reveals that even for modest
levels of asymmetry across locations, policies will have different welfare impacts on users. Further,
in this case, efficiency-driven policies to improve total welfare will also reduce the gap in earnings
between users with different resource endowments.
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Table 3: Economic rent and welfare losses.
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