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DRAFT VERSION 

How do African households adapt to climate change? Evidence from Malawi 

 

Abstract 

We use three waves of national representative household level panel data from Malawi to employ a 

structural model to estimate how households make land and labor allocation decisions in response to 

climate change. We first model the allocation of land to improved maize varieties as a function of 

precipitation history, input and output prices, household characteristics and extension advice and then 

estimate the welfare benefits associated with this decision in a household net income equation. This 

second stage also reveals the extent to which the household shift labor off-farm as total growing season 

precipitation fluctuates. We find that a 1% increase in intra-seasonal precipitation variability reduces 

household income by 1.5%. This effect falls to 1.3% after we account for the expected adjustment in 

improved maize adoption. 

 

Introduction 

Climate change is expected to affect food security and farm income in sub-Saharan Africa through its 

relationship to crop productivity. IPCC (2007) projects temperatures across Africa to increase 3-4°
C
 over 

the course of this century (about one and a half times greater than the expected global temperature 

increase), and though rainfall projections are not uniform across the continent, Southern Africa is 

expected to receive less precipitation on average. Agronomic experiments indicate that this combination 

of heat and drought may cause significant yield reductions for most crops, specifically maize (Lobell et al., 

2011). Analyses of actual crop output (as opposed to output under laboratory conditions) produce similar 

findings—Schlenker and Lobell (2010) measure the relationship between weather and observed country-

level crop yields, predicting median yield losses of 8% for cassava and 22% for maize between now and 

2050. Given the inertia in the climate system, some degree of climate change can be expected to set in 

regardless of the future path of CO2 emissions (Smit and Pilifosova, 2001), and as such, adaptation to 

these inevitable changes represents the only feasible short-run strategy. Understanding the nature of 

effective adaptation and quantifying its welfare impact remains a critical task in the study of climate 

change in sub-Saharan Africa. We contribute to this line of research using household-level evidence from 

Malawi. 
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 This study’s objective is first, to uncover the relationship between climate and improved maize 

adoption among Malawi farmers, and second, to understand how this planting decision shapes the impact 

of climate change on household income. We define climate in terms of growing season precipitation, 

specifically 1) cumulative growing season precipitation and 2) rainfall variation within the growing 

season. Furthermore, we define the intensity of improved maize adoption in terms of the share of 

cultivated land planted with improved maize varieties. Determining the structure of these relationships 

between climate and farm management practice allows for an evaluation of climate change impacts that 

explicitly accounts for expected adjustments in the use of improved maize varieties. This facilitates a 

direct comparison of the welfare effects of climate change with and without this behavioral adjustment, 

letting us quantify the benefits of the adaptation strategy. We construct a structural model of adaptation 

and production decisions which allows us to gauge the overall effect of climate change on farmers’ 

welfare and identify the mechanisms through which this effect unfolds. In particular, farmers may react to 

climate change by adopting adaptation strategies or reallocating inputs and outputs according to 

technological possibilities and market conditions. Our framework, consisting of a structural model 

estimated with panel data, allows us to distinguish between the two mechanisms which is, in turn, critical 

for assessing the effectiveness of adaptation strategies on alleviating the adverse impacts of climate 

change on farmers’ well-being. 

 Past economic assessments of climate change impacts have not adequately accounted for the role 

of human behavior to fully or partially offset the effects of environmental change. Initial studies utilized 

known agronomic relationships to forecast the response of crop yield to various changes in rainfall and 

temperature, though they lack a proper model of economic incentives (Easterling et al., 1992a; 

Rosenzweig and Parry, 1994). Later analyses used cross-sectional variation in land values to estimate the 

monetary value of long-run shifts in climate variables, implicitly accounting for adjustments in the 

activities taking place on that land but failing to delineate any particular adaptations, nor explaining how 

such adjustments might occur (Mendelsohn, 1994). More recently panel data sets have been used to 

estimate the response of yearly profit to random year-on-year weather fluctuations (Deschenes and 
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Greenstone, 2007; Guiteras, 2009). While these analyses account for efficient adjustments to growing 

season weather within a particular year, they do not allow for more substantial changes in input or output 

mix that could be rational under different climate conditions. Finally, other studies look in detail at 

farmers’ economic perceptions of past weather patterns and their reported economic responses to those 

patterns (Maddison, 2007; Gbetibouo et al., 2010; Deressa et al., 2011). These studies often neglect to 

examine the degree of adaptation undertaken and rarely incorporate prices into the adaptation decision. 

None of the research mentioned above explicitly models climate change adaptation as a function of input 

and output prices, nor does it measure the welfare gain associated with any particular behavioral response. 

 Di Falco et al. (2011a), using a cross-sectional data set from Ethiopia, investigate the drivers of 

household-level climate change adaptation and estimate the effects of adaptation on household food 

security. Adaptation is modeled as a binary variable equal to one if the household adapted and zero 

otherwise, which is then regressed on household characteristics, asset ownership, soil quality and erosion, 

occurrences of drought or flood, and climatic measures to uncover the drivers of this behavior. They 

identify 1) credit access and 2) access to information about climate and farm practices to be correlated 

significantly with adaptation. In order to correctly attribute food production outcomes to adaptation rather 

than to unobserved household characteristics, they employ an endogenous switching model to produce 

counterfactual scenarios—that is, they estimate what the productivity of adapting households would have 

been in the event that they had not adapted and vice versa for non-adapting households. 

 Our study improves on this Di Falco et al. (2011) in two specific ways. First, since adaptation 

enters their model as a ‘yes/no’ decision, their analysis is unable to differentiate between adaptation 

strategies and cannot account for the intensity with which these strategies are adopted. Second, while they 

attempt to isolate the effect of the adaptation by constructing a counterfactual outcome, their use of cross-

sectional data makes it difficult to adequately disentangle the effect of the adaptation itself versus the 

propensity to adapt, which itself may affect the outcome (food security). Moreover, cross-sectional data 

sets are not ideal instruments for measuring adaptation, which is inherently a time-series phenomenon. 

Our study addresses this first concern by identifying two relevant adaptation strategies that we model as 
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continuous variables: 1) changing the share of cultivated area planted with improved maize varieties and 

2) shifting the amount of labor that the household allocates to off-farm work. We address the second 

concern by using a household-level panel data set of from Malawi. Our model’s first stage measures the 

impact of changes in cumulative growing season precipitation on the share of land allocated to improved 

maize varieties conditional on prices, household characteristics, and extension advice. We insert predicted 

values from stage one into a stage two profit equation to compute adaptation’s effect on net household 

income. In the process we derive off-farm labor supply as a function of growing season rainfall. This 

framework allows for explicit modeling of climate change adaptation and an evaluation of the welfare 

implications. 

Literature Review 

In what follows we describe previous methods of climate change impact assessment. Broadly, these 

approaches include those that focus exclusively on the relationship between crop yield and weather 

variables (the agronomic approach), those that use existing cross-sectional relationships between climate 

and land values to project future impacts (the Ricardian approach), those that measure the effect of 

random weather fluctuations on yearly profit (panel data studies), and those that illicit direct responses 

from farmers about their behavioral adjustments to perceived climate change (adaptation studies). 

Agronomic Approach 

 Since climate is a key determinant of agricultural productivity, studying the interaction between 

climate and agricultural yield constitutes a reasonable starting point for measuring climate change welfare 

impacts. Combining estimations of these agronomic properties with climate forecasts give an approximate 

measure of the expected yield losses (or gains) associated with future shifts in temperature and rainfall. 

Early attempts to predict the economic impacts of climate change in this manner include Adams et al. 

(1988a), Adams (1989), Easterling et al. (1992a), Easterling et al. (1992b) and Rosenzweig and Parry 

(1994). These approaches do not consider adaptation in any systematic way. Climate is modeled as an 

input to the agricultural production process, and when adaptation is acknowledged, it enters the 
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simulation as a set of parameters that can be adjusted at the researchers’ discretion. Often agronomic 

experts are consulted to suggest reasonable adaptation strategies, but a more realistic approach would 

have these adaptations dictated by changes in relative prices rather than imposing them artificially. 

Ricardian Approach 

 Following Mendelsohn et al. (1994), researchers have employed a Ricardian framework to 

estimate the welfare implications of long-run climate change and subsequent adaptation (Deressa, 2007; 

Sanghi and Mendelsohn, 2008; Wang et al., 2009). While the agronomic approach holds fixed all inputs, 

outputs and technology, the Ricardian method represents an attempt to measure the residual climate 

change impact after individuals have fully adjusted all inputs and outputs to maximize profit given their 

new conditions. Underlying the analysis is the theory, formally articulated by David Ricardo, that land 

value under properly functioning land markets will equal the present value of the infinite profit stream 

accruing to the owners of that land. Mathematically, land value or annual net revenue is expressed as a 

function of exogenous climate variables, allowing the analyst to calculate the change in welfare 

associated with a given change in those exogenous climate parameters. The technique takes advantage of 

spatial variation in climate at a point in time to estimate how climate change might influence the 

profitability of agricultural land. Land value (or annual profit) is regressed on a set of climate variables 

(usually monthly averages temperature and precipitation across a 30-year period) along with other 

variables like soil type, altitude, and household characteristics to control for non-climatic factors that 

might explain land value. Parameter estimates are then combined with output from a climate change 

forecast to predict the income loss due to future climate change. While the Ricardian model assumes 

adaptation, it does not reveal anything about the adjustment process—only the final outcome (land value 

or annual net revenue) is observed. 

 More recently, a “structural Ricardian” framework has been developed for the purposes of 

modeling adaptation explicitly. Like the standard Ricardian approach, the structural model estimates long-

run welfare impacts of climate change, but it includes an intermediate step that predicts behavioral 
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changes that might occur along the way. The model’s first stage involves an estimation of the likelihood 

of choosing a particular farm practice (among a set of practices selected beforehand by the researcher) 

conditional on climate, soil, and socio-economic factors. The second stage calculates the net revenue 

associated with that farm practice. This produces a mathematical relationship between climate variables 

and net revenue conditional on the choice of production activity. Once climate change forecasts are 

introduced into the equation, the results show not only the expected final outcome, but also reveal 

expected adjustments made by the farmers to better suit the new conditions (say, switching from a 

specialized crop farm to an integrated farm with both crops and livestock). The structural approach is 

more transparent about the process by which a farmer might reposition himself in the new climate, but it 

still suffers from problems associated with using cross-sectional data to analyze a time-series process. The 

model almost certainly does not capture the full range of adaptations available to the farmer, nor does it 

account for constraints that might prevent efficient adaptation. 

Panel Data Studies 

 Panel data studies fall somewhere between the agronomic and Ricardian approaches with respect 

to their assumptions about the flexibility of farm management decisions—they measure the response of 

farm profit or agricultural yield to random, year-to-year weather fluctuations (Schlenker and Roberts, 

2006; Schlenker et al., 2006; Deschenes and Greenstone, 2007; Guiteras, 2009; Schlenker and Lobell, 

2010; Deschenes and Greenstone, 2011). While farmers are free to adjust some inputs during the course 

of the year in response to the conditions they observe, the time frame is too short to undertake the full 

range of adaptations that might be beneficial in the face of long run climate change. In terms of the 

validity, the relevant question is as follows: is long-run climate change comparable to yearly weather 

fluctuations or are the two phenomena qualitatively different? If long-run climate change is believed to be 

just a ‘scaled-up’ version of yearly variations, then the panel approach will approximate climate change 

impacts. If this is not the case, then its validity is called into question. While intra-seasonal adaptation is 

implicit in the dependent variable (farmers are assumed to choose the levels inputs that earn them the 
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highest net return), the model does not reveal the details of this adjustment process. As with the Ricardian 

method, only the outcome is observed. 

Adaptation Studies 

 The structural Ricardian approach portrays how farmers’ current practices vary across different 

climates, allowing the researcher to forecast adaptation practices by examining spatial analogues (Tol, 

Fankhauser and Smith, 1998). However, this technique assumes that farmers will adapt, ignoring the 

possibility that certain segments of the population may be significantly less likely to adapt efficiently or 

expediently. Another approach to climate change adaptation research, which we refer to as “adaptation 

studies,” tries to shed light on the factors that influence adaptive capacity (Hassan and Nhemachena, 2008; 

Deressa et al., 2009; Deressa et al., 2011; Fosu-Mensah et al. (2012). These studies generally ask farmers 

open-ended questions regarding 1) their perceptions of climate change, 2) adaptations they’ve already 

undertaken, and 3) factors that prevent them from adapting further (or at all). Responses are categorized 

and regressed on a set of household and village characteristics to estimate the relative importance of 

various social, economic, or institutional factors in affecting adaptation choices. A weakness of these 

studies is that most of them do not attempt to associate the adaptation outcomes with a welfare 

measurement, that is, they suggest that constraints are present but do not estimate how much better off 

households would be if barriers were eliminated. Self-reported perceptions of climate change and 

adaptive responses is inherently less precise than weather records used in Ricardian studies, but this 

qualitative information provides a richer description of the set of possible adaptations and suggests 

relevant constraints that might prevent efficient behavior. 

 Di Falco and Veronesi (2012) (DV henceforth) produce what might be the most cutting edge 

quantitative analysis of the determinants of adaptation to climate change and their welfare implications. 

They identify three distinct forms of adaptation—(1) changing crop varieties, (2) implementing water 

strategies (water harvesting, water conservation, or irrigation), and (3) implementing soil conservation—

and define the choice set as nine mutually exclusive strategies (any of (1), (2), or (3) adopted in isolation; 
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any pairwise combination of (1), (2) and (3); implementing all three together; implementing other 

strategies; or no adaptation). With the adaptation variables defined, they construct a multinomial logit 

regression model to uncover the effect of long-run temperature and precipitation on the adaptation 

decision and to determine the extent to which other factors (household and farm characteristics, the 

presence of assets, and the experience of previous extreme weather events like drought or flood) explain 

the adoption of a particular strategy. In a second phase, they estimate expected net revenue conditional on 

the adaptation choice as well as a counterfactual outcome, following a procedure used in Di Falco et al. 

(2011a).  Their results show that strategies adopted in isolation are ineffective, while adopting them in 

combination produces positive and significant benefits (curiously, they find that adopting all three 

strategies at once produces less benefit than any pairwise combination). 

 An important shortcoming of DV’s analysis is that it ignores intensity of adaptation. While forms 

of adaptation are differentiated to an extent, adoption remains a binary outcome. As such, crucial 

information is lost regarding how net farm revenue might respond to varying degrees of adoption. For 

example, the benefits of irrigation would depend greatly on the extent to which it was used, rather than 

simply whether it was adopted or not. Secondly, even though adaptation is inherently a time-series 

phenomenon (conditions change and individuals react in turn), research that has quantitatively analyzed 

the adaptation process using panel data remains scarce. DV’s use of cross-sectional data makes it possible 

that certain unobservable differences between households were not adequately controlled for. These two 

issues constitute a substantial gap in the study of climate change adaptation. With regard to the first 

consideration, we fill this gap by modeling adaptation as a continuous variable so as to estimate how 

welfare might be enhanced by changes in farming practice on the margin. With respect to the second, we 

have access to a panel data set from Malawi which will allow us to produce estimates that more reliably 

control for unobservable differences between households. Our objective is to identify adaptation measures 

that are currently being undertaken in Malawi in response to climate change and to quantify the welfare 

gains associated with those measures. 
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Model 

The ultimate impact of environmental change on people’s lives will be mediated through the behavioral 

adjustments they make in response to the physical stimulus. Figure 1 illustrates this process. On the far 

left, a change in the climate is introduced, which in turn alters crop and livestock productivity. The 

diagram assumes that productivity is reduced, though this need not be true in general. The impact on 

productivity affects welfare by reducing income and food security. These impacts correspond to the 

individual’s initial production practices, that is, the calculation assumes that the household maintains the 

same production decisions as before the climate shift. Such an assessment is essentially equivalent to 

measuring the relationship between climate and crop or livestock productivity, and converting the 

climate-induced output reduction into monetary terms. A more complete analysis should extend the 

calculation one step further, accounting for the behavioral response that is likely to follow and estimating 

the final impact on income or food security after the individual has had the opportunity to adjust. Since 

these adjustments are voluntary, one expects that they improve the household’s position by offsetting 

some fraction of the damages brought about by the climate shift (though the magnitude and of the final 

impact is uncertain). It is conceivable that the climate shift creates economic opportunities that had not 

previously existed and thus the household is actually made better off following the climate shift and 

subsequent adaptation. The final outcome will depend on the nature of the climate stimulus, the effect of 

that stimulus on production processes, and on the individual’s capacity to transition from one activity to 

another. 

Figure 1. 
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Mathematically, we can express the process illustrated in Figure 1 as follows. Let profit π be a function of 

climate and some characteristic of the production process,  , that can be adjusted to suit the climate 

conditions. 

(1)                    

The state of the climate is exogenously given, but   is a choice variable. Assuming that the household 

chooses   such that profit is maximized, the optimal choice of   will be a function of climate. 

(2)                                

Differentiating   with respect to climate gives the change in profit for small changes in climate, which is 

composed of the direct partial effect of climate on profit and the indirect partial effect of climate on profit 

through adaptation: 

(3) 
  

          
       

  

          
           

  

  
   

  

          
 

Our aim is to identify   and pin down the functional relationships in (1) so as to derive the structure of 

equation (2). Once (2) is obtained we can apply climate change projections to arrive at the expected net 

climate change impact. 

Identifying   

Adaptation measures that appear most frequently in recent climate change adaptation studies fall broadly 

into four categories: switching crop varieties, crop diversification, diversification across crop and 

livestock production, and diversification across farm and non-farm activities. Table 1 lists studies that 

explicitly model these behaviors or refer to these forms of adaptation as being particularly common or 

effective. In terms of the frequency with which they appear, switching crop varieties and supplementing 

farm income with off-farm income seem to be the most relevant adaptation strategies. We thus define 

adaptation with respect to two particular farming decisions: first, the share of cultivated area planted with 

improved maize varieties and second, the share of time during the year allocated to off-farm work. Both 

behaviors are consistent with the definitions of adaptation that have appeared in previous research and 
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both constitute shifts on the intensive margin (i.e. a household increases the productivity of its existing 

stock of land and labor by switching seed varieties and adjusting fertilizer application in the former case 

and allocating existing labor where it earns a higher return in latter case). With considerable friction in 

African markets for land and labor, we believe it makes sense to concentrate our analysis on this intensive 

margin. Finally, in contrast to models that construct adaptation as a binary decision (adapt or not), these 

two adaptation variables are continuous between zero and one, allowing for a more nuanced analysis of 

how incremental changes in these types of behavior affect household welfare. Understanding how varying 

degrees of adaptation impact welfare provides more precise policy recommendations. 

Table 1. Prominent Climate Change Adaptation Measures in the Literature 

Switching crop varieties 

Desanker, Magdza et al. (2001) Molua (2002) Kurukulasuriya and Rosenthal (2003) 

Behnin (2006) Thomas et al. (2007) Maddison (2007) 

Mertz et al. (2009) Apata et al. (2009) Bryan et al. (2009) 

Deressa et al. (2009a) Deressa et al. (2009b) Mutekwa (2009) 

Below et al. (2010) Gbetibouo et al. (2010) Burke and Lobell (2010) 

Yamauchi et al. (2010) Di Falco et al. (2011a) Di Falco et al. (2011b) 

Molua (2011) Fosu-Mensah et al. (2012) Di Falco and Veronesi (2012) 

 

Crop diversification 

Desanker, Magdza et al. (2001) Behnin (2006) Kurukulasuriya and Mendelsohn (2008) 

Dinar et al. (2008) Seo and Mendelsohn (2008) Bryan et al. (2009) 

Mertz et al. (2009) Mutekwa (2009) Apata et al. (2009) 

Gbetiouo et al. (2010) Burke and Lobell (2010) Fosu-Mensah et al. (2012) 

Silvestri et al. (2012)   

 

Diversification across crop and livestock production 

Desanker, Magdza et al. (2001) Behnin (2006) Thomas et al. (2007) 

Mendelsohn and Seo (2007) Dinar et al. (2008) Hassan and Nhemachena (2008) 

Seo (2010a) Seo (2010b) Di Falco et al. (2011a) 

Di Falco et al. (2011b) Di Falco and Veronesi (2012) Silvestri et al. (2012) 
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Diversification across farm and non-farm activities 

Kurukulasuriya and Rosenthal (2003) Maddison (2007) Boko et al. (2007) 

Shewmake (2008) Dinar et al. (2008) Apata et al. (2009) 

Mutekwa (2009) Below et al. (2010) Burke and Lobell (2010) 

Deressa et al. (2010) Di Falco et al. (2011a) Di Falco et al. (2011b) 

Molua (2011) Fosu-Mensah et al. (2012) Di Falco and Veronesi (2012) 

Silvestri et al. (2012)   

 

Stage one: Linking climate and   

Pauw et al. (2010) estimate the impact of drought on maize production in Malawi allowing for varying 

degrees of improved maize adoption. They find that shifting 10% of cultivated area from local maize 

varieties to commercial varieties fully offsets the yield losses associated with a mild drought (a drought 

that would recur every five years on average) and partially offsets those associated with more severe 

droughts (those with return periods of 10 years or more). It is therefore reasonable to expect a shift from 

local varieties to improved varieties as Malawi’s climate becomes hotter and drier, provided that farmers 

have proper weather information and access to these improved seeds. Prior to estimating a household net 

income equation, we examine this relationship between climate and the household’s share of land planted 

with improved maize varieties. 

 Improved maize share is modeled as a function of 30 year weather history (including means and 

variances), recent weather shocks, input and output prices, and other characteristics of the household.  

(4)                       , where   

       is the area planted using improved maize seed varieties divided by total cultivated area, 

      is wealth as measured by the value of livestock and durable goods owned, 

      is cumulative growing season precipitation averaged across the 30 years preceding the 

         observation year, 

      is    squared, 
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      is the coefficient of variation of cumulative growing season precipitation over the 30 years   

         preceding the observation year,  

      is    squared, 

      is the coefficient of variation of monthly rainfall within the growing season averaged across 

         the 30 years preceding the observation year, 

      is    squared, 

      is binary variable equal to one if the household reported to be severely impacted by an  

        extreme rainfall pattern in the past five years and zero otherwise, 

      is the previous year’s maize price, 

       is the price of commercial fertilizer in the current year, 

       is the amount of subsidized fertilizer acquired by the household in the current year, 

      is the wage rate for ganyu labor in the current year, 

      is a binary variable equal to one if the household purchased inputs with credit during the 

         growing season and zero otherwise, 

      is a binary variable equal to one if the household head is female and zero otherwise, 

      is household size as measured by adult equivalent, 

      is household landholding, 

      is a binary variable equal to one if the household reported to have received useful advice on  

         new seed varieties, 

      is the price of improved maize seed, 

      is a binary variable equal to one if the observation corresponds to the 2003-2004 growing 

         season 

      is a binary variable equal to one if the observation corresponds to the 2006-2007 growing 

         season 

      is a binary variable equal to one if the observation corresponds to the 2008-2009 growing 

         season 



14 

 

We construct the equation for household   at time   as follows, where    represents time-invariant, 

household-specific fixed factors and     represents unobserved household-specific factors that vary across 

time. 

(5)                                                      

After time-demeaning all the variables in (5), we estimate a fixed effects regression model to uncover the 

importance of these right-hand side variables in explaining improved maize share, controlling for 

unobservable, time-invariant factors. 

Hypotheses 

The effect of wealth on the intensity of improved maize adoption could conceivably go in either direction. 

On the one hand, if wealthier farmers engage in a more diverse portfolio of activities, they may devote a 

smaller share of their resources to crops and thus not be particularly concerned about minimizing risk in 

the domain of maize production (Kaliba et al., 2000). Using livestock ownership as a proxy for assets, 

Deressa et al. (2009) find a negative (though statistically insignificant) relationship between livestock 

ownership and the adoption of new crop varieties. On the other hand, household wealth might provide 

greater capacity to learn about and acquire new varieties and also serve as a safety net in case the new 

practices fail. In the same vein, a poorly-endowed farmer 1) may be especially averse to the risk 

associated with switching to a new technology, 2) may not have the access to complementary inputs, or 3) 

may not be informed concerning proper management techniques. In these cases, we’d expect wealth to be 

positively related to share of improved maize. Gbetibouo et al. (2010) find that the probability of adapting 

to climate change increases with wealth; in particular, wealthier households were more likely to change 

planting dates. Regarding maize more specifically, Sserunkuuma (2005) finds higher improved maize 

adoption among households with higher measured livestock value. Bellon and Risopoulos (2001) 

construct a ‘wealth ranking’ system and find the intensity of improved maize adoption to be significantly 

lower among households classified as ‘poor’ as compared to the rest of the sample. Langyintouo and 
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Mungoma (2008)’s analysis of improved maize adoption in Zambia suggests that wealth is positively 

related to the intensity of adoption. Gauging this positive effect to be stronger, we hypothesize a positive 

sign for   . 

 We reason that households use historical weather information to predict conditions in the 

upcoming growing season and, in turn, this expectation informs their planting decisions. However, it is 

not clear how they view long-run means relative to recent short-run patterns. Do they consider 30-year 

average weather to be the best estimator for next season’s conditions, or do they place greater weight on 

the most recent three to five years?
1
 Previous climate change studies almost without exception define 

climate as 30-year weather history. We adopt this definition, while also testing shorter time horizons to 

determine the sensitivity of the results to changes in this specification. Our climate variables include 

cumulative growing season precipitation averaged across the 30 years immediately preceding the 

observation year, the coefficient of variation of total growing season rainfall over those same 30 years and 

the coefficient of variation of monthly rainfall within the growing season averaged across 30 years. 

Because farmers tend to be risk averse, we expect that the adoption of improved maize varieties will 

intensify as growing seasons become drier and as variability increases both within and across years. 

However, the fact that we specify these variables in quadratic form makes it difficult to predict the signs 

in advance, thus we do not hypothesize signs for    through   . 

 A recent occurrence of bad weather might also induce the farmer to adopt a crop variety that is 

more resilient under unfavorable conditions. We account for this by including a binary variable equal to 

one if the household reported to be severely impacted by an extreme rainfall pattern in the past five years 

and zero otherwise. We expect    to be positive. 

 In general, the price of an output should spur the production of that output, and increase demand 

for that good’s inputs. Specifically, an increase in the price of maize should result in an expansion of area 

                                                           
1
 In a stable climate, more past observations will always improve the estimate for next year’s conditions, but when climate is 

shifting, it may not be useful to look far into the past where the underlying parameters of the climate system were different than 

today. 
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planted with maize, but it is not obvious how this new area will be split between improved maize varieties 

and local maize varieties. Because improved maize varieties tend to be more productive overall (Morris et 

al., 1999), it would be reasonable to expect an increase in maize output price to accelerate the adoption 

rate for improved varieties. In one of the few studies to include maize output price as an explanatory 

variable for improved maize seed adoption, Mwabu et al. (2006) verify this hypothesis in Kenya, but due 

to the scarcity of empirical evidence, we leave the sign of    unspecified a priori. 

 An increase in the price of an input ought to reduce the quantity demanded of that input and other 

complementary inputs, but if fertilizer interacts with improved maize varieties in exactly the same manner 

as with standard varieties, then we would not expect to find a relationship between fertilizer price and 

improved maize adoption. On the other hand, if fertilizer and improved maize are believed to be strongly 

complementary, then we would expect that an increase in fertilizer price would reduce improved maize 

share. Nkonya et al. (1997) and Amaza et al. (2008) both uncover a positive and significant correlation 

between fertilizer application and the area planted to improved maize varieties, lending credence to this 

hypothesis. Ogunlade et al. (2010) identify lack of access to fertilizer as a barrier to optimizing the 

benefits of improved maize varieties. Based on these findings, we hypothesize a negative sign for    . 

Following the same logic, we expect access to subsidized fertilizer to correlate positively with improved 

maize share, resulting in a positive sign for    . 

 Since off-farm labor is substitute for maize production, we would expect that a higher wage rate 

would result in more off-farm work and less attention crop activities. However, because our dependent 

variable is expressed in terms of share instead of levels, it is a bit ambiguous whether the share of 

improved maize production would necessarily decrease as off-farm work becomes more profitable. We do 

not specify a sign for     in advance. 

 Access to credit ought to relax any liquidity constraints the household may face and thus enhance 

adaptive capacity. Credit has been found to increase the likelihood of adaptation generally (Fosu-Mensah 

et al., 2012; Bryan et al., 2009; Deressa et al., 2011), as well as for improved maize seed adoption (Amaza 
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et al., 2008; Langyintuo and Mekuria, 2008; Feleke and Zegeye, 2006; Paudel and Matsuoka, 2008). We 

hypothesize a positive sign on    . 

 The empirical evidence on the impact of the household head’s gender on adaptation is mixed. 

Some analyses detect a positive relationship between male headed households and the likelihood of 

switching crop varieties in response to perceived climate change (Deressa et al., 2009; Deressa et al., 

2011), while Bayard et al. (2007) finds a greater likelihood of adopting alley cropping among female 

farmers. Other studies find no significant effect of gender on adoption of improved maize (Chirwa 2005; 

Langyintuo and Mungoma, 2008; Etoundi and Dia, 2008) or on any form of climate change adaptation 

(Gbetibouo et al., 2010; Fosu-Mensah et al., 2012; Silvestri et al., 2012). We do not specify a sign for     

beforehand. 

 Higher yielding maize varieties often require more labor input than ordinary varieties (Feder at al. 

1985), so theoretically, a larger household should be more capable of adapting in this way due to their 

higher labor endowment. Empirically, Hassan and Nhemachena (2008), Bryan et al. (2009) and Deressa 

et al. (2011) report significant positive effects of household size on generic climate change adaptation, 

and Feleke and Zegeye (2006) also find a positive effect looking specifically at improved maize adoption. 

Family labor did not have a significant impact on improved maize adoption in the analyses of Langyintuo 

and Mungoma (2008), Paudel and Matsuoka (2008), Nkonya et al. (1999) and Kaliba et al. (2000). On the 

other hand, Amaza et al. (2008) uncover a negative impact of family size on improved maize adoption in 

Nigeria, theorizing that larger households are involved in a greater diversity of activities and place less 

importance on crop production. Owing to the conflicting empirical evidence, we do not hypothesize a 

sign for    . 

 Farm size is believed to be positively related to adaptive capacity because adopting new 

technology incurs fixed costs that are more easily absorbed by larger entities—the greater the fixed costs 

associated with the adoption of a particular measure, the greater the size threshold (Daberkow and 

McBride, 2003; Just et al., 1980). Though not specifically analyzing the adoption of new crop varieties, 

Bryan et al. (2009) uncover a positive relationship between landholding and the likelihood of adaptation 
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to climate change in South Africa and Ethiopia. While evidence is somewhat mixed, the majority of 

analyses report a positive correlation between farm size and improved seed adoption. In the sample 

analyzed by Etoundi and Dia (2008), larger farm size reduced the probability of adopting the ‘CMS 8704’ 

maize variety in Cameroon. Similarly, Langyintuo and Mungoma (2008) uncover a negative relationship 

between farm size and the intensity of improved maize adoption in Zambia. On the other hand, 

Sserunkuuma (2005), using a sample from Uganda, suggests that larger farms have higher adoption rates 

of improved maize. Nkonya et al. (1997), Simtowe et al. (2009), Langyintuo and Mekuria (2008) and 

Iqbal et al. (1999) corroborate this latter finding; thus, our initial belief is that     should be positive. 

 Numerous studies have found that access to agricultural extension services increases the 

likelihood of adaptation (Bryan et al., 2009; Feleke and Zegeye, 2006; Kaliba, et al., 2000; Gbetibouo et 

al., 2010; Languintuo and Mekuria, 2008; Ransom et al., 2003; Tura et al., 2010). We attempt to control 

for access to information and seeds by including a binary variable equal to one if the household reported 

to have received useful advice regarding new seed varieties. We expect     to be positive. 

Stage two: Linking         and   

The results of any climate change impact assessment depend critically on assumptions about the 

flexibility of households to adjust input use or switch technology. Consider the following example. 

Suppose profit ( ) is a function of three inputs, two of which are farm decisions while the third is outside 

the farmer’s control. Let the two choice variables be called capital ( ) and labor ( ) and call the 

exogenous factor precipitation ( ), which affects the productivity of the first two. We have    

        . Since the productivity of labor and capital depend on rainfall levels, the optimal choices of   

and   will be functions of  . The household will choose levels of capital and labor to suit the prevailing 

rainfall conditions, which results in     [             ]. Using this simple profit function, we can 

examine the welfare implications of a change in precipitation under different degrees of input flexibility. 

Let  ̅ denote initial precipitation, let  ̅ and  ̅ denote inputs levels optimized for  ̅, and let  ̅ denote the 

profit earned at these initial levels. 
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 ̅     ̅  ̅  ̅  

Suppose  ̅ shifts to   , while both labor and capital are fixed at  ̅ and  ̅, respectively. Let    be function 

mapping any    to the level of profit earned conditional on  ̅ and  ̅. This function describes the welfare 

impact of climate change absent of any behavioral adjustment. Because capital and labor were optimized 

for the previous rainfall pattern, profit will decrease for any     ̅. Simulating climate change impacts 

using    is commensurate with the ‘agronomic’ approach (i.e., calculating the direct response of crop 

yield to one or more climate parameters, holding technology and inputs usage fixed). 

      ̅  ̅     

If we allow flexibility in  , the profit maximizing household will adjust labor employment to suit   , 

thereby offsetting some of the climate change impacts. Let    denote optimal labor use given    and 

fixed  ̅, and let    describe the relationship between    and profit given that the household can vary its 

labor input (though still holding capital fixed). In choosing    over  ̅, the household can be no worse off 

and likely sees a welfare improvement. 

    [        ̅   ] 

Finally, allowing for the adjustment of both labor and capital, the household’s capacity to mitigate 

damages is even greater. Let    denote the optimal usage of capital given   , and let    describe the 

household’s optimal profit for any level of rainfall. The relationship between profit and rainfall in    can 

be used to simulate the impact of climate change accounting for all adaptations. This corresponds to the 

‘Ricardian’ approach, where all future adaptations are capitalized in land values. 

    [                ] 

An important property of these three functions is that          for all   , which is consistent with 

our intuition—increasing degrees of freedom can never make the household worse off and will almost 

certainly facilitate an improvement. The impacts of a shift to    with no adaptation are given 

by     ̅  ̅      ̅  ̅  ̅  ̅ , while the impacts for the same shift under perfect adaptation are given 
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by   [ 
               ]   ̅  ̅  ̅  ̅ . Because      , total damages are smaller in the case where all 

inputs are variable; Figure 2 illustrates this comparison. 

Figure 2. 

 

 The intermediate case (  ) is exemplified in Deschenes and Greenstone (2007) (henceforth DG) 

and Guiteras (2009), where annual outcomes (profit in the former study, crop yield in the latter) are 

modeled as functions of growing season weather. Assuming that farmers optimally modify their input use 

as the growing season unfolds, this yearly profit or yield measurement takes account of all adaptations 

made within the growing season. Such changes might include adjustments in labor effort or fertilizer 

application, which are carried out in response to the weather conditions during a particular year. 

Estimating this relationship yields a function resembling    where labor is free to adjust, but capital is 

fixed at  ̅. If climate change takes the form of small, steady changes that reflect the historical trend, then 

this technique will closely approximate future impacts. However, this method cannot predict structural 

changes that might occur in response to a qualitatively different climate. For instance, suppose rainfall 

continues its gradual decline to the point that in-season adjustments become increasingly less effective. At 

this juncture, the farmer may need to adopt some form of irrigation technology in order to remain viable 

(which is analogous to shifting form  ̅ to    in our illustration). Doing so will offset a portion of the 

damages, but such an effect will not appear in the impact analysis because the model (  ) did not foresee 
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the adoption of this technology. The relationship between rainfall and profit in    will not be valid for a 

household that makes this kind of switch. 

 DG and Guiteras (2009) both acknowledge these limitations, but emphasize that    is a 

substantial improvement over    and, given the inherent uncertainty associated with detecting climate 

signals, may prove quite accurate. Considering that climate is characterized by a distribution of possible 

outcomes rather than a specific event, 10 or 15 years may be required to distinguish true climate shifts 

from random year-on-year fluctuations. This detection problem necessarily implies that climate change 

adaptation will be slow; moreover, uncertainty about the permanence of various weather phenomena will 

make large investments risky. The longer these adaptations are delayed, the better these estimates in    

will approximate the true impact. Furthermore, in the event that more sophisticated adaptations occur, the 

estimates given in    will overstate the damages; in this way, the results represent an upper bound. 

 We follow DG’s approach by studying the sensitivity of profit to growing season conditions. 

Since our profit function includes input and output prices, we control for the influence of these exogenous 

factors on profit, isolating the partial effect of growing season weather on profit. Applying climate change 

projections to this estimated relationship gives an approximate measure of climate change impacts. This 

approach still suffers from the fact that large changes in climate will bring about adaptations that our 

model leaves out, but we improve on DG’s methodology in two ways. First, we include input and output 

prices in the profit equation, allowing us to derive a system of supply and demand equations. Estimating 

this system simultaneously increases the efficiency of our parameter estimates. Second, we explicitly 

model the adoption of improved maize, providing a more complete description of farmers’ behavioral 

response. This information contributes to the investigation of factors that influence improved maize 

adoption, while at the same time, improving the reliability of climate change impact assessment. 

 We model net household income as follows. After optimization, profit depends only on a vector 

of prices   and fixed inputs  . 
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(5)                                         , where 

    is the wage-rate for off-farm labor 

    is the price of maize 

    is the price of fertilizer 

    is the price of hired labor 

    is the share of cultivated land planted with improved maize varieties 

    is cumulative growing season precipitation 

    is the coefficient of variation of monthly growing season precipitation 

    is household assets as measured by the value of livestock and durable goods 

    is total household landholding 

After optimization, output supplies (  and   ) and input demands (   and   ) become functions of prices 

and fixed inputs: 

(6)     (                              ) 

(7)   
   (                              )  for i = 1, 2, 3 

where     is the quantity of off-farm labor supplied 

   is the quantity of maize sold (which is a function of variable inputs   and fixed inputs  ) 

   is the quantity of fertilizer purchased 

   is the quantity of labor hired 

 

 Like DG, our profit function resembles   . Our model allows for intra-seasonal adjustments in 

off-farm labor supply, hired on-farm labor and fertilizer application. These inputs can respond to the 

observed weather in a particular year, analogous to the variable input   in the stylized example. In order 

to distinguish between the responses to growing season conditions and responses to changes in relative 

prices, we include prices for two outputs (off-farm work and maize) and three inputs (improved seed, 
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fertilizer, and hired labor). We do not include prices for ordinary maize seed because the vast majority of 

farmers don’t participate in that market, but instead save their own seed from the previous year. In 

contrast to variable inputs like fertilizer and labor, the allocation of land to improved maize varieties is a 

decision made at the start of the growing season and cannot be easily adjusted in the event of an 

unexpected weather pattern. Since planting area is not necessarily optimized for growing season weather 

in past observations, making impact assessments based on this suboptimal behavior will bias the estimates. 

The choice of improved maize share is analogous to the fixed input   in the stylized example, where  ̅ 

does not respond at all to  . Since allowing greater flexibility in input use improves the reliability of the 

estimate, we predict optimal improved maize share separately (in stage one) conditional on weather 

history, prices and socio-demographic factors and include this predicted value (rather than the observed 

value) in the profit equation. In doing so, we effectively replace  ̅ with    (in   ) by explicitly modeling 

the fact that improved maize share can be adjusted as climate change sets in. 

 Other inputs in the profit equation include the two weather variables, cumulative growing season 

heat and cumulative growing season precipitation (both used in DG’s analysis). Measuring temperature 

according to degree-days is more reliable than using monthly means because the former better captures 

the non-linear effects of temperature on crop performance. Finally, we control for the effect of assets on 

annual net income by including the value of durable goods and livestock owned (  ) and total landholding 

(  ). The ownership of durable goods and livestock is likely to increase the household’s earning potential 

and enhance their ability to cope with unexpected weather conditions (Di Falco et al., 2011). Thomas et al. 

(2007) found that livestock act as a safety net for farmers in South Africa tend to shift their attention 

toward livestock when droughts occur. Both landholding and assets influence a household’s earning 

capacity and food security. 

 Because we do not know the specific structure of (5) in advance, we model profit as a translog 

function of prices and fixed inputs so as to allow for flexibility in the particular form. We choose    to be 

the numeraire and normalize profit and all other prices by   . 
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where    denotes normalized profit and   
  denotes normalized prices for   = 1, 2, 3, 4. We impose 

symmetry by forcing         for all   and  . We derive the  th
 input demand (or output supply) equation 

by differentiating (8) with respect to     
 . The equality on the far left-hand side of (9) follows from 

Hotelling’s Lemma. 
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Each input demand and output supply is expressed as a share of total profit in (10) – (13). These equations 

are derived from (8) as follows: 
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We estimate the parameters in (8) and (10) – (12) using a seemingly unrelated regression. 

Share of Household Income Earned Off-Farm 

Since we are interested in how the allocation of time toward off-farm work responds to climate, we derive 

the supply function for this output  . Since the profit shares sum to 1 by definition, the share of off-farm 

labor income is given by 
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(13)     
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Thus, the supply function for off-farm labor is 
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To determine the elasticity of off-farm labor supply with respect to growing season precipitation we first 

take the natural logarithm of both sides of (14). 
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Differentiating (15) with respect to      yields 
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In terms of parameters, this becomes 
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Evaluating     
   ⁄  at their sample means results in a quantity that depends only on parameters, initial 

price and precipitation levels and average profit shares. Let   ̅ denote the average profit share accounted 

for by input or output   among the sample of households. 
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Once these parameters have been estimated, (18) can be used to simulate the response of off-farm labor 

supply to a change in total growing season precipitation. As climate becomes more variable, we would 

expect farmers to diversify their income across on-farm and off-farm sources. 

Analysis of Climate Change Impacts 

The overall impact of climate change on profit is found by taking the derivative of      with respect to 

the natural log of the two climate variables    and   . This gives the proportional change in profit per 

proportional change in cumulative growing season rainfall and monthly variability, respectively. 

(19)  
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We hypothesize that the overall sign of (19) will be negative as higher growing season temperature places 

greater stress on crops and reduces yields, though we expect the sign of (20) to be positive as yield should 

be enhanced by a rainier growing season. Note that hybrid maize share,   , has been removed from 

summation on the right-hand side to highlight its role in shaping the relationship between profit and 

climate. This parameter is central to our research question, namely how does the share of land planted 

with improved maize varieties influence the impact of climate on profit? We hypothesize that while (19) 

ought to be less than zero overall, the sign of     should be positive since it ought to lessen the harsh 

effects of temperature on yield. In turn, we expect a negative sign for    —a higher share of land planted 

with improved maize varieties ought to diminish the loss that results from a decrease in rainfall. 
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 Recall that in (12)    is a fixed input, implying that the derivatives of profit with respect to 

cumulative growing season rainfall and variability ordinarily would not account for adjustments in 

improved maize share. However, because    itself is a function of climate (as modeled in stage one), we 

must employ the chain rule to get the total derivative of profit with respect to climate. This total 

derivative can then be used to simulate the welfare impact of climate change as it is translated through the 

household’s behavioral response (adjusting improved maize share). 

 For clarity, we group the terms in (12) that do not include    on the left and those that do include 

   on the right, explicitly writing    as a function of the stage one variables. 
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The terms in the left-hand brackets correspond to climate’s direct effect on profit, while those in the right-

hand brackets represent its indirect effect on profit through the household’s adjustment of improved maize 

share. Note that our measures of climate    and    are thirty-year means of cumulative growing season 

heat and precipitation, while the variables in the household net income equation,    and   , measure 

weather conditions in a particular year. This could be troublesome when trying to link improved maize 

share to the weather variables    and   ; however, in terms of future projections, the conditions in any 
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given year are informed by the underlying climate, so the expected values of    and    are    and   , 

respectively. If in fifty years, the mean of cumulative growing season degree-days is projected to increase 

by     , then we expect improved maize share to adjust by the amount specified in the stage one 

estimation. Meanwhile, we expect     between that future year and the present to equal    , the change 

in mean temperature. 
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Using this equivalence of long-run mean conditions and the expected conditions in a particular year, we 

arrive at (22) by replacing    and    with    and    and differentiate (22) respect to      and      to 

estimate the effects of climate on profit through adaptation along with the direct climate change effects. 

This results in a special case of the general framework introduced in (3). The derivatives of the terms in 

the left-hand brackets will be the same as in (19) and (20), but the terms on the right where           

appears must be differentiated using the chain rule. 
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The output of the stage one and stage two estimations is assembled as specified in (23) and (24) to model 

the relationships between climate, improved maize share and net household income. This framework 

provides one way of answering our central research question, namely, to what extent do households in 

Malawi adapt to climate change and what are the welfare implications of those changes? As in (19) and 

(20), we expect climate change (increased temperature, reduced precipitation) to impact profit negatively 



30 

 

through the direct effects in the left-hand brackets; however, this negative impact should be partially 

offset by the terms in the right-hand brackets, where climate’s effect on profit is channeled through its 

effect on improved maize share. 

 

Results 

Improved Maize Adoption 

Results indicate that the share of cultivated land planted with improved maize seed varieties responds to 

historical precipitation variability. We measure both variability of monthly precipitation within the 

growing season as well as the variability of cumulative growing season rainfall across years, finding each 

to be significant predictors of the intensity of improved maize use (see Table 3). Cumulative growing 

season precipitation was not determined to significantly affect share of land allocated to improved maize 

across most specifications, though it was found significant when precipitation history was adjusted for the 

age of the household head (that is, older household heads were assumed to view the full historical 

precipitation record dating back to 1980, while this record was truncated prior to age 16 for younger 

household heads). The relationship between rainfall variability and improved maize share appears to be 

non-linear as the coefficients on both the linear and squared terms are statistically significant. Both 

improved seed price and fertilizer price are negatively correlated with improved maize share, as expected. 

Improved maize share is related positively to the value of livestock and durable goods owned, though this 

parameter falls beneath the significance threshold. Receipt of useful advice on the use of improved seed 

varieties appears to have a positive and significant impact on improved maize share.  

Climate Change Impacts 

We combine the parameter estimates from the system of profit, input demand, and output supply 

equations to construct the partial effect of climate on net household income. As presented in equations (20) 

and (21), we compute separate effects for mean growing season rainfall and monthly rainfall variation 

within the growing season. Furthermore, using stage one to predict optimal improved maize share given 
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the particular growing season conditions, we can compare climate change impacts with and without this 

adaptation strategy. In this way, we quantify the welfare effects associated with this behavior. Taking the 

statistically significant parameters from Table 4 and evaluating the exogenous variables at their means 

yields the elasticities of household profit with respect to mean and variation of growing season rainfall 

found in Table 5. We estimate that household profit decreases by almost 19% for every 1% decrease in 

total growing season precipitation. Since the coefficients on mean precipitation in stage one were 

insignificant, we do not expect an adjustment of improved maize share in response to this shift. In terms 

of variability, we expect household income to fall one and a half percent for a one percent increase in the 

coefficient of variation for monthly rainfall within the growing season. Since this intra-seasonal 

variability was determined to be statistically significant in stage one, we account for the expected shift in 

improved maize share induced by the change in rainfall variability. Letting the household reallocate land 

to improved maize varieties reduces this elasticity (in absolute value) to -1.3%. In this way, we uncover 

statistically significant benefits associated with the ability to shift the allocation of land toward improved 

maize varieties, though the magnitude is relatively small. 

 Di Falco et al. (2011), in their study of climate change adaptation in Ethiopia, find households 

that adapted produced about 20% more than if they had not adapted. Similarly, they estimate that non-

adapting households could have increased incomes by 35% by undertaking an adaptation measure 

(common measures include changing crop varieties, adoption of soil and water conservation strategies, 

and tree planting). Our study corroborates this result, finding that increasing the adoption of improved 

maize partially offsets the damages associated with increased rainfall variability. 

 Apart from the role that improved maize varieties play in providing a buffer against increased 

precipitation variability, we also uncover statistically significant income gains associated with increasing 

the intensity of improved maize adoption. We estimate that a one percent increase in improved maize 

share results in a 1.7% increase in overall household income. Despite this significant income gain, we 

would not necessarily expect a complete shift to improved maize since local maize varieties are preferred 

for consumption purposes, thus the market for local maize remains prominent. 
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Table 3. Intensity of Improved Maize Adoption  

share of cultivated land planted with improved maize 

varieties      

Coefficient p-value 

value of livestock and durable goods 3.98E-08 0.126 

growing season precipitation (23-29 yr history) 2.97E-04 0.343 

    ''   squared 2.37E-09 0.854 

CV annual growing season precipitation (23-29 yr history) -9.50*** 0.004 

    ''   squared 27.2*** 0.001 

CV monthly growing season precip (within-year, 23-29 yr history) -47.8*** 0.000 

   ''   squared 30.6*** 0.000 

=1 if household experienced a bad weather shock in past 2 years -0.017 0.224 

previous year's maize price in kwacha per kg 0.0022244 0.207 

fertilizer price -9.98E-04*** 0.000 

qty of subsidized fertlizer acquired 2.05E-04* 0.079 

off-farm wage rate, current year -3.16E-05*** 0.002 

input loan 0.031 0.146 

female head of household -0.032 0.245 

household size (adult equivalent) 0.002 0.718 

landholding -0.011 0.126 

advice on new seed varieties 0.039** 0.031 

improved maize seed price -3.01E-04* 0.084 

yr2003_04 -0.012 0.588 

yr2007_08 0.122 0.000 

yr2009_10 -0.050 0.373 

constant 16.5 0.001 
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Table 4. Translog Profit Equation with Output Supply and Input Demand  

log (household net income) Coefficient p-value 

log(maize price) 

   

1.926 0.532 

log(fertilizer price) 

   

-1.834 -0.589 

log(labor price) 

   

-0.502 -0.500 

log(maize price)*log(maize price) 

  

-0.010 0.889 

log(maize price)*log(fertilizer price) 

  

0.001 0.997 

log(maize price)*log(labor price) 

  

0.005 0.870 

log(fertilizer price)*log(fertilizer price) 

  

0.043 0.507 

log(fertilizer price)*log(labor price) 

  

0.014 0.699 

log(labor price)*log(labor price) 

  

-0.011 0.137 

log(maize price)*log(improved maize share) 

 

-0.026 0.197 

log(maize price)*log(grw season precip) 

 

-0.118 0.727 

log(maize price)*log(cv grw season precip) 

 

-0.402 0.113 

log(maize price)*log(assets) 

  

-0.037*** 0.009 

log(maize price)*log(landholding) 

  

0.036 0.141 

log(fertilizer price)*log(improved maize share) 

 

0.020 0.317 

log(fertilizer price)*log(grw season precip) 

 

0.193 0.598 

log(fertilizer price)*log(cv grw season precip) 

 

0.412 0.150 

log(fertilizer price)*log(assets) 

  

0.050*** 0.009 

log(fertilizer price)*log(landholding) 

  

-0.007 0.857 

log(labor price)*log(improved maize share) 

 

-0.004 0.755 

log(labor price)*log(grw season precip) 

 

0.056 0.475 

log(labor price)*log(cv grw season precip) 

 

-0.069 0.428 

log(labor price)*log(assets) 

  

-0.003 0.573 

log(labor price)*log(landholding) 

  

-0.006 0.365 

log(improved maize share) 

  

1.704* 0.058 

log(grw season precip) 

   

35.170** 0.046 

log(cv grw season precip) 

   

-3.501 0.765 

log(assets) 

    

-0.242 0.742 

log(landholding) 

   

1.197 0.309 

log(improved maize share)*log(improved maize share) 0.006 0.409 

log(improved maize share)*log(grw season precip) 

 

-0.165* 0.096 

log(improved maize share)*log(cv grw season precip) 0.157* 0.075 

log(improved maize share)*log(assets) 

  

-0.006 0.204 

log(improved maize share)*log(landholding) 

 

0.006 0.465 

log(grw season precip)*log(grw season precip) 

 

-1.917** 0.042 

log(grw season precip)*log(cv grw season precip) 

 

0.527 0.662 

log(grw season precip)*log(assets) 

  

0.039 0.613 

log(grw season precip)*log(landholding) 

 

-0.104 0.396 

log(cv grw season precip)*log(cv grw season precip) 3.209*** 0.001 
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log(cv grw season precip)*log(assets) 

  

0.100 0.251 

log(cv grw season precip)*log(landholding) 

 

0.010 0.953 

log(assets)*log(assets) 

   

0.005 0.319 

log(assets)*log(landholding) 

  

-0.003 0.826 

log(landholding)*log(landholding) 

  

.023*** 0.006 

yr2003_04 

    

-1.544 0.611 

yr2006_07 

    

-14.826** 0.023 

yr2008_09 

    

-14.316*** 0.000 

log(maize price)*yr2003_04 

  

-0.023 0.747 

log(maize price)*yr2006_07 

  

0.230** 0.062 

log(maize price)*yr2008_09 

  

-0.053 0.446 

log(fertilizer price)*yr2003_04 

  

-0.113 0.244 

log(fertilizer price)*yr2006_07 

  

-0.240 0.125 

log(fertilizer price)*yr2008_09 

  

-0.073 0.424 

log(labor price)*yr2003_04 

  

-0.016 0.422 

log(labor price)*yr2006_07 

  

-0.018 0.601 

log(labor price)*yr2008_09 

  

-0.003 0.870 

log(improved maize share)*yr2003_04 

  

-0.001 0.948 

log(improved maize share)*yr2006_07 

  

0.006 0.894 

log(improved maize share)*yr2008_09 

  

-0.033 0.154 

log(grw season precip)*yr2003_04 

  

0.180 0.582 

log(grw season precip)*yr2006_07 

  

1.587** 0.020 

log(grw season precip)*yr2008_09 

  

1.543*** 0.000 

log(cv grw season precip)*yr2003_04 

  

0.095 0.884 

log(cv grw season precip)*yr2006_07 

  

-1.133* 0.060 

log(cv grw season preicp)*yr2008_09 

  

-.797** 0.043 

log(assets)*yr2003_04 

   

-0.016 0.623 

log(assets)*yr2006_07 

   

-.088** 0.034 

log(assets)*yr2008_09 

   

-.049* 0.081 

log(landholding)*y2003_04 

  

0.018 0.715 

log(landholding)*yr2006_07 

  

0.236*** 0.005 

log(landholding)*yr2008_09 

  

0.002 0.980 

maize output supply     

log(maize price) 

   

-0.019 0.889 

log(fertilizer price) 

   

0.001 0.997 

log(labor price) 

   

0.005 0.870 

log(improved maize share) 

  

-0.026 0.197 

log(grw season precip) 

   

-0.118 0.727 

log(cv grw season precip) 

   

-0.402 0.113 

log(assets) 

    

-0.037*** 0.009 

log(landholding) 

   

0.036 0.141 
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yr2003_04 

    

-0.023 0.747 

yr2006_07 

    

0.230* 0.062 

yr2008_09 

    

-0.053 0.446 

fertilizer input demand     

log(maize price) 

   

-0.001 0.997 

log(fertilizer price) 

   

0.087 0.507 

log(labor price) 

   

0.014 0.699 

log(improved maize share) 

  

0.020 0.317 

log(grw season precip) 

   

0.193 0.598 

log(cv grw season precip) 

   

0.412 0.150 

log(assets) 

    

.050*** 0.009 

log(landholding) 

   

-0.007 0.857 

yr2003_04 

    

-0.113 0.244 

yr2006_07 

    

-0.240 0.125 

yr2008_09 

    

-0.073 0.424 

labor input demand     

log(maize price) 

   

0.005 0.870 

log(fertilizer price) 

   

0.014 0.699 

log(labor price) 

   

-0.023 0.137 

log(improved maize share) 

  

-0.004 0.755 

log(grw season precip) 

   

0.056 0.475 

log(cv grw season precip) 

   

-0.069 0.428 

log(assets) 

    

-0.003 0.573 

log(landholding) 

   

-0.006 0.365 

yr2003_04 

    

-0.016 0.422 

yr2006_07 

    

-0.018 0.601 

yr2008_09         -0.003 0.870 

 

 

 

 

Table 5. Elasticity of Net Household Income With Respect to Climate (with/without adaptation) 

  without expected adjustment with expected adjustment  

mean growing season precipitation 18.94 --- 

 

monthly growing season precipitation variability 
-1.55 -1.31 
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Share of Income Earned Off-Farm 

 We plug the parameter estimates from Table 4 into equation (19) to generate the elasticity of off-

farm income with respect to the mean and variation of growing season precipitation. The important 

parameters that would reveal a change in the household’s input or output mix with respect to weather 

variation are the coefficients on interactions between prices and weather variables. This includes the 

group of terms on the right-hand side of (19). We find none of these coefficients to be statistically 

significant. The remaining terms in (19) are simply the derivative of profit with respect to climate shown 

in Table 5. In this way, our model predicts that the supply of off-farm labor (as would be the case for all 

inputs and outputs) will shift in exactly the same proportion as the change in profit.  

Conclusion 

In our sample of Malawi households, we uncover statistically significant relationships between 

precipitation history and the share of cultivated land planted with improved maize varieties. Specifically, 

the variability of growing season precipitation both across years and within the growing season appear to 

have an impact on this planting decision. Combining this result with a household profit equation, we 

compute the elasticity of profit with respect to mean growing precipitation and intra-seasonal 

precipitation variability both with and without the expected adjustment in improved maize share dictated 

by this stage one model. We find household profit to be highly responsive to mean growing season 

precipitation, though we do not expect any adjustment to a shift in mean rainfall given the insignificance 

of this variable in the first stage estimation. We uncover significant negative impacts associated with the 

variability of precipitation within the growing season and determine that the expected adjustment in 

improved maize share offsets a small fraction of these losses. We estimate that incomes fall by 1.5% for 

every 1% increase in the coefficient of variation of monthly growing season precipitation Given that the 

percentage loss in income with respect to a percent increase in variability exceeds one even when we 

account for the adjustment in improved maize share, the expected costs of climate change incurred by 

Malawi farmers appear to be substantial. 
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