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Correcting for Measurement Error in a Stochastic

Frontier Model: A Fishery Context

Chris Burns

Abstract

Using data from the Mid-Atlantic surfclam fishery, this study examines the effect of mea-

surement error on the analysis of technical efficiency. After specifying a stochastic frontier

model and estimating it under naive analysis, a measurement error correction technique known

as Simulation Extrapolation (SIMEX) is used to obtain less biased estimates of technical effi-

ciency and production parameters. The SIMEX estimates of the stochastic frontier model agree

with economic theory and show that important relationships between technical efficiency and

vessel characteristics are present, something the naive estimates do not. Both sets of estimates

show regional variation in technical efficiency, possibly due to declining landings per-unit-

effort, suggesting future fishery management should take this into account.

Key words: commercial fisheries, stochastic frontier, technical efficiency, measurement error

Introduction

Technical efficiency is measured as the ability of a firm to produce the maximum output given

a level of inputs (Kumbhakar and Lovell 2000[12]). In natural resource-based industries such as

fishing, the measurement of technical efficiency is important to policy decisions regarding fish-

ery management and preventing overfishing. Often times empirical researchers performing this

type of analysis use data that contain unknown amounts of measurement error. This study uses

a unique data set with approximately known measurement error, and applies a bias reduction

method known as simulation extrapolation (SIMEX) to assess the impact of measurement error on

estimation of technical efficiency.

Measurement error or error-in-variables for regression models is a vexing problem for empiri-

cal researchers. When measurement error is present in a covariate of a regression model there are

three effects a researcher should be worried about; 1) biased parameter estimates; 2) loss of power
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for detecting interesting relationships among variables; and 3) the measurement error masking

features of the data, making graphical analysis difficult (Carroll et al. 2006[6]).

The data set is a panel of logbook data from the Mid-Atlantic surfclam fishery. It describes

input and output relationships for eighty-eight separate vessels that harvested surfclams during

the years 2001-2009. Using a stochastic frontier approach, both naive and SIMEX estimates are

obtained, and then technical efficiency estimates are derived using methods described in Kumb-

hakar and Lovell (2000[12]). Technical efficiency is measured as a ratio of realized output to the

potential output. It is assumed that a firm’s potential output is obtained by following the best

practice methods, given the technology. A firm that operates far from the production frontier,

given its level of inputs, will risk going out of business in the long run.

One motivation for measuring technical efficiency in this fishery is because it is regulated by

Individual Transferable Quotas (ITQs), and vessels that are less efficient would be predicted to

exit the fishery under the assumptions of a perfectly competitive market. Another area of interest

is what factors are important to explaining technical efficiency. In the fisheries literature there has

been an interest in assessing technical efficiency to establish what factors make vessels more effi-

cient (Kirkley et al. 1998[11]), and whether changes in management can improve efficiency (Brandt

2007[3]). Because measurement error can lead to loss of statistical power and can mask important

relationships in the data, an important question is whether there are significant differences in the

naive and SIMEX estimates. Factors such as vessel age should be important in explaining techni-

cal efficiency, according to economic theory. Additionally, there is evidence of declining landings

per-unit-effort (LPUE) in the southern areas of the fishery. This may suggest regional variations

in technical efficiency should be observed in the data. Whether the different estimation methods

show different amounts of regional variation is of interest to future fishery management decisions.

After some preliminary data analysis, the functional form for the stochastic frontier model

(Aigner et al. 1977[1], Meeusen and van den Broeck 1977[13]) is specified as a Cobb-Douglas

production technology, which says that the natural log of output is linear in the natural log of

inputs. The measurement error problem arises in the estimation of the model because one of the

covariates, log(biomass) is measured with additive error.

Data on the biomass come from the Northeast Fisheries Science Center (NEFSC) biomass sur-

vey (NEFSC 2009[15]). These data contain an estimate of the biomass in each year and also a mea-
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sure of the sampling variability. This estimate of sampling variability is used to reduce the mea-

surement error bias with a Monte Carlo method called simulation extrapolation (SIMEX) (Cook

and Stefanski 1994[7]). This method has been shown to provide approximately consistent param-

eter estimates under a variety of measurement error models. SIMEX estimates of the standard

errors are obtained using the sandwich estimator (Carroll et al. 2006[6]). After obtaining both the

naive and SIMEX estimated production parameters, standard errors, returns to scale, and technical

efficiency measures, the two sets of estimates are compared. Not only are substantial biases in the

parameter estimates found, but significant differences in factors that explain technical efficiency

are found between the two sets of estimates.

The remainder of the paper proceeds as follows: In Section 2, the logbook and biomass data

are described in more detail, and the measurement error problem is motivated. In Section 3, the

theoretical framework for the stochastic frontier model, measurement error model, and SIMEX

are presented. In Section 4, results from the naive and measurement error corrected models are

provided. Section 5 contains a summary of the paper and presents topics for future research.

Mid-Atlantic Surfclam Fishery

The Mid-Atlantic surfclam fishery spans the U.S. eastern Atlantic coast from the southern Gulf of

St. Lawrence to Cape Hatteras, see Figure 2. Atlantic surfclams are a fast-growing bivalve mollusk

distributed along the coast of North America. In 1990 the fishery transitioned from limited entry

to individual transferable quotas under the direction of the Mid-Atlantic Fishery Management

Council. The current management measures include an annual quota for Exclusive Economic

Zone (EEZ) waters and mandatory logbooks that describe each fishing trip. The surfclam indus-

try has consolidated considerably since the introduction of ITQs, going from approximately 120

vessels in 1990 to fewer than 50 vessels in 2005. As detailed in Brandt (2007)[3], many of the ves-

sels that exited just after the regulatory change were very inefficient. The remaining fleet consists

of a small number of horizontally and vertically integrated firms, with a few independent ves-

sel owners. Nominal revenues for the fleet in 2011 were approximately $29 million, making the

fishery one of the most valuable single-species fisheries in the US(NEFSC 2009[15]).
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Data

The data for the empirical analysis come from the National Marine Fishery Service logbook re-

porting system, which documents every harvesting trip taken by every vessel in the Mid-Atlantic

surfclam fishery in the U.S. EEZ (3-200miles offshore). The logbook data is a panel data set con-

taining approximately 24,000 vessel-trip observations, for years 2001-2009. The trip-level data set

includes variables such as bushels harvested, time fishing, time-at-sea, and vessel characteristics

such as vessel length, gross-tons and horsepower. There are 88 different vessels observed over the

nine year period.

To simplify the correlation structure within each vessel and because biomass is observed only

once in a year, data are aggregated by vessel-year. The new data set has one observation for each

vessel in a year. One trade off of using aggregated data is that trip-level variability is not observed.

Using the aggregated data also means making certain assumptions about the measurement error

model structure, which is discussed in section 3. Before aggregating the data, the same linear

model was estimated using both sets of data. The estimation results did not change substantially,

further suggesting that the aggregated data was more appropriate. After dropping observations

for vessels that harvested only a few times, the resulting data are reduced 70 vessels, with 285

vessel-year observations. Summary statistics for the data can be found in Table 1.

Obs Mean Std.Dev Min Max
Harvest (bushels) 285 93749 82007.6 864 442496
Time Fishing (hours) 285 1209.2 951.9 58 3959.4
Fuel (gallons) 285 65896 65979.3 876 388204
Length (feet) 70 85.7 18.4 28 162
Biomass (1000 metric tons) 9 1037 171.9 750 1294

Table 1: Summary statistics 2001-2009

In order to estimate the stochastic frontier, additional survey data collected by the National

Oceanographic and Atmospheric Association’s (NOAA) Northeast Fisheries Science Center (NEFSC)-

Resource Evaluation and Assessment Division is used. This survey data has an estimate of the

biomass (NEFSC 2009)[15] in each year. The survey data are gathered by stratified random sam-

pling and plugged into a biological model, known as the KLAMZ model, in order to obtain an

estimate of the biomass for the entire fishery. Estimates of the sampling variability of the biomass
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are obtained using both the delta method and bootstrapping. This sampling variability is crucial

to the measurement error correction model, described in section 3. A boxplot of the bootstrapped

biomass estimates from the KLAMZ model for years 1980-2008 are shown in table 3. The sam-

pling variability for the biomass changes by year, and this is later addressed in the measurement

error model. Because the biomass is measured using stratified random sampling, it is assumed

that the sampling variability is independent from year to year.

Methodology

Observed data are available for the following variables:

• yit = loge(total bushels harvested by vessel i in year t),

• xit1 = loge(total hours fished by vessel i in year t),

• xit2 = loge(total gallons consumed by vessel i in year t),

• xi3 = loge(length of vessel i), and

• wt4 = loge(biomass in year t).

Let i = 1, . . . , 70 denote vessel and t = t1, . . . , tni denote the ni years in which vessel i is observed.

Note that xi3, log(length), is constant over t. wt4 is observed log(biomass), which is measured

with error, but constant over each vessel i. The true log(biomass), xt4, will be used to specify the

measurement error model later in this section.

Before modeling the stochastic frontier, an assumption must be made for a functional form of

production. The Cobb-Douglas model assumes log(output) is linear in the sum of the log(inputs).

This functional form allows the coefficients to be interpreted as input elasticities, meaning each

βk represents the % change in output due to a 1 % increase in input k. It also imposes constant

elasticity of substitution on inputs, which may be an unrealistic assumption in certain industries.

With these limitations in mind we proceed with estimation of the model. In the next section a

random effects model for production, which is a type of linear mixed model, is motivated. Fol-

lowing Kumbhakar and Lovell(2000)[12], the the random effects model can be transformed into a

stochastic frontier model.
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Linear Mixed Model of Production

Let bi be a vessel-level effect, and let eit be within vessel errors. The vessel-level effect can be

specified as a fixed or random effect, depending on the assumptions of the model (Kumbhakar

and Lovell 2000[12]). A Hausman test for random effects fails-to-reject that the random effects

model is inconsistent, with a p-value of 0.41 . A linear mixed model for log(total bushels harvested

by vessel i in year t) that includes a one-way random effect is

yit|bi, eit = β0 + β1xit1 + β2xit2 + β3xi3 + β4wt4 + bi + eit (1)

with bi
ind.∼ N(0, σ2b ) and eit

i.i.d.∼ N(0, σ2e), i = 1, . . . , 70, t = t1, . . . , tni . The normality assumption

assumption is not crucial in this specification and can be relaxed.

Next, notation for a version of the model for vessel i is defined, and last a model for the whole

fleet. Let

yi = (yit1 , . . . , yitni
)T ,Xi =


1 xit11 xit12 xi13 wt14

...
...

...
...

...

1 xitni1
xitni2

xini3
wtni4

 , (2)

βT = (β0, . . . , β4), ei
T = (eit1 , . . . , eitni

), and 1ni = a vector of length ni of all 1s. (3)

Using that notation, a vessel level model is

yi|bi, ei = Xiβ + 1nibi + ei (4)

with bi
ind.∼ N(0, σ2b ) and ei

i.i.d.∼ MVN(0, σ2eIni
).

6



Finally, with

y =


y1

...

y70

 ,X =


X1

...

X70

 ,Z =



1n1 0n1 . . . . . . 0n1

0n2

. . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . 0n69

0n70 . . . . . . 0n70 1n70


,b =


b1
...

b70

 , and e =


e1
...

e70

 ,

(5)

Using matrix notation a linear mixed model for the fleet is

y|b, e = Xβ + Zb + e (6)

with bi
ind.∼ N(070, σ

2
b I70) and e

i.i.d.∼ MVN(0285, σ
2
eI285).

Stochastic Production Frontier

Technical efficiency is defined as the ratio of a firm’s realized output to its potential output. In

the model above, the random effect bi should capture vessel specific characteristics that are unob-

served, such as captain’s fishing knowledge or ability. In theory, these unobserved random effects

will determine how close the vessel operates to its potential output. The productivity literature

(Kumbhakar and Lovell 2000[12]) provide a method for transforming the random effects in or-

der to calculate technical efficiency. Before calculating technical efficiency the bi’s which are the

empirical Best Linear Unbiased Predictors (eBLUPs), need to be normalized. Let

b̂i∗ = maxj [b̂j ]− b̂i (7)

This normalization makes the (eBLUPs) a non-negative random variable. In order to calculate

vessel-level technical efficiency a distributional assumption must be placed on the bi∗ ’s. There are

no a priori reasons to choose one distribution over another for the technical efficiency term. The

productivity literature typically uses the half-normal, truncated normal and exponential. Follow-
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ing Kirkley, Squires and Strand(1995)[10] the technical efficiency term bi∗ is assumed half-normal,

|N(0, σ2b )|. The stochastic production frontier model is then specified as

yit|bi∗ , eit = β0 + β1xit1 + β2xit2 + β3xi3 + β4wt4 − bi∗ + eit (8)

with bi∗
ind.∼ |N(0, σ2b )| and eit

i.i.d.∼ N(0, σ2e), i = 1, . . . , 70, t = t1, . . . , tni .
1

Calculating Technical Efficiency

Following Jundrow et al.(1982)[9], technical inefficiency for each observation is calculated as the

expected value of b̂i∗ , conditional on εi = ei − bi∗ , where ei =

tni∑
t=t1

eit. Technical inefficiency for

vessel i can be calculated as

TIi =
σbσe
σ

[

φ(εiλ)

σ

1− Φ(
εiλ

σ
)

− (
εiλ

σ
)] (9)

where φ(.) is the standard normal density, Φ(.) is the cumulative normal distribution, σ = (σ2b +

σ2e)1/2 and λ =
σb
σe

. The vessel-specific technical efficiency estimate is given as

TEi = exp(−TIi) (10)

After calculating technical efficiency for each vessel it will be possible to rank these vessels

from least efficient to most efficient. It will also be possible to compare the estimates of technical

efficiency under both the naive and SIMEX corrected model, to see if there is a significant differ-

ence in vessel rankings or the distribution of TEi.

Measurement Error Model

The biomass of the surfclam fishery is estimated through a stratified random sampling method,

therefore it is assumed to be independent from year to year. For the purposes of the model, vessels

1Estimation of the model is performed using the linear mixed effects models ’nlme’ package[8] in R(2012)[16]. The
estimates for σ2

b and σ2
e are found using Restricted Maximum Likelihood or REML. The fixed effects, β′s, are computed

using maximum likelihood under the assumption of normality. REML is a form of maximum likelihood estimation that
uses a transformed version of the data so that nuisance parameters have no effect on the estimates. It has been shown to
provide less biased estimates of the variance-covariance parameters than maximum likelihood(McCulloch and Searle
2008 [14]).
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are assumed to face a constant biomass in a time period t. The additive measurement error model

for log(biomass) is specified as

wt4 = xt4 + vt (11)

whereE[wt4|xt4] = xt4. I specify the distribution for measurement error as vt
ind.∼ N(0, σ2vt). Because

the true σ2vtis not observed, it is estimated by σ̂2vt.

Measurement Error in a Linear Mixed Model

Using the additive measurement model specified in the previous section it is possible to motivate

the measurement error problem in the estimation of the naive model. Recall that the model for the

fleet is

y|b, e = Xβ + Zb + e (12)

Let β̂ be the MLE esimator for β. The naive estimator of this model with additive measurement

error in log(biomass) has the result

plimn→+∞ β̂ 6= β (13)

The result is that the model with observed log(biomass) will have inconsistent parameter esti-

mates, as well as incorrect standard errors. The direction of bias for parameter estimates will

depend on the correlation structure of the covariates in the model. A comprehensive explanation

of measurement error in linear mixed models can be found in (Carroll et al. 2006[6]) or (Buonac-

corsi, Demidenko and Toteson 2000[4]). It can be shown in the case of a linear mixed model, the

inconsistency in the parameter estimates will also lead to inconsistent estimates of the random

effects. The consequences for our model of interest will be that technical efficiency measures are

biased. Wang, Lin, Gutierrez, et al. (1998)[17] show that SIMEX can be used to correct for mea-

surement error in an generalized linear mixed measurement error model (GLMMeM), using a

quadratic extrapolant. In the next section,a Monte Carlo method known as SIMEX is described,

which will correct for the measurement error in the model.
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SIMEX

SIMEX is a two-step simulation-based method of estimating and reducing bias due to measure-

ment error. First, simulated data are obtained by adding additional measurement error to the data

in a resampling-like process, establishing a trend of measurement error-induced bias versus the

variance of the added measurement error. After that, the extrapolation step follows the fitted trend

line back to a point where the measurement error variance is zero. The key underlying SIMEX is

the fact that the effect of measurement error on an estimator can be determined experimentally

through simulation (Carrol et al. 2006)[6]. It can be shown that under a number of different mea-

surement error specifications that SIMEX provides approximately consistent parameter estimates.

SIMEX is very general in the sense that the bias due to measurement error in almost any estimator

of almost any parameter can be estimated and corrected, at least approximately.

SIMEX is described below for the case of additive measurement error in the predictor in four

steps, as explained in (Buonaccorsi 2010)[5].

Assume an additive error in the predictor wt4 = xt4 + vt and V ar(vt) = σ2vt. Begin by defining

θj(λ) as the expected (or limiting) value of the naive estimator of θj if V ar(vt) = (1 + λ)σ2vt. Then

true value of the jth coefficient is θj = θj(−1).

1. For each λm, generate: wt4b(λm) = wt4 + λ
1/2
m Ubt for b = 1,...B, where B is a large number and

the Ubt are independent with mean 0 and variance σ̂2vt. Since wt4|xt4 already has variance

σ2vt, the generated wt4b would have exactly the variance (1 + λm)σ̂2vt assuming σ̂2vt = σ2vt. In

practice we usually only have an estimate of σ2vt.

2. Find θ(λm, b), which is the naive estimator for θj based on (y,X). Then define: θ̄(λm)=∑
b θ̂(λm, b)/B . So, θ̄j(λm) is the average of the B estimated θ̂j ’s at a particular λm .

3. For each j, fit a model gj(λ) for θ̄j (λm), the jth component of θ̄j (λm), as a function of λm.

4. Get the SIMEX estimate of θj using: θ̂j(j, SIMEX) = gj(−1).

The last step of SIMEX is the extrapolation step, and there are several fitting methods that

can be chosen. A quadratic extrapolation function was used because it fit the SIMEX estimated

values best. However, it should be noted that the choice of the extrapolation function can affect
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the SIMEX corrected estimates. SIMEX was also used to obtain the corrected eBLUPS, OLS errors,

and standard errors via the sandwich estimator. The sandwich estimator method exploits the fact

that θ̂SIMEX is asymptotically equivalent to an M-estimator and thus makes use of the sandwich

formula to construct the variance-covariance matrix. This method accounts for the variability in

the Monte Carlo simulation as well as the variability in the estimator.(Carroll et al. 2006 [6]).

Results

This section presents naive and SIMEX estimates of the production parameters, standard errors

and technical efficiency. Model estimates are compared and contrasted, and the significance of

the results are discussed later in this section. Table 2 shows SIMEX estimates obtained from 250

simulations at each λm.

Naive SIMEX
Intercept -6.634 -20.434

(0.956)*** (1.910)***
log(timefish) 0.498 1.029

(0.086)*** (0.095)***
log(fuel) 0.551 0.106

(0.085)*** (0.089)
log(length) -0.599 0.047

(0.171)*** (0.167)
log(biomass) 1.598 3.344

(0.095)*** (0.158)***

σ̂2b 0.070 0.036
σ̂2e 0.054 0.020
note: *p < 0.1, **p <0.05, ***p<0.01

Table 2: Model Estimates

The two sets of parameter estimates show distinct differences in the coefficients of log(biomass),

log(timefishing) and log(length), which all are biased downwards. The coefficient on log(timefishing)

is closer to one in the SIMEX estimates, suggesting it has a larger impact on log(bushels) than in

the naive model. Conversely, the naive coefficients for the intercept and log(gallons) are biased

upwards. The coefficient on log(length) changes signs, going from negative and significant in

the naive model, to positive and not significant in the SIMEX result. The lack of significance on
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Figure 1: Technical Efficiency Density Plot

log(length) may be due to low variability in the length of the vessels. The variable is left in the

model because the Cobb-Douglas functional form includes a measure of capital, and length is typ-

ically used in the fisheries literature. Additionally, the positive coefficient on log(length) is what

would be expected from economic theory.

Table 1 above shows a density plot of the technical efficiency estimates. Mean technical effi-

ciency under naive estimation is 59%, and 61% under SIMEX. Median technical efficiency is 64%

under the naive estimation and 61% under SIMEX. A paired Wilcoxin Signed-Rank Test confirms

that these two distributions are significantly different, with the median for the naive estimates sig-

nificantly greater than the median for the SIMEX estimates. This result suggests the naive model

tends to overstate the mean technical efficiency of the surfclam industry.

Figures 2 and 3 show how measurement error can significantly mask important relationships

in the data. In particular, the naive estimates do not show significant relationships between tech-

nical efficiency and age of the vessel, or hull material. The SIMEX estimates do show a significant

relationship, both in age of the vessel and hull material. As theory would suggest, older vessels

are less technically efficient. Similarly, vessels with fiberglass (FBG) hulls are significantly more

technically efficient than boats with steel or wood hulls. This result would suggest that firms with
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Figure 2: Technical Efficiency vs. Year Built

larger amounts of capital would have an advantage in the fishery, since they can purchase newer

vessels, made of more advanced materials. Lastly, figure 4 shows that there are distinct differ-

ences in technical efficiency by region. Vessels whose home ports are in the southern region of

Figure 3: Technical Efficiency vs. Hull Material
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Figure 4: Technical Efficiency by Region

the fishery, such as North Carolina, have significantly lower technical efficiency than vessels in

the northern part, such as New York or Rhode Island. This may be due to significant declines in

LPUE in the southern part of the fishery.

Another quantity of interest is the linear combination of the coefficients on log(timefishing),

log(gallons) and log(length). Given the Cobb-Douglas functional form, this linear combination is

a measure of the returns-to-scale for the surfclam industry. The value of this linear combination

can tells us if the industry is operating under decreasing returns-to-scale, constant returns-to-scale,

or increasing returns-to-scale. Under the naive model a 95% confidence interval for β1 + β2 + β3

is [0.115, 0.785]. Under the SIMEX corrected model it is [0.843, 1.521]. The SIMEX estimates sug-

gests the industry is operating under constant returns-to-scale, while the naive estimates suggest

it is operating under decreasing returns-to-scale. Because profit maximizing behavior suggests

firms should be operating in the decreasing returns-to-scale portion of the production function,

the SIMEX estimates may suggest that firms operating in the fishery are quantity constrained.

This would agree with anecdotal evidence of ITQ consolidation in the market, leading some ves-

sels to not have enough quota to be profitable.
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Discussion

This paper examined the consequences of measurement error in a stochastic production fron-

tier model using logbook and biomass survey data from the Mid-Atlantic surfclam fishery. A

stochastic frontier model was estimated using a Cobb-Douglas functional form specified by eco-

nomic theory. The measurement error was assumed to be an additive component for the variable

log(biomass). The results show that naive estimation of the model will lead to inconsistent esti-

mates of the parameters, standard errors and technical efficiency. The measurement error problem

was addressed using a Monte Carlo method called SIMEX. SIMEX is a bias-reducing estimation

method that establishes a relationship between the measurement error variance and the estimated

parameters in the mixed model. The SIMEX sandwich estimation method is used to get corrected

standard errors.

The results show that the estimated parameters are significantly biased in the naive model.

They also show that not accounting for the measurement error in the data leads to overstating

technical efficiency for the fishery. The SIMEX estimates also show that there are significant re-

lationships between technical efficiency and age of the vessel, hull material and region of home

port. In particular, older vessels are less technically efficient, as are boats made of steel or wood,

as compared to fiberglass boats. Vessels whose home ports are located in the southern end of the

fishery have lower technical efficiency on average, suggesting that fishery managers must take

this into account in future management decisions. The important finding is that not accounting

for the measurement error would mask these relationships, leading a researcher to incorrect con-

clusions about factors affecting technical efficiency. Future research will look at how the bias in

the estimated parameters can change under different measurement error model specifications and

how estimation would proceed in a Bayesian framework.
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Figure 1: Landings Per Unit Effort by Region
(NEFSC 2009)[15]
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Figure 2: Mid-Atlantic Surfclam Fishery
(NEFSC 2009)[15]
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Figure 3: Boxplots with bootstrap biomass estimates for KLAMZ model
(NEFSC 2009)[15]
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