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Estimating Insecticide Application
Frequencies: A Comparison of Geometric
and Other Count Data Models

Bryan J. Hubbell

ABSTRACT

The number of insecticide applications made by an apple grower to control an insect
infestation is modeled as a geometric random variable. Insecticide efficacy, rate per ap-
plication, month of treatment,and method of application all have significant impacts on
the expected number of applications, The number of applications to control a given insect
population is dependent on the probability of achieving successful control with a given
application. Results suggest that northeastern growers have the highest and mid-Atlantic
growers the lowest probability of controlling an infestation with a given application. Re-
sults also indicate that scales require the least and moths the most number of applications.
Growers are not responsive to per unit insecticide prices, but respond negatively to insec-
ticide toxicity, supporting findings from previous pesticide demand analyses.

Key Words: apples, count data, geometric, insect control, pesticides.

Data on the use of insecticides are often treat-
ed as continuous when in fact they result from
a series of discrete choices and processes.
Farmers must decide whether to apply insec-
ticides, which insecticides to apply (given the
decision to apply is made), and how many
times to apply the selected insecticides. The
decision to apply insecticides for treatment of
a given pest infestation is a binary decision,
often based on a previously determined treat-
ment threshold. Active ingredient choice is a
qualitative variable (setting the recommended
application rate as well as the levels of other
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attributes), and the datum of interest for this
analysis, application frequency,’ is a discrete
variable which takes only strictly positive in-
teger values. Total use of insecticides, and thus
total potential for offsite environmental con-
tamination, depends on the results of a com-
bination of discrete and continuous decisions
made by the grower throughout the season.

Good estimates of the determinants of in-
secticide application frequencies are needed to
understand how farmers alter chemical insect
control decisions to reflect differences in in-
secticide productivity, pest management prac-
tices, and environmental concerns. The num-
ber of insecticide applications is difficult to
assess and estimate because it involves both
ex ante utility-maximizing objectives of grow-

1The application frequency is defined here as the
number of applications to treat a given infestation, not
the total number of applications made over the course
of a season.
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ers and unknown random elements. The ob-
served number of applications is the result of
a random process conditioned on levels of
exogenous variables and variables selected by
the grower prior to initial application of insec-
ticides. Farmers can influence the expected ap-
plication frequency through their choices of
active ingredient types, rates, and pest man-
agement strategies, but they cannot choose, a
priori, the final number of applications that
will be required to manage an infestation. The
determination of the application frequency
variable has large consequences for total in-
secticide use in some crops, including apples
and other fruits and vegetables, as total insec-
ticide use to manage a given infestation will
be the frequency of application times the rate
per application. Application frequency thus
has a multiplicative effect on observed total
quantities of insecticides used, amplifying en-
vironmental exposure to insecticide externali-
ties.

Many farmers use some form of treatment
threshold to determine when application of in-
secticides can be economically justified
(Headley). These treatment thresholds are not
directly observable to the analyst, but are es-
tablished by the farmer based on some rule
(not necessarily profit maximization), or ob-
tained from private consultants or extension
professionals. The threshold will be based on
observable variables such as intended markets,
output prices, insecticide costs, application
costs, and information on relative damage as-
sociated with different insects, both to yield
and to produce quality, provided by extension
and pesticide industry professionals (Marra,
Gould, and Porter). Treatment thresholds may
also reflect the grower’s level of risk aversion.
Because the treatment threshold depends in
part on the target insect and the active ingre-
dient applied, there will be a treatment thresh-
old associated with each active ingredient for
each insect type. The treatment threshold for
a given insect type is determined through the
farmer’s selection of an active ingredient.z In-
secticide applications are made whenever the

2A model of insecticide active ingredient selection
is developed and estimated in Hubbell.

target insect population exceeds the treatment
threshold population, and continue until the
insect population falls below the threshold lev-
el.

The remainder of this article is devoted to
the development and estimation of models of
insecticide application frequencies, taking into
account the nonnegative, nonzero integer na-
ture of application frequency data. A new es-
timator, based on the geometric distribution, is
developed and estimated. It is demonstrated
that the geometric distribution of application
frequencies is theoretically consistent with the
use of treatment thresholds in the determina-
tion of insecticide use. The geometric model
also allows for estimation of the probability of
successfully managing an insect infestation
with a given application, thereby allowing for
analysis of the effectiveness of insecticide ap-
plications across regions and insect types. For
comparison, traditional count data models, in-
cluding the truncated Poisson and truncated
negative-binomial, also are estimated. The em-
pirical implementation of the models examines
the impacts of insecticide efficacy, severity of
infestation, integrated pest management (1PM)
practices, environmental and health factors,
and economic variables on the expected num-
ber of applications and the probability of suc-
cessful control.

The Model

During the course of a season, an apple grower
may face numerous infestations with a variety
of insect pests.3 A farmer may make multiple
applications as part of a treatment program for
a particular pest. The number of applications
made in a particular treatment i, IVi, is the re-
sult of a series of discrete choices made based
on comparing observed target insect popula-
tions with target insect population thresholds
at a discrete number of evaluation points. De-
fine ~~, to be the treatment threshold for insect
type j and active ingredient m at evaluation
point t during the season. An evaluation point

~An infestation is defined here as an occurrence of
a population of insects high enough to warrant an ini-
tial application with an insecticide.
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is defined as any time at which the grower
receives new information on levels of target
insects in the field. This information can come
from personal observations, professional
scouts, or extension announcements of region-
al infestations. The treatment threshold may
change throughout the season as growers re-
ceive new information on weather and market
conditions. If farmers take into account health
and environmental impacts, treatment thresh-
olds also may depend on implicit environmen-
tal and health costs associated with use of in-
secticides (Moffitt; Beach and Carlson; Higley
and Pedigo).

Defining H to be a vector of economic
variables and Z,n to be a vector of attributes
associated with active ingredient m, the ex-
pected utility-maximizing treatment threshold
for insect type j and active ingredient m is

(1) <,,,,= i( j, z.,, H,), j=l, . . ..J.

where J equals the total number of possible
target insects on apples. The grower will have
a treatment threshold associated with each of
the .7 possible target insects for each active
ingredient, for a total of J&f potential thresh-
olds at each evaluation point t, where M is the
number of active ingredients. A standard spec-
ification for the threshold function is

(2) ~n,,= C,~h’,L~D,uK,~,

where Cl,. is the cost of an application for in-
sect j with insecticide m (this can include en-
vironmental and health costs), V, is the ex-
pected value of the crop at time t, L~ is the
loss in units of output per insect, D,nis damage
per loss unit, and Kjm is the proportionate re-
duction in damage from insect j from appli-
cation of insecticide m (Higley and Pedigo).

Because the variables on the right-hand
side of (2) are not easily measurable, ~~~is in
general an unobservable latent variable to an
outside analyst, but the active ingredients and
number of applications made by the grower
during a particular treatment are observable,
ex post. Growers can measure pre- and post-
application insect populations and compare
them with their selected treatment thresholds,

but this information is generally not observed
by outside analysts. Once growers have made
the initial decision to apply insecticides, they
are faced with a series of choices based on
information received concerning the insect
population, as well as crop growth and market
conditions. At each decision point, the grower
must choose whether to make an application
with the same chemical, make an application
with a different chemical, or stop making ap-
plications. The grower will make an applica-
tion with the same chemical if the observed
insect population is greater than or equal to
the threshold population and the degree of ef-
fectiveness from the application meets some
optimality criteria. The grower will make an
application with a different chemical if the ob-
served insect population is greater than or
equal to the threshold population but the ef-
fectiveness of the chemical does not meet the
optimality criteria. The grower will stop mak-
ing applications if the insect population falls
below the treatment threshold. The final num-
ber of applications is the result of repeated ap-
plications of this decision rule made by the
grower in response to observed insect popu-
lations and optimal threshold levels. Define 8,
to be an indicator variable equal to one if the
grower makes an application at evaluation
point t,and zero otherwise. The total number
of applications during treatment i is calculated
as

(3) Iv, = ~ 6,, 8, = o, 1,
t+1

where T, is the number of evaluation points
during treatment i.

In statistical terms, the grower can be
thought of as conducting a series of trials until
a success (defined here as successful manage-
ment of the infestation to below the treatment
threshold) occurs. The probability of success
with any particular application, 6,, is a function
of the productive attributes of the insecticide,
the target insect type, the initial target insect
population, the susceptibility of the insect pop-
ulation to the insecticide, the rate of applica-
tion, exogenous weather conditions, and the
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treatment threshold. Because the economic
threshold is a function of the rate of applica-
tion (see Marra, Gould, and Porter; Higley and
Pedigo), the rate of application is assumed to
be selected by the farmer prior to the choice
of whether or not to make an application. Giv-
en the optimal threshold/application rate com-
bination, farmers apply the economic thresh-
old to the observed pest populations to
determine whether additional applications are
necessary.

The observed number of applications in
treatment i, N,, is the number of applications
necessary to achieve successful insect control,
which results in termination of the applica-
tions. Given the series of success probabilities,
e ,1, . . . . OiT, where iT is the total number of
evaluation points during treatment i, the prob-
ability of observing IVi = n is

(4) prob(N, = n,) = Oi,,‘fi’ (1 – 6,J.
b=l

For estimation purposes, this specification is
impractical because data on insect populations
following each application are not currently
available. What is available is information
about average pest severity during a treatment.
Thus, the average probability of success for a
treatment can be estimated, but not the indi-
vidual application success probabilities.

Substituting the average probability of suc-
cess, ~t, for the success probabilities, eil, . . .,
O,r, the empirical specification for the proba-
bility of observing Ni = n becomes

(5) prob(N, = n,) = (1 – 6,)11-‘~,.

Following Mendenhall, Wackerly, and Scheaf-
fer (p. 104), N, has the form of a geometric
random variable, with

(6) E(N,) = -&,
,

and

(7) V(N,) = *.
,

The average probability of success during
treatment i, 6[, is dependent on the average
attributes of the insecticides applied, the av-
erage rate of application, the severity of the
infestation, the type of insect, and the treat-
ment threshold, Z,:

where Z~~ is a vector of average insecticide
productive attributes, including target efficacy
and persistence; Ai is the average rate applied
for treatment i; Si is the severity of infestation
during treatment i; D,j denotes dummy vari-
ables indicating the target insect for treatment
i; and ~ is the treatment threshold for insect j.
The exponential form of the explanatory var-
iables ensures that O < (3 s 1. Since ~ is not
observed, a set of variables representing the
right-hand side of (2) is used to proxy for the
effects of thresholds. These proxies include
average insecticide cost, average insecticide
environmental and health attributes, average
insecticide efficacy, insect type, insect severi-
ty, pest management variables (including use
of scouting, beneficial insects, pruning, and
pheromones), and price of apples.

Substituting (8) into (5), the probability
statement becomes

(9) prob(N, = n,)

where Z~ is the vector of treatment threshold

proxies. Equation (9) can be simplified to
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(10) prob(Ni= n,)

[(=exp 13~Z~d + (32Ai + (33S,

The log-likelihood function for this specifica-
tion of the geometric probability function is

(11) LLF

F YI
.

2x{ (n,~ - 1)
f=, ,=]

J

)11
+ ,; ~JD!tl *

where F equals the total number of growers in
the sample and Ytis the total seasonal number
of treatments for grower J Parameters of the
expected application frequency function will
be obtained using the maximum-likelihood
routine in TSF? Standard errors are derived
from the analytical first derivatives of the like-
lihood function.

Other economic studies analyzing count
data have utilized the Poisson distribution,
which describes the number of events occur-
ring within a given time interval (Barmby and
Doornik; Hausman, Hall, and Griliches; Lee;
Smith, Liu, and Palmquist; Yen and Adamow-
icz). The geometric distribution is preferred to
the Poisson for several reasons. First, the time
interval of interest, a treatment, is not of fixed
duration. In fact, the length of the interval is

defined by the realization of the random vari-
able, such that the interval is bounded by the
occurrence of the first and last applications for
a given treatment. Comparisons of application
frequencies between treatments is thus a com-
parison of counts from unequal time periods,
violating an assumption of the Poisson distri-
bution. Second, the Poisson distribution is
characterized by equality of the mean and
variance of the distribution. For the sample of
treatments by apple growers, the variance of
frequency of application is larger than the
mean, suggesting that the data are over-dis-
persed relative to the Poisson distribution. The
geometric distribution allows for both under-
and over-dispersion in the data. Finally, the
Poisson model allows for the occurrence of
zeros in the data. In this model, growers al-
ways make at least one application given that
the treatment threshold has been reached, and
thus the application frequency variable is nat-
urally bounded between one and positive in-
finity. In contrast, the Poisson distribution is
bounded between zero and positive infinity.
Use of the Poisson model requires arbitrary
truncation at zero.

The negative-binomial model has been
suggested as a remedy to the problem of over-
dispersion, but does not allow for under-dis-
persion and still suffers from the assumption
of a fixed time interval (Barmby and Doornik;
Hausman, Hall, and Griliches; Lee; Yen and
Adamowicz). The truncated Poisson and trun-
cated negative-binomial models have been
used to address the zeros problem by truncat-
ing the distributions at the zero level (Creel
and Loomis; Gomez and Ozuna; Grogger and
Carson; Yen and Adamowicz). These arbitrar-
ily truncated distributions are theoretically in-
ferior to the geometric distribution, which is
naturally bounded between one and positive
infinity. The best candidates for modeling ap-
plication frequencies are the geometric, zero-
truncated Poisson, and zero-truncated nega-
tive-binomial models, as all three are bounded
between one and positive infinity.

In order to examine the degree of specifi-
cation error resulting from the assumption that
application frequencies follow distributions
other than the hypothesized geometric distri-
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bution, parameters are estimated using trun-
cated Poisson and truncated negative-binomial
distributions. Following Grogger and Carson,
the probability distributions and log-likelihood
functions for the truncated Poisson and trun-
cated negative-binomial models are as fol-
lows:

● Truncated Poisson Model:

(12) P(N, = n,lN, > O)

exp(—h, )kp——
n,![l – exp(–h,)];

Ln L = ~ ~ {–k$ + n~ln(k,f) – ln(nv!)
f=] ,=1

– ln[l + exp(–k,f)]},

where

(Af = exp ~~Z~d + ~zA, + (33S, + ~#~

J

)
+ ,? ~JDt] ,

● Tmncated Negative-Binomial Model:

(13) P(N, = n,lN, > O)

()ri+n,
Cx

——

()r ~ ll(n, + 1)

~ (cw”(l + Ukt)-(l/ti + ,,,)

1 – (1 + cA,)-1/” ;

Ln L

()– in r ~ + niln(a) + njln(k,)

—

()
~ -t n, ln(l + ail)
a

1– ln[l – (1 – cA,)-l/”] ,

The above models will be estimated using
the maximum-likelihood procedure in TSF! As

with the geometric model, standard errors are
derived from the analytical first derivatives of
the likelihood function.

Data

Data used to estimate the models consist of
survey results from the U.S. Department of
Agriculture/National Agricultural Statistics
Service (USDA/NASS) “1991 Fruit and Nut
Chemical Use Survey. ” This analysis focuses
on insecticide application frequency data for
apple growers. Due to limited availability of
attributes data, the set of insecticides exam-
ined is limited to 22 active ingredients. The
active ingredients in this choice subset account
for over 90% of insecticide treatments, so lim-
iting the choice set should not result in large
specification errors.

The set of data collected on apple growers
contains information on active ingredients ap-
plied, prices paid for active ingredients, rates
of application, dates of applications, intended
markets, yields, revenues, and integrated pest
management use for 787 growers in seven
states. Data on insecticide use were recorded
for a randorrdy selected block of trees from
each grower’s total production acreage. Re-
corded applications are thus representative of
the grower’s insecticide use but do not indicate
total use for each grower. Each grower has a
sequence of treatments reflecting the number
of infestations treated with insecticides during
the season. For this analysis, a treatment is
defined as consecutive applications for control
of a particular target insect. There are a total
of 2,427 insecticide treatments for the 787
growers in the sample, or an average of ap-
proximately three treatments per grower. With-
in a given treatment, i, the grower is observed
to make N, applications. This observed num-
ber of applications is the dependent variable
in this analysis. Application frequency ranges
from one (1,061 treatments) to 27 (one treat-
ment), with a mean of 2.61.

Growers apply insecticides to treat a wide
variety of insect pests. To reduce the number
of parameters in the estimating equations, in-
sects were grouped into 10 categories, based
on the 10 most prevalent insect genera/spe-
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ties and an “other” category.4 Because ac-
curate efficacy information is vital for cor-
rect estimation of the model parameters,
observations for insecticide applications tar-
geting the “other” category were dropped
from the sample. The most frequently treated
insect category is moths and maggots (24$Z0
of treatments), followed by aphids (20%)
and mites (1590).

Variables in the data set are divided into
three categories: (a) those that differ according
to insecticide active ingredient (insecticide at-
tributes), (b) those that describe grower eco-
nomic and production conditions (farm vari-
ables), and (c) those that describe infestations
for a given grower (insect variables). Defini-
tions, means, and standard deviations for vari-
ables included in the application frequency
models are listed in table 1. The following sec-
tions describe these variables and discuss mea-
surement issues.

De$nition and Measurement of Insecticide

Attributes

For all insecticide attributes, the average at-
tribute level across a treatment is used as the
variable. The constructed attribute is a weight-
ed average of the attributes of the insecticides
applied by a grower within a given treatment.
The constructed attribute is weighted more
heavily toward those chemicals applied more
times.

Relative effectiveness is difficult to deter-
mine due to a lack of consistent laboratory and
field tests. Most of the available data from test
plot experiments is not comparable across in-
sects or crops, State agricultural extension ser-
vices often provide relative efficacy rankings
based on a four- or five-point scale. Relative
efficacy data for western states (Oregon and
Washington) were obtained from the pest con-
trol manual for Washington state (Washington
State University Cooperative Extension). Ef-

4The “other” category includes apple and thorn
skeletonizes, beetles, borers, campyloma bug, citrus
blackfly, European apple sawfly, lesser apple worm,
lygus bugs, mealybugs, stinkbugs, whitefly, and the
survey classification “all other bugs. ”

ficacy data for eastern states (Michigan, New
York, North Carolina, Pennsylvania, and Vir-
ginia) were obtained from the Virginia/West
Virginia Cooperative Extension pest control
manual. These two manuals were selected be-
cause they contain similar measurement scales
and comprehensive information on the full set
of insecticides. Efficacy was indicated on a
fotu-point scale, with 4 (excellent control) be-
ing the most effective and 1 (poor control) be-
ing the least effective.

Realized efficacy of a given application
is governed by both the effectiveness of the
active ingredient in killing the target insect
and the exposure of the target insect popu-
lation to the active ingredient. Exposure is
governed by the initial rate of application,
the method of application, and the persis-
tence of the active ingredient. To account for
differing levels of potency among active in-
gredients, rates of application are normalized
by the recommended rates of application for
the active ingredients. Recommended rates
were obtained from the Crop Protection

Chemicals Reference. The rate variable is
thus the proportion of recommended rate ap-
plied by the grower. Persistence is governed
by the rate of insecticide decay and the vol-
ubility of the insecticide. Measures of per-
sistence were obtained from the SCS/ARS/
CES Pesticide Properties Database (Wauch-
ope et al.). These measures include the soil
half-life and volubility in water.

Insecticide costs are made up of two com-
ponents: (a) explicit materials costs, equal to
the price per pound of active ingredient times
the rate of application, and (b) potential health
and environmental costs associated with a giv-
en insecticide active ingredient that are not di-
rectly observed. Prices per pound of active in-
gredient were obtained from survey results
and from DPRA, Inc. Unobserved health costs
are assumed to be correlated with the level of
acute oral toxicity to mammals. Toxicity data
are in the form of rat lethal oral dosages
(LD~os), measured in mg/kg of body weight.
Oral LD~Os are inversely related to the oral
toxicity of an active ingredient. Rat LD~Os
were taken from The Pesticide Manual

(Worthing), The Agrochemicals Handbook
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Table 1. Summary Statistics for Sample of U.S. Apple Growers

Standard
Variable Type and Name Definition Mean Deviation

Application Frequency

Insecticide Attributes:

Rate of Application

Insecticide Cost

Efficacy

Volubility (000)
Soil Half-Life

KoC (000)
Oral Toxicity

Farm Variables:

Fresh Price
Processed Price

Aerial Applicationa
Alternate Rowa

Beneficial Insects UsecP

Scouting Useda

Pruning Used’

Pheromone Traps Useda

Average Tree Age

Applied prior to Maya

Applied in May, June, or July’

Applied after Julya

Applied in Michigana
Applied in New York
Applied in North Carolina’
Applied in Oregon’
Applied in Pennsylvaniaa
Applied in Virginiaa
Applied in Washingtona

Insect Infestation Variables:

Target Insect: Aphids’

Number of applications with an active in-
gredient for treatmentof a targetpest.

Average proportion of recommended rate
applied.

Retail price per lb, of active ingredient X
rate of application.

Efficacy against target insect on a four-
point scale.

Volubility in water in mg/1.
Days to degrade to one-half of initial de-

posit in average soil type.
Propensity to attach to soil particles.
Inverse of rat oral LD~O,the amount of

active ingredient in mg/kg of body
weight necessary to kill one-half of an
experimental sample.

Price received for fresh grade apples.
Price received for processing grade

apples.
Insecticide applied aerially.
Insecticide applied to alternate rows using

ground sprayer.
Grower reported using beneficial insects

to control pests.
Grower reported using scouting to deter-

mine when to spray.
Grower reported using pruning to control

pests.
Grower reported using pheromone traps

for pest control.
Average age of apple trees in selected

block.
Insecticide applications made in February,

March, or April.
Insecticide applications made in May,

June, or July.
Insecticide applications made in August,

September, or October.
Orchard located in Michigan.
Orchard located in New York.
Orchard located in North Carolina.
Orchard located in Oregon.
Orchard located in Pennsylvania.
Orchard located in Virginia.
Orchard located in Washington.

2.606 2.488

0.572 0.454

28.091 169.011

3,127 0.823

107.693 255.676
24.420 17.939

25.870 124.898
0.045 0.054

0.187 0.081
0.083 0.033

0.026
0.178

0.210

0.474

0.693

0.427

15.741 13.155

0.259

0.686

0.054

0.281
0.141
0.055
0.126
0.132
0.049
0.215

Primary target insect category is aphids. 0.202
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Table 1. (Continued)

Standard
Variable Type and Name Definition Mean Deviation

Target Insect: Fruitwormsa Primary target insect category is fruit- 0.033

worms ,
Target Insect: Leathoppersa Primary target insect category is leaf- 0.083

hoppers.
Target Insect: Leafminersa Primary target insect category is leaf- 0,066

miners.
Target Insect: Leafrollers’ Primary target insect category is leaf- 0.105

rollers.
Target Insect: Mitesa Primary target insect category is mites. 0.151
Target Insect: Moths/Maggotsa Primary target insect category is moths 0.243

or maggots.
Target Insect: Scales’ Primary target insect category is scales. 0.076
Target Insect: Plum Curculioa Primary target insect category is Plum 0.040

Curculio.
Below Normal Severity= Infestation is of below normal severity. 0.057

Normal Severitya Infestation is of normal severity. 0.736
Above Normal Severity” Infestation is of above normal severity. 0.207

‘ Variable is binary.

(Royal Society of Chemistry), and The Pesti-

cide Index (Wiswesser).
Potential costs of ground and surface water

contamination are assumed to be correlated
with the potential for groundwater leaching
and runoff of a given active ingredient. The
leaching potential for an active ingredient is
governed by the propensity to attach to soil
particles (measured by the KoC rating of a
chemical) and persistence in soil (measured by
the soil half-life). Runoff potential is governed
by the volubility of a chemical. Soil half-life,
volubility, and KoC measures were obtained
from the SCS/ARS/CES Pesticide Properties
Database (Wauchope et al.).

Definition and Measurement of Grower

Variables

Along with information on insecticide types
and quantities, the 1991 USDA/NASS chem-
ical use survey obtained information on eco-
nomic and production variables including
output prices received, tree stock informa-
tion, method of application, and use of 1PM
techniques. Both fresh and processed apple
prices are included in the model to capture

the effects of different marketing outlets.
Average age of trees in the selected block is

used to capture effects due to both the size
of the trees and also potential differences in
yield due to tree age. Method of application
is measured through the use of indicator
variables denoting whether the grower ap-

plied insecticides on all rows by ground

spray, on alternate rows by ground spray, or

aerially. The main 1PM techniques of inter-
est are the use of scouting, beneficial insects,

pruning, and pheromone traps. Use of each
practice is indicated by a zero-one dummy
variable equal to one if the grower used the

practice and zero otherwise.
The data set contains information on ob-

served application frequencies for apple grow-
ers from seven states. To capture some of the

differences in climate, precipitation, and pro-

duction practices across states, dummy vari-
ables for states are included in the model spec-

ification. The dummy variable corresponding

to Michigan is omitted to identify the model.
Coefficients on the six remaining state dum-

mies are then normalized with respect to the
omitted state.
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Dejnition andkleasurement of Infestation

Variables

The information variables for each infestation

are the primary target insect and the compar-

ative severity of infestation. Target insects

were indicated by the growers in their re-

sponses to the USDA survey questionnaire.5

Over 60 separate insect species were identified
as target insects. Because incorporation of so
many categories would make identification of
individual effects difficult, for purposes of this
study, insect species were grouped into nine
broad categories based on biological similari-
ties.G

To identify differences in probabilities of
successful management for the nine insect cat-
egories, dummy variables corresponding to the
nine categories are included in the model spec-
ification. The dummy variable corresponding
to the aphid category is omitted to identify the
model. Coefficients on the remaining eight
categories are normalized with respect to
aphids.

Initial insect populations are not directly
measured. Instead, growers were asked to in-
dicate the relative severity of the infestation.
Severity of infestation was indicated by grow-
ers on a three-point scale, where 1 denoted
that the severity of the infestation was less
than the normal severity experienced by the
grower, 2 indicated that the severity was nor-
mal, and 3 indicated that the severity was
worse than that normally experienced by the
grower. Thus, severity is relative to what is
normal for the individual grower, not relative
to regional norms. Dummy variables for se-
verity levels are included in the model speci-
fication. The dummy variable corresponding
to the normal severity level is omitted to iden-
tify the model. Coefficients on the below- and
above-normal severity dummies are relative to
normal severity infestations,

5Farmers were asked to indicate the primary target
insect. Farmers treating multiple insects or insect com-
plexes were not asked to list secondary targets.

bThe nine insect categories are aphids, fruitworms,
leafhoppers, leafminers, leafrollers, mites, moths/mag-
gots, scales, and plum curculio.

Estimation of the Application Frequency
Model

As noted earlier, the expected application fre-
quency is specified as a function of insecticide
attributes, insect type and severity, crop char-
acteristics, pest management practices, and
economic and production variables represent-
ing the treatment threshold. Expected signs for
insecticide attributes can be determined by ex-
amining the impact on insect populations. For
example, higher average product efficacy is
expected to increase the kill rate for a given
application. This should increase the average
probability of reaching the treatment threshold
with a given application, reducing the expect-
ed frequency of application.

Some insecticide attributes affect both the
cost and the productivity of the insecticide.
These dual attributes can have either a greater
or a lesser impact on application frequency de-
pending on whether the attributes positively or
negatively affect costs and production. For ex-
ample, soil half-life is a proxy for general per-
sistence of insecticides. As such, a longer soil
half-life is expected to increase exposure of
insect populations to the insecticide, leading
to a higher kill rate for a given application and
decreasing the expected application frequency.
Soil half-life also contributes to the potential
for groundwater leaching, increasing the im-
plicit health costs of the insecticide, increasing
the treatment threshold, and decreasing the ex-
pected application frequency. As long as an
attribute increases or decreases both the pro-
ductivity and the cost of an insecticide, the
signs of the effects will be complementary.
This is the case for all of the dual attributes
except volubility. Volubility decreases the pro-
ductivity of an active ingredient by reducing
exposure to its insecticidal properties, Volu-
bility increases implicit environmental costs
by increasing the potential for runoff into
streams and lakes, The productivity effect of
volubility would indicate more applications,
while the environmental effect would suggest
fewer applications. The net effect will have to
be determined empirically.

Expected signs for many of the production
and economic variables can be determined by
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Table2. Predicted Effects of Variables on the
Expected Number of Applications

Predicted Sign
Attribute Name of Effect

Target Efficacy
Soil Half-Life
Volubility
KoC
Oral Toxicity
Insecticide Cost
Fresh Grade Price
Processed Grade Price
Crop Age
Scouting
Use of Beneficial Insects
Use of Pruning
Use of Pheromones
Less Severe Infestation
More Severe Infestation
Rate of Application

—

+1–
.

—
—

+
+i–

+
—
—
—
—
—

+
—

examining the latent treatment threshold func-
tion. Because the average probability of a giv-
en application reducing the target insect pop-
ulation to the treatment threshold is increasing
in the threshold level, variables that decrease
the treatment threshold will decrease the av-
erage probability of successful management,
and variables that increase the treatment
threshold will increase the average probability,
For example, higher prices for fresh apples in-
crease the value of both total output and dam-
age-free output, leading to a lower treatment
threshold and a higher expected application
frequency. Higher prices for processed apples
may increase or decrease application frequen-
cies depending on whether quality effects or
output effects dominate.

Variables governing non-insecticide contri-
butions to the effectiveness of a particular ap-
plication are also included in the estimation.
The expected effects of these variables, in-
cluding crop age, scouting, use of beneficial
insects, pruning, use of pheromones, and se-
verity of infestation, are as follows. First, eider
trees tend to have larger canopies and thus
have a greater surface area exposed to possible
insect infestation, leading to a higher expected
application frequency. Tree age may also be
associated with greater yields, thereby increas-

ing potential revenue and lowering the treat-
ment threshold. Scouting and pheromone traps
can identify insect types and severities with
greater precision, allowing for more accurate
applications and leading to decreased expected
application frequencies. Use of beneficial in-
sects and pruning can complement insecticide
use, decreasing the expected application fre-
quency. Finally, more severe infestations are
expected to increase the expected application
frequency. Table 2 provides a listing of the
expected signs of the coefficients of the vari-
ables in the application frequency equation.

The marginal effects of insecticide attri-
butes and farm characteristics on the average
probability of successful management can be
determined by taking derivatives of equation
(5) with respect to the variables of interest.
The marginal effect of a change in the kth ex
planatory variable is specified as follows:7

I(+-1 + exp (3(Z~( + f32A,+ @#’,

or in elasticity form:

The percentage marginal effects of insecticide
attributes and farm characteristics on the ex-
pected application frequency are equal to the
negative of the percentage marginal effects on
the average probability of successful manage-
ment. For nonmarginal changes in binary vari-
ables, the percentage change in the average
probability of successful management is cal-
culated as

7This specification implies that the marginal im-
pacts of pesticide characteristics on the probability of
success are the same across insect categories.
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Parameter and elasticity estimates from the
geometric application frequency model are
presented in table 3, along with nonmarginal
percentage effects of changes in scouting, use
of beneficial insects, severity, application
method, insect type, and state, relative to the
omitted levels. Parameter estimates for the
truncated Poisson and truncated negative-bi-
nomial models are also presented in table 3.

Goodness of fit is tested using a Pearson
type goodness-of-fit statistic calculated as fol-
lows (Mendenhall, Wackerly, and Scheaffer, p.
647):

.
(17) x’ = ~ ‘q’ ;(::;’)’2,

t

where qi is the cell frequency for N = i, i =
1, . . . . k, where k is the highest observed num-
ber of applications; and ~(q,) = fi,FS, where

~, is the probability that N = i estimated from

the model, and FS is the total number of treat-
ments. X2 has approximately a X2 distribution
with (k – 2) degrees of freedom. Large values
of X2 will indicate a poor fit between the pre-
dicted distribution of application frequencies
and the observed distribution. The X2 statistic
is lowest for the geometric model, at 28.8, and
is under the 5% critical value (k = 27) of 37.7,
indicating the geometric distribution is a good
match for the observed distribution. The X2
statistic values indicate that the geometric
model is superior to both the truncated Poisson
and negative-binomial models.

Results

Results show a relatively low average success
rate for apple growers using insecticides to
control insect populations. The estimated pa-
rameters are inversely related to the average
probability of successful management. The
mean estimated average probability of suc-
cessful management is 0.38, although the es-
timated average probability of successful man-
agement varies considerably from state to state
and for growers treating different insect cate-

gories. Table 4 provides a listing of the per-
centage differences in the average probability
of successful management for the seven apple
producing states in the sample. The percentage
differences in the average probability of suc-
cessful management for the nine insect cate-
gories treated in the sample are presented in
table 5.

The average probability of successful man-
agement for North Carolina, Pennsylvania,
and Virginia is significantly lower (by 14% to
30%) than for most other apple producing
states. The largest difference in the average
probability of successful management is be-
tween North Carolina and Michigan, where a
Michigan grower has, on average, a 43.2%
higher average probability of successful man-
agement than a North Carolina grower. The
overall results seem to indicate that pesticide
applications are the most effective in the
northeast (Michigan and New York), followed
by the northwest (Oregon and Washington)
and the mid-Atlantic states (North Carolina,
Pennsylvania, and Virginia). This may reflect
the warmer, more humid conditions in the
mid-Atlantic region which can lead to in-
creased insect pressure.

The estimated difference in average prob-
ability of successful management between
growers treating scales and growers treating
other insect categories is the most pronounced.
The average probability of successful manage-
ment of scales is significantly higher (by 31%
to 201%) than for any other insect category.
Moths are the most difficult insect category to
control, with significantly lower probabilities
of successful management (by 38% to 67’-ZO)
than any other insect category.

The results from the parameter estimation
suggest that the expected application frequen-
cy is significantly decreasing in the rate of ap-

plication, efficacy, half-life, oral toxicity, and
use of pheromone traps, and is significantly
increasing in volubility, crop age, severity of
infestation, and use of aerial and alternate row
application methods. All of the significant pa-
rameters have signs in agreement with theo-
retical expectations. The marginal effect of
volubility on the expected application frequen-
cy is positive, indicating that potential losses
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in productivity outweigh potential impacts of

runoff contamination. The remaining contin-

uous explanatory variables are insignificant in
explaining variation in application frequen-
cies. Of the four insignificant parameters with
definite sign predictions, tw~fresh and pro-
cessed apple prices-have signs that agree
with expectations, and two—insecticide cost
and KoC—have signs opposite of expecta-
tions. The insignificance of insecticide cost
suggests that input prices have little impact on
treatment thresholds, and subsequently have
little impact on the expected number of appli-
cations. This tends to corroborate findings in
the pesticide demand literature that growers
are unresponsive to pesticide prices (Fernan-
dez-Cornejo; Miranowski; Carlson).

The estimated elasticity for the rate of ap-
plication is –O. 18. This indicates that the rate
of substitution between rates of application
and expected numbers of applications is rela-
tively low. Increasing the proportion of the
recommended rate applied thus provides little
benefit to the grower in terms of reducing the
expected number of applications.

Efficacy is highly significant in explaining
application frequency. Increasing the average
effectiveness of an application from fair to
good and from good to excellent decreases the
expected application frequent y by 14% and
13%, respectively. This suggests that product
choice is essential in reducing the number of
insecticide applications.

As expected, month of application and
method of application have significant impacts
on the expected application frequency. The ex-
pected application frequency is, on average,
17% higher for growers applying insecticides
aerially than for those applying on the ground
to all rows. Growers applying on the ground
to alternate rows have an average expected ap-
plication frequency 13% higher than growers
applying to all rows.

The expected application frequency de-
creases as growers move from early season to
mid- and late season treatments. The expected
application frequency for mid-season treat-
ments is 8% lower than for early season ap-
plications. The expected application frequency
for late season treatments is 70% lower than

for early season applications. Reduced num-
bers of applications toward the end of the sea-
son may reflect regulatory constraints, primar-
ily pre-harvest intervals and residue
tolerances.

Finally, the severity of the infestation faced
by the grower significantly increases the ex-
pected application frequency. A less severe
than normal infestation leads to a reduction in
the expected application frequency of 17%,
while a more severe infestation leads to a 9%
increase in the expected application frequency.

Conclusions

This analysis has shown that the observed fre-
quency of insecticide applications can be mod-
eled as a geometric random variable. It is dem-
onstrated that the geometric distribution of
application frequencies is theoretically consis-
tent with growers’ use of treatment thresholds
and empirically superior to both the truncated
Poisson and truncated negative-binomial mod-
els. The resulting parameter estimates will be
useful to policy makers in designing policies
to reduce total pesticide use. The estimated re-
lationships between 1PM practices and appli-
cation frequencies indicate that the type of
1PM practice adopted by the farmer matters,
as pheromone traps were the only practice to
actually decrease application frequencies.

The geometric model can be applied easily
to other crops to identify significant factors
leading to increased insecticide applications.
Pesticide use information is available from the
USDA for several crops, making data acqui-
sition relatively easy and inexpensive. The
model may therefore be useful in analyzing
the comparative effectiveness of 1PM and oth-
er government-backed programs in reducing
pesticide use across crops.

Parameter estimates reveal that most of the
variation in the average probability of success
in controlling insects with a particular appli-
cation is due to differences in insecticide ef-
ficacy, exposure to insecticide materials, target
insect, region, and severity of infestation.
Variables influencing the treatment threshold
have little impact on the average probability
of successful management, with the exception
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of insecticide toxicological attributes. This
may be due to a low degree of variation in
treatment thresholds in the sample or to low
correlation between the observed proxies and
the actual treatment threshold.

High insecticide toxicity does increase the
acceptable level of damage, resulting in re-
duced application frequencies, but the effect is
relatively small, with an elasticity of only
–0.02. Successful management of insect pests
also depends on the method of application,
with ground application to all rows being the
most effective. This is supported by the fact
that the majority of treatments (79.790) use
ground application to all rows. Insecticide use
may be further reduced by encouraging less
use of aerial sprays. This may also have ad-
ditional positive public health impacts by re-
ducing poisonings due to aerial drift.

Future analyses of application frequencies
would benefit from improved data on treat-
ment thresholds for the set of target insects, If
such data were available, it would not be nec-
essary to assume an arbitrary functional form
relating economic variables and the unobserv-
able treatment threshold. This would allow for
direct estimation of the relationship between
desired levels of control and the average prob-
ability of successful management. Likewise,
improved data on insecticide efficacy in each
region would improve the model, allowing
some of the variation captured by the state
dummy variables to be captured by the differ-
ences in efficacy in the states. Finally, detailed
data on timing of applications, weather con-
ditions at the time of application, and reduc-
tions in insect populations after each applica-
tion would allow for a more complete
specification of the probability of successful
management, improving both the fit of the
model and our understanding of the determi-

nants of application frequency.
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