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A Bayesian Analysis of GPS Guidance System in Precision Agriculture: The Role of 

Expectations 

Abstract 

Farmer’s post adoption responses about technology are important in continuation and diffusion 

of a technology in precision agriculture. We studied farmer’s frequency of application decisions 

of GPS guidance system, after adoption. Using a Cotton grower’s precision farming survey in 

the U.S. and Bayesian approaches, our study suggests that ‘meeting expectation’ plays an 

important positive role. Farmer’s income level, farm size, and farming occupation are other 

important factors in modeling GPS guidance system adoption and application. 

 

Key words: Precision agriculture, GPS guidance system, cotton farms, Bayesian, expectation, 

adoption, application, technology  

 

1. Introduction 

Precision agriculture (PA) is a system approach to managing variation in crop production 

(Dobermann et al. 2004; Ebel and Schimmelpfennig, 2012) using site-specific information 

technologies and practices (Paxton et al., 2011). The agricultural economics literature suggests a 

number of demographic, socioeconomic, and financial factors influence the adoption of 

agricultural technologies. Broadly, the areas dealt in most of these studies include factors 

influencing the adoption decision; information sources and their relevance in relation to 

adoption, perceptions about precision farming, and cost savings. Many analyses have focused on 

decisions to adopt these technologies. However, few studies have analyzed the post-adoption 

features of the technology, such as whether the technologies meet the expectations of producers 

and if producers continue to use or abandon precision agriculture technologies (exceptions 

include Walton et al., 2008). This process plays a key role in technology diffusion.  

Farmers are assumed to continue using a technology if it meets their expectation. As 

defined in most of the previous adoption studies, factors such as education, age, information 

access, perception about cost and return of a technology, cost savings due to adoption are 

considered some general factors that may determine an adopter‘s decisions about application and 
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hence diffusion of a particular technology. Once adopted, a rational decision maker is assumed to 

judge about the technology based on his/her criteria about evaluating it and whether a technology 

meets his/her expectation. Motivation for this study primarily comes from the general hypothesis 

that a technology adopted in one cultivation practice and that meets an adopter‘s expectation is 

more likely to be used in other cultivation practices where it can be applied. This study considers 

application of GPS guidance system in precision agriculture. 

The ultimate aim of the empirical analysis is to identify a causal relationship between the 

variables of interest. There are substantial challenges to this task. Angrist and Pischke (2009) 

describe ‗cause and effect‘ as a fundamental question of interest in social science. Empirical 

studies attempt to capture cause-effect relationships by deriving statistical inferences under a 

different set of assumptions. Econometric models using observational data usually places broadly 

assumptions on the distribution, dependence, and heterogeneity of data (Spanos, 2007). 

Statistical inference can be drawn using different approaches, namely classical (frequentist), 

Neyman-Pearson, and Bayesian approaches. In classical and Bayesian approaches, researchers 

aim to learn more about an unknown set of parameters. A distinguished feature of the Bayesian 

approaches is that it applies prior information about parameter distributions along with the 

information from observed data to make inferences. Scholars suggest a major limitation of 

classical approach is its reliance on asymptotics for making inferences about estimates. Yet, 

these properties are in fact unknown for given, finite samples. Further, in empirical studies, 

researchers face practical problems such as low sample size, high dimensional parameterizations, 

and less tractable likelihood functions. In such cases, Bayesian models are preferred for 

computational reasons, or model selection and searching, or to add additional information about 

observational data using priors. Even in the situations with limited sample sizes and non-
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informative (diffuse) priors, different approaches are employed in Bayesian simulation-based 

econometrics to estimate posterior distributions (Koop et al. 2007). The model search and 

Bayesian model averaging procedures allow the investigation of wider set of possible models.  

In modeling the farmer‘s adoption decision of GPS guidance system in cotton precision 

farming using the 2009 Cotton Incorporated data set (Mooney et al., 2010), we face the similar 

constraints of low sample size due to missing information. We take a Bayesian simulation and 

model averaging approach towards specifying and estimating our econometric model explaining 

the decision to adopt GPS guidance systems. Specifically, among the factors that are broadly 

defined by economic theory and used in similar previous studies, we explore the relationships 

between key farm business and operator characteristics and the adoption of GPS guidance in 

cotton production. Based on the data for respective variables, we employ a different set of draws 

for resampling and simulation. We derive the parameter‘s posterior densities specifying priors 

and a likelihood function. Next, using posterior predictive densities (PPD) and highest posterior 

density intervals (HPDI), we present our results graphically. For two groups of adopters—those 

met expectation about GPS guidance system and those who did not and also allowing for 

interaction of farm size and income, we compare predictive densities of GPS guidance adoption 

decision. Our findings suggest that ―whether GPS guidance system met farmer‘s expectation‘‘ 

plays a role in frequency of application of such technology, following adoption.  

2. Data and Variable Definitions 

Data for this study comes from 2009 cotton precision farming survey conducted among 

Southern cotton growers of the 12 states (Alabama, Arkansas, Florida, Georgia, Louisiana, 

Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas, and Virginia) in the 

United States. In 2009, cotton farmers were asked to complete the Southern Cotton Precision 
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Farming survey to determine their use of PA technologies during 2007-2008 (Mooney et al. 

2010).  The questionnaire was mailed to cotton growers according to the list provided by Cotton 

Board, Memphis, TN. From 13,579 mailed surveys, 1,692 surveys were returned.  

Our emphasis is to assess the role of expectations on technology application and 

diffusion. Only the farmers who adopt GPS-guidance system can apply it to other aspects of their 

operation and can answer the question of whether this technology met their expectation. For the 

purpose of this research there were 545 records suitable for analysis. Around 88% of the GPS 

guidance system adopters met their expectation about GPS guidance in 2008. 

Our dependent variable of interest is a count variable, number of different farm activities 

that use GPS guidance system, which ranges from 1 to 5. Decision about involving GPS 

guidance system in such activities is estimated as a function of demographic and socio-economic 

variables including age, level of education, use of a computer in farm management, income, farm 

size, and farmer‘s additional information sources about GPS guidance. Summary statistics and 

variable definitions are shown in table 1. The average age of the farm operator is about 51 years, 

with about 15 years of formal education. To account for the computer use in farming, we include 

a dummy variable indicating whether computers are used in farm management activities. Farm 

household income was captured by the level of taxable income range that household earns from 

both farm and non-farm sources. Farmers chose among 6 income ranges. These include: (1) less 

than $50,000 (2) $50,000-99,999 (3) $100,000- $149,999; (4) $150,000-$199,999; (5) $200,000-

$499,999; (6) $500,000 or greater. As an indicator of farmer‘s additional information sources 

and participation in extension programs, we include number of university events attended by 

farmers as extension variable. On average, farmers attended 4 university events. However, this 

variable has large variation as indicated by large standard deviation of 6.62. Farm size is an 
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important variable in adoption and application studies. We captured farm size variation by 

including a dummy variable defining whether farm size is small (less than 1,000 acres of 

cultivated land in 2008) (D‘antoni et al., 2012). We also include a dummy variable occupation to 

define whether farming is a main occupation. In this study, if more than 50% of the total income 

comes from farming, then we consider farming as main occupation. Using such definition, 

around 89% of the GPS guidance adopters have farming as main occupation.  

The importance of cost saving variable is created to determine the farmer‘s perception 

about importance of input cost savings due to adoption. In the survey, farmers ranked the relative 

importance of fuel cost savings, labor cost savings, more time to do other things, and reduced 

operator fatigue/longer operating hours. Following D‘antoni et al. (2012), we computed the 

average ranking and relative importance of cost savings as follows: 

   
 

 
                                                           

Where    represents the average ranking of fuel cost, labor cost, and input cost ranks directly 

accrued to the farmer (operator). Similarly, average ranking for savings are computed as, 

   
 

 
                                                 

Importance of cost savings variable is defined as: 

                            {
          

            
 

When average rank of cost savings is greater than average rank of benefits directly related to 

operator, then                            variable is equal to one.  

Another interesting variable is perception about importance of precision agriculture. We 

created dummy variable based on farmer‘s response in the question ―Will Precision farming be 
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important five years from now?‖ Farmers that respond ―yes‖ were assigned a value of one (zero 

otherwise).  

3. Empirical approach 

3.1 Conceptual framework 

Adoption and frequency of application of a technology within a farm and whether 

continuation or abandonment of a technology is affected by various economic, demographic, and 

social factors. Let y represent number of activities involving GPS guidance system in a farm 

(applications), after adoption. Then the decision about number of such activities involving GPS 

guidance in a farm can be represented as:  

                    where    represents expectation of firm i about GPS guidance 

system (whether technology met expectation upon initial adoption),    and    represent income 

and size of the cotton farm, respectively. All other factors are included in vector    including 

farmer characteristics, (age, education level etc.), access to additional information, costs, and 

farmer‘s perception etc. Let us represent set of right hand side variables (vector of independent 

variables) as   .  

In our study, the variable of interest is the number of applications of GPS guidance 

system in a cotton farm. Thus instead of treating    as continuous variable, it is more appropriate 

to account for its count nature. A common method is to adopt a Poisson model assuming    is 

independent and Poisson distributed.  

    |                           

Probability density function of Poisson model is                [
        

  

    
] 

3.2 Empirical methods 
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We use Bayesian methods in estimating our model. Bayesian econometrics is based on rules 

of probability – usually the fundamental derived from joint, conditional, and marginal probability 

theories. In a regression model, researcher aims to assess the effect, often a coefficient of the 

variable(s) of interest. Coefficients are thus the parameters under study. Let y represent vector or 

matrix of data and   be vector or matrix of parameters. We are interested to learn about   based 

on the data, y. Bayes rule, the foundation of Bayesian econometrics, computes parameter 

vector/matrix as follows:    |   
   |      

    
 where    |   is the fundamental interest. Bayesian 

econometrics is a subjective view of probability where we argue that our uncertain about 

anything unknown can be expressed in terms of something known (data) and the conditional 

probability of the unknown given the known, a usual expression for posterior in terms of prior 

and likelihood function (Koop, 2003) as:    |        |      , where posterior density 

   |   is represented as proportional to probability density function (pdf) for the data given 

parameters of the model    |   (refer as likelihood function) and       as prior density. Any 

non-data information (what we already have information about    about   is referred as prior. In 

summary, the fundamental computation (posterior) is computed in Bayesian framework 

combining the likelihood function derived from data (pdf,    |  ) and prior (adding information 

that we have about distribution of     (Koop, 2003). Prediction of Bayesian econometrics is 

based on predictive densities often derived from the computational approaches of posterior 

simulations.  

 Discussing the practical implication of a choice between estimation procedures, Moeltner 

(2012) lays out three points: 1) under large sample size and well behaved likelihood function, 

classical and Bayesian are under same fundamentals, may be producing more or less identical 

results; 2) under large sample size but high dimensionality of  , a Bayesian approach is 
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preferable to derive posterior because it can be very difficult to derive estimates using maximum 

likelihood estimations alone; 3) under small sample size, Bayesian approaches can have 

substantial advantages, as we do not need to evoke asymptotics for interpretation and they can 

combine sparse data with subjective priors.   

 Under Bayesian theories, many computational tools have been developed, mainly based 

on resampling, redrawing, and simulations. In computational practice using Bayesian tools, some 

less informative/ flat (or diffused priors) are also being used in different classes of models 

(Koop, 2003). The Bayesian computational tools implemented in this study are described as 

follows. 

Independence chain Metropolis Hasting algorithm 

Generally, in the cases where conditional posterior kernel for the set of parameters is 

unknown, we need to approximate the unknown density and thus we cannot draw from usual 

Gibbs sampler. MH algorithm allows us to approximate those. We give a starting value, 

approximate the density, and draw the unknown parameter set (θ). Since our dependent variable 

is count, we consider a parameterized Poisson model. Basic Poisson density has a single 

parameter   to represent both mean and variance of the distribution.  

    |    
           

  

   
 , where           

      (1) 

X represents set of explanatory variables. We interpret parameter   as a fractional change in 

expected outcome as a unit change in explanatory variable. 

Likelihood function is given as: 

   |   
         (  

  )       (  
  )   

   
     (2) 

Using a multivariate normal prior for  , i.e,  



9 
 

              |  |
          

 

 
         

           (3) 

where k represents the dimension of  , along with other usual defined parameters in multivariate 

normal density, posterior kernel is given as                              : 

   |             
 

 
      

   
  

       ∏
         (  

  )       (  
  ) 

   

   

 
    (4) 

Since this is not the kernel of well-known density function, we cannot derive analytical 

results by deriving direct draws from it. We can apply Metropolis Hasting (MH) procedure. The 

idea of MH procedure is that we draw a candidate vector    from known generating function 

      and retain it with acceptance probability           , where    is old or current draw 

such that candidate generating function can be function of    and/or the data,       

    |        (Koop 2003; Moeltner, 2012). In this study, we used independence chain MH 

where candidate generating function is no longer a function of current draw but is indirectly the 

function of the data      . We used a t-density with a mean equal to mode of posterior kernel 

and variance set to MLE solution scaled by some scalar c (variance-covariance is inverted 

negative hessian matrix in MLE).  We used t with 10 degrees of freedom (  in t-density). In each 

round of sampling, MH runs a MLE procedure and collects   ̂ such that          (  ̂      )  

    |    . We used the independence chain MH in parameterized Poisson model. We followed 

a general convention of the procedure as suggested in (Koop et al., 2007; Moeltner, 2012). 

Markov Chain Monte Carlo Model composition (MC
3
)  

This is one of the popular methods used in Bayesian econometrics for model search and 

selection. We used this approach to assess key factors, top models, and present the model 

averaged results. Models are defined as different combinations of included variables. With 

possibilities of very big model space, 2 
(k-1)

 , MC
3
 visits more relevant models (those with more 

relevant variables) more frequently and thus allows identifying top models and inclusion 
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probabilities of each variable. After running MH algorithm to approximate the density of the 

posterior in application decision, we used the result draws of MH in MC
3
 framework to find the 

top models and inclusion probabilities. We present the top models each with frequency of model 

visited and the posterior results.  Further, we compare posterior model probabilities those 

computed empirically and analytically to check convergence.  

 Notice that demeaning the regressors, i.e., subtracting the mean from all of the 

explanatory variables, implies an orthogonality of intercept (i, column of ones) with all 

remaining regressors:        Demeaning does not change the interpretation of slope 

coefficients. Following standard convention (Fernandez et al., 2001), we chose an improper prior 

to the error variance and conjugate  -prior for our 10 by 1 coefficient vector.   

Thus, we can have prior for sigma:         
 

   and    |                    . We 

set         denotes k-1 variate normal density. If   is the representation of k-1 by 1 vector of 

binary indicators such that      indicates covariate     be included in the model and      

indicating it is excluded from the model, we can express conditionality on a specific model (i.e, 

combination of specific mix of regressors) as conditionality on    This allows us to search and 

select for top models defined on the basis of combination (mix) of covariates, i.e, most probable 

models from combination of specific variables. For detail derivations, I refer to Bayesian 

econometrics chapters (Koop, 2003; Koop et al., 2007). In MC
3
 algorithm,   is shown to be a 

tuning parameter. Fernandez et al. (2001) discuss about different options of   finding that     

is performing well in most cases. We follow     convention in defining our codes.  

Summarizing the role of this procedure,   can be used as showing indicator for which 

variable combination of model is appropriate. Draws of   can be utilized to examine the 

posterior inclusion probabilities for each coefficient, identify most probable models, and perform 
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convergence check comparing empirical and analytical model probabilities (Fernandez et al., 

2001). Ideally, the correlation coefficient between these set of probabilities should be close to 

one for well convergence.  

In defining algorithm and codes for empirical Bayesian tools, we used software Matlab, 

Mathworks. The ideas for our empirical models are based on the suggestions and ideas presented 

as examples in lecture notes (Moeltner, 2012) and as Matlab exercise presented in textbook 

website (Koop et al., 2007). 

Posterior Predictive Density (PPD) plots and Highest Posterior Density Intervals (HPDI) 

  Posterior predictive density plots are predictive density plots of dependent variable based 

on the repeated draws while plugging representative values of variables defined as per interest. 

This allows us to check the prediction difference due to certain specific effect.  Highest posterior 

density intervals (HPDI) are considered as methods to check linear restrictions of parameters 

(hypothesis testing). HPDI finds the bounds for a specific parameter, such that we can be 

            sure that the parameter lies between them. This allows us to checking our general 

hypothesis. Interpretation of PPD and HPDI will be clearer in results section. 

4. Results and Discussion 

We have utilized both numerical and graphical methods to present our results. Posterior 

estimation results in table 2 and 3 include posterior mean, standard deviation, p> 0 diagnostics, 

numerical standard errors (NSE), and inefficiency factor (IEF) obtained from posterior simulator. 

The measures NSE and IEF are considered as indicators of efficiency diagnostics in Bayesian 

models. The NSE captures simulation noise or error around a posterior construct of interest 

(usually mean) of given parameter.  An efficient simulator has low correlation across draws. 

Chib (2001) defines IEF as the ratio of squared nse under correlation over the squared nse under 
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independence and thus low IEF values implies more efficiency, the ideal being an IEF close to 1. 

Another interesting diagnostic we present is ―p> 0‖, which represents relative significance of the 

estimate. For instance, if posteerior mean is positive and p> 0 is high, it may imply higher 

significance. From the same logic, a low p>0 value and a negative posterior mean also indicates 

the left tail significance (negative effect) of the variable.  

Table 2 presents posterior results from independence chain metropolis hasting algorithm. 

This estimation is based on total 60,000 draws through MH and discards the first 10,000 draws 

(referred as burn-ins). Results based on posterior mean estimates in combination with p>0 value 

suggests a strong positive effect of expectation met. Further result suggests positive effects of 

income level, perceived importance of PA, farming as main occupation, and education on 

application decisions of GPS guidance system.  

Table 3 presents the posterior results obtained by MC
3
 conducting total 60,000 iterations 

while burning-in 50,000 and retaining 10,000. Last column of table 3 labeled as ―inclusion 

probabilities‖ can be interpreted as the probability that the corresponding variable should be 

included. As suggested in Koop et al., (2007), this is an informal but useful diagnostic in 

deciding whether the included variable has explanatory role in application decision. Results 

suggest that ‗expect’ has highest explanatory power followed by variables income, farm size, 

education, and occupation.  Thus, we can conclude that these variables are important in modeling 

application decisions of GPS guidance system.  

First two columns of the table 3 represent posterior mean and standard deviations of each 

regression coefficient, averaged across models. Apparently, table 4 suggests that the average 

posterior mean and standard deviations of table 3 are average of 190 models. Out of total 512 

model space, the MC
3
 procedure visits 190 models. Posterior mean, standard deviation and p>0 
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measures in the table highlighted the strong positive effect of expect variable. Other important 

variables that have positive effects are: level of income and education. Notice a strong negative 

effect of farm size in model averaged result in table 3 while its effect was not strong in table 2. 

This indicates that in the most of the models, having a small farm size negatively impacts 

application decisions. Posterior density plots for each coefficient are shown in figure 1. We 

presented highest posterior density intervals (HPDI) at 95% confidence level around the 

posterior mean in figure 2. A HPDI bound [0.3957, 1.082] around coefficient of expect suggest 

that it has clearly a positive and significant effect since ―no effect‖ (i.e.,      ) is clearly 

outside and left to the bound. HPDI of [-0.0004, 0.15358] on income level coefficient (   , [-

0.0008, 0.354] on   , [-0.0005, 0.5386] around     and a [-0.0001, 0.09] bound on    suggest 

more likely positive effects of income level, importance of PA, farming occupation, and 

education, respectively in usual cases. We can infer this because the left bound is almost zero 

while rest of the greater share of coefficient distribution is in positive range. The effect of farm 

size, on the other hand is strong negative as indicated by [-0.447, 0.0002] HPDI. This reinforces 

notion of negative impact on application due to small farm size.  

Table 4 shows most probable ten models based on frequency of model visited. Frequencies 

are included in last column. Notice all ten models include the expect variable. The most probable 

model includes expectation, income, and size variables. It‘s worth discussing the result of table 5 

in-lieu of the results in table 4. First column of table 5 shows model probabilities calculated by 

analytical method (by exact formula for posterior model probabilities, see Koop et al., 2007, 

equation 16.12 and 16.13) while second column present the probabilities estimated by MC
3
. 

Table suggests that the model averaged results are more or less accurately estimated and the 

problem of non-convergence is not detected.  
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Further we present predictive density plots for representative values of interesting variables 

in figures 3 and 4.  These plots allow us to examine the role of expectation and interactions of it 

with income and farm size on GPS guidance application decision within the farm, following 

adoption. Figure 3 (top panel) compares the predicted density of number of applications of GPS 

guidance adopters for large farms who met expectation versus who did not meet expectation. 

Figure 3 (bottom panel) compares the same for adopters of small farms. Both predictive densities 

suggest the role of meeting farmer‘s expectation on number of application decisions. Notice that 

when lower range of number of application, probability of application is higher for those do not 

met expectation (this may indicate initial adoptions) but the probability drops down quickly 

when it comes to more number of applications. In other words, predictive density plots of those 

‗who met expectation‘ is towards right side of the density for those ‗who did not meet 

expectation.‘ In both small and larger cotton farms, adopters who met expectation are likely have 

more frequency of application within the farm, for instance more applications—number of 

applications such as 4,5,6, 7 in the figures. Further, predictive densities presented in figure 4 

suggest the notion that the role of expectation interacted with larger farm size and high income 

level is even more persistent towards higher diffusion (more applications). Overall these figures 

reinforce the conclusion of important positive and significant effect of ‗technology meeting 

expectation‘ as suggested by estimates, HPDI test, and inclusion probabilities.  

5. Conclusions 

Post-adoption features play crucial role in technology diffusion both within and across the 

farm. Thus there is an inherent interest in post-adoption features of precision technologies. 

However, very few studies have analyzed such features. Utilizing a Cotton grower‘s precision 

farming survey in 12 Southern states of the U.S., we assessed GPS guidance system adopter‘s 
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application decisions, a post-adoption feature leading to within farm diffusion of a technology. 

Special attention is given to the role of farmer expectations, following adoption. We explore 

important factors influencing application decisions, testing the hypothesis that application 

decisions are influenced by expectations. We employed Bayesian approaches in model 

estimations. 

We expect this study to contribute at least in two ways. Firstly, it contributes to existing 

precision agriculture literature and adoption literature by including ‗farmer‘s expectation‘ 

variable in assessing post adoption features, particularly in assessment of within farm diffusion, 

which was not considered in most of the previous studies. We adapt inclusion of expectation in 

the model that defines farmer‘s decision about number of activities involving GPS guidance 

system (applications). Secondly, it introduces a Bayesian approaches and tools in precision 

technology adoption studies. The study introduces the applications of new alternative estimation 

procedures utilizing Bayesian simulation, search, and selection procedures which are getting 

popular in recent computational literature. While facing with empirical difficulties such as low 

sample sizes, less tractable likelihood functions, or higher dimensionality of parameters in the 

model, we can effectively utilize alternative Bayesian procedures to draw statistical inferences.  

Overall, our study suggests a significant positive role of meeting ‗farmer‘s expectation‘ about 

GPS guidance system in application decisions and its further diffusion within a cotton farm. This 

implies that the adopters of GPS guidance system and who met expectation are likely to apply 

the system more widely in their farm than those adopters who did not meet expectation. More or 

less consistent with previous studies, we found income level, farm size, and farming occupation 

as other important factors in modeling GPS guidance system adoption and application.  
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However, what factors a farmer considers in defining the expectation about a particular 

technology is yet interesting study as it could be more guided by psychological settings, his 

available information, or other determinants from socio-economic settings. We do not explore 

that in this study. Nevertheless given the perception about meeting farmer‘s expectation, our 

study provides useful suggestions: technology meeting expectation is important in diffusion and 

thus farming technology developers, social researchers, and modelers need to account for this.  
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Table 1: Summary statistics and variable definitions  

Variable  Definition Mean Std. 

Dev. 

Application Number of applications of GPS guidance system adopted in a farm 

(dependent variable, 1-5) 

2.41 1.30 

Expect Whether GPS guidance met farmer‘s expectation, following 

adoption (=1 if expectation met) 

0.88 0.32 

Income Farmer‘s level of income (1-6) 3.17 1.6 

Importance 

of PA 

Farmer‘s perception about importance of precision agriculture (=1 

if farmer perceives precision agriculture will be important, 0 else) 

0.95 0.22 

Occupation Whether farming is a main occupation (=1 if more than 50% of 

income is coming from farming) 

0.89 0.31 

Age Age of farm operator (in years) 51.32 11.90 

Education Level of education (in years) 14.71 2.27 

Computer 

use 

Whether computer is used in farm management (=1 if used, 0 else) 0.74 0.43 

Extension Number of university events related to farming, attended by farmer  3.66 6.62 

Farm size 

(Small) 

Whether farm size is small (<1000 acres under cultivation in 2008) 0.45 0.49 

Importance 

of cost saving 

Farmer‘s perception about cost saving (=1 if operator considers 

cost savings is important) 

0.26 0.44 
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Table 2: Posterior results (Independence chain Metropolis Hasting results) 

Variables Posterior 

Mean 

Standard 

Deviation 

P > 0 nse IEF 

Expect 0.341 0.105 1.000 0.001 4.661 

Income  0.034 0.018 0.971 0.000 4.569 

Importance of PA 0.160 0.148 0.864 0.001 4.579 

Occupation 0.159 0.100 0.950 0.001 4.659 

Age 0.000 0.002 0.864 0.000 4.527 

Education 0.024 0.013 0.950 0.000 4.670 

Computer Use 0.032 0.069 0.563 0.001 4.958 

Farmer‘s participation in Extension -0.002 0.005 0.970 0.000 4.831 

Farm Size (small) -0.099 0.059 0.672 0.001 4.902 

Importance of Cost Savings 0.006 0.064 0.368 0.001 4.525 

Total Number of Iterations 60,000     

Burn-in Iterations 10,000     

Acceptance Rates in MH part 0.330     
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Table 3: Posterior results from MC
3
 (Model averaged results)  

Variables Posterior 

Mean 

Standard 

Deviation 

P > 0 nse IEF Inclusion 

Probabilities 

Expect 0.727 0.177 0.997 0.002 1.077 0.997 

Income  0.075 0.054 0.731 0.002 12.654 0.732 

Importance of PA 0.030 0.122 0.083 0.004 12.788 0.091 

Occupation 0.097 0.187 0.257 0.006 9.318 0.262 

Age 0.000 0.001 0.020 0.000 1.114 0.035 

Education 0.027 0.034 0.461 0.001 8.731 0.464 

Computer Use 0.008 0.043 0.051 0.001 9.083 0.062 

Farmer‘s participation in 

Extension 

-0.000 0.002 0.017 0.000 3.865 0.050 

Farm Size (small) -0.158 0.168 0.002 0.006 11.532 0.538 

Importance of Cost 

Savings 

-0.000 0.026 0.021 0.000 1.000 0.041 

Sigma-squared 1.597 0.100 1.000 0.001 1.027  

Total Number of Iterations                               60,000 

Burn-in Iterations                                              50,000 
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Table 4: Top ten most probable models based on frequency of model visited 

Expect Income Importan

ce of PA 

Occupation Age Educ

. 

Computer 

Use 

Extension Farm 

Size 

Cost 

Saving 

Frequency 

of Model 

Visited 

1 1 0 0 0 0 0 0 1 0 1193 

1 1 0 0 0 0 0 0 0 0 1089 

1 1 0 0 1 0 0 0 0 0 1059 

1 1 0 0 1 0 0 0 1 0 930 

1 0 0 0 0 0 0 0 1 0 615 

1 0 0 0 0 1 0 0 1 0 421 

1 1 0 1 0 1 0 0 0 0 400 

1 1 0 1 0 0 0 0 0 0 353 

1 0 0 1 0 0 0 0 1 0 289 

1 1 0 1 0 0 0 0 1 0 271 
Total model space                                  512 

Number of visited models                     190 

Fraction of model visited                       0.371 

―1‖ indicates inclusion of respective variable in the model; ―0‖ indicates non-inclusion  

 

Table 5: Posterior model probabilities for top ten models 

 Analytical MC
3
 estimate  

(empirical) 

1 0.1193 0.1196 

2 0.1089 0.1064 

3 0.1051 0.1005 

4 0.0930 0.0783 

5 0.0615 0.0633 

6 0.0421 0.0444 

7 0.0400 0.0533 

8 0.0353 0.0378 

9 0.0289 0.0214 

10 0.0271 0.0264 

Correlation of empirical and analytical model probabilities, all visited model: 0.993 
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Figure 1: Posterior density plots for estimated parameters  
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Figure 2: Posterior densities with Highest Predictive Density Interval (HPDI, 95% confidence level)  
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Figure 3: Posterior predictive density (PPD) plots showing GPS guidance system application 

decisions: Effect of expectation  
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Figure 4: Posterior predictive density (PPD) plots of GPS guidance system application: Effect of 

expectation interacted with different level of income and farm size 
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