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Introduction 

The past decade has seen a resurgence of interest in modeling crop yields as a function of 

weather and other variables, and using those models to project possible impacts of climate 

change on crop yields (Chen et al. 2004; Schlenker et al. 2005; McCarl, Villavicencio, and Wu 

2008; Schlenker and Roberts 2009; Lobell, Schlenker and Costa-Roberts 2011; Fisher et al. 2012; 

Deschenes and Greenstone 2012; Tack, Harri and Coble 2012; Roberts, Schlenker and Eyer 

2012). Virtually all of this literature has focused on what can be interpreted as predictions of 

mean yields for some spatial unit such as a county or an agro-ecozone.   

 In this paper, our main goal is to contribute to the development of methods for analysis of 

climate impacts on yield distributions, using the partial-moment model of Antle (2010). We 

discuss why this model is useful for analysis of changes in distributional characteristics, such as 

asymmetry and excess kurtoses (i.e., “fat tails”). We demonstrate how to use this model to 

investigate the distributions of county-average winter wheat yields in the Pacific Northwest 

region of the U.S., using a 32-year panel data set. We use the model to test further several 

hypotheses Antle (2010) proposed about the asymmetric effects of exogenous variables on 

output distribution moments, and about the value of partial moments to characterize asymmetry. 

Then we investigate how the yield distribution may be impacted by future climate, using down-

scaled data from 14 Global Climate Models (GCMs) that are part of the fifth phase of the 

Coupled Model Inter-comparison Project (CMIP5). In addition, our analysis contributes to the 

literature on the distributions of county-level yields that has emerged from the literature on crop 

insurance and the issue of the normality of yield distributions.  

 Winter wheat in the PNW is an interesting case in that warming might arguably have a 

positive yield impact, at least for relatively small temperature increases, but these beneficial 
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effects of warming could be constrained by water availability which can come from rainfalls or 

irrigation in a semi-arid environment. Climate projections for the PNW show increases in mean 

annual temperature of between 2-8oC by the end of the 21st century, a reduction in the amount of 

precipitation falling as snow, and substantial changes to regional hydrology. Warming is likely to 

be accentuated in summer, but the seasonality of precipitation is likely to be amplified, and 

together with some winter warming could have beneficial impacts on winter wheat. Winter 

wheat is the major crop in PNW and about 16% of total U.S. production in 2010 was produced in 

this region (USDA 2013). Washington is one of the largest winter wheat producing states, and 

produced 118 million bushels (about 8% of total U.S. production) of winter wheat in 2010 

(USDA 2013).  

 The next section presents some further brief comments on the recent literature. Then we 

present the model specification we use, followed by a description of the data and econometric 

results. Next we present projects of future yield distributions, followed by concluding remarks.  

Previous Studies 

Previous studies have found mixed results of temperature, growing season degree-days and 

precipitation effects on mean crop yields, depending on crops and regions (Lobell, Schlenker and 

Costa-Roberts 2011; Schenker and Roberts 2009; Fisher et al. 2012; Deschenes and Greenstone 

2012; Reilly et al. 2003). One notable study by Schenker and Roberts (2009) found yields in U.S. 

increase with temperature up to 29oC for corn, 30oC for soybeans and 32oC for cotton, but that 

temperatures above these thresholds reduce yields. Using a quadratic yield-temperature function 

and country-level data,  Lobell, Schlenker and Costa-Roberts (2011) found larger negative 

effects of temperature and positive effects of precipitation in warmer countries for major crops 

(maize, rice, wheat and soybean), up to corresponding temperature and precipitation thresholds.  
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 Some studies have addressed changes in the variability of crop production in response to 

inter-annual variability in temperature and precipitation and found that the mean climate 

conditions and their variability appear to contribute in a statistically significant way to not only 

mean crop yields but to their variability, although the magnitude of this effect varies across crops 

and locations (Chen et al. 2004; McCarl, Villavicencio, and Wu 2008).  For U.S. maize yield, 

increased weather variability increases yield variability and decreases mean yield (Urban et al. 

2012).  

 Modeling yields distributions using higher moments has a long history, but Tack, Harri 

and Coble (2012) appear to be one of the few studies that have done this to investigate impacts of 

climate change. They used Antle’s (1983) moment-based approach combined with maximum 

entropy techniques to simulate how the distributions of county-average yields are affected by 

temperature and precipitation using cotton yield data from 1972 to 2005 for counties in Arkansas, 

Mississippi and Texas. However, a simple climate scenario of 1oC uniform increase in 

temperature is not enough to present the robustness of results to climate uncertainty (Urban et al. 

2012; Roberts, Schlenker and Eyer 2012).  

 There is a long history of econometric models of crop yields. Most such models 

characterize yield in a production function framework, specifying output or yield as a function of 

inputs and other farm characteristics, with effects of weather relegated to an error term. In 

contrast, the literature investigating effects of climate on yields takes a different approach, often 

specifying yield as a function of weather variables (typically, annual or seasonal mean 

temperature, total precipitation, and some other variables). In a number of studies, most 

management variables are not represented explicitly, a procedure which can  be justified to some 

degree by interpreting the model as a “reduced form,” but which may also lead to bias problems 
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caused by mis-specification (Ortiz-Bobea and Just 2013). The literature on modeling yield 

distributions saw key contributions by Just and Pope (1978) who proposed a heteroskedastic 

additive-error (location-scale) model, and Antle (1983) who proposed a more general moment-

based model of the mean, variance and higher-order moments. Other notable contributions 

include the model using the Beta distribution by Nelson and Preckle (1989) and the combination 

of that model with the Just and Pope’s model by Du, Hennessy and Yu (2012). Antle (2010) 

showed how the moment-based model can be decomposed into partial moments to provide a 

more detailed representation of asymmetry and how it is affected by inputs and other exogenous 

factors. Also relevant is the literature on modeling crop yield distributions for analysis of crop 

insurance, and the related literature which has addressed whether crop yield distributions are 

normally distributed (Just and Weninger 1999; Koundouri and Kourogenis 2011).  

The Moment-Based Model for County Average Yields 

We begin by emphasizing that the model we are presenting here is designed to represent the 

distribution of county-averaged yields across counties in the space and time dimension. This 

distribution must be distinguished from the distribution of farm-level yields, say, within a spatial 

unit such as a county or an agro-ecozone. Moreover, because the county-level dataset we use is a 

continuous panel over 32 years, we are able to incorporate the time dimension into the analysis, 

something that cannot be done with most farm-level data that are cross-sectional surveys 

covering one or a few growing seasons.  

 Following Antle (2010), the production function is defined as  ,y f z w , y  is yield, z  

represents farm-specific bio-physical and economic characteristics, and w  represents other 

stochastic factors that we interpret here as weather. The variables z  and w  are jointly distributed 

in a population of land units (call them farms in a county) for a specified time interval (call it a 
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growing season) according to  ( , | )z w  , where   is interpreted as the parameters of the joint 

distribution of z  and w , and can be interpreted as the representing the micro-climate for each 

county in each time period along with the distribution of other bio-physical and economic 

characteristics of the location. The micro-climates vary over space and time, themselves being 

realizations of a macro-climate. Thus, the county-average yield jtY  is itself a random variable 

that varies according to the county’s observable physical and economic characteristics, its micro-

climate realizations, and other unobservable random processes. Following this logic, we 

hypothesize that the county-average yield follows a distribution  ( | )jtY X  where jtX represents 

observable characteristics of the county j  in period t . We define the mean of this distribution as 

 1 jtµ X and the higher-order central moments as  i jtµ X  for 1i   . Likewise we can define the 

negative and positive partial higher moments as  i jtn X  and  i jtp X  as defined in Antle (2010) 

by taking expectations of negative and positive deviations from the mean.  

We use the preceding logic to formulate a model for the spatial-temporal distribution of 

county-average yields. Following Antle (1983), we specify a “linear moment model” for which 

the mean function is  

(1) 1  j j tjt tX uY    , j 1,, N , t 1,, T  

where tjY  is crop yield in the thj  county in period t , X
jt
 is a vector of independent explanatory 

variables, and u
jt

 is a disturbance term with a mean of zero. Note that from the preceding 

discussion, X
jt
  could include climate variables representing the micro-climate parameters  , 

and these parameters could be means as well as higher moments of observed weather realizations 

over space and time within a county.  Also note that while linear in the parameters, this model 
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can include quadratic terms, interactions and other functions of explanatory variables, as in a 

“flexible” functional form. The thi  moment function for county-average yields is, 

(2) u
jt
i  X

jt


i
 v

ijt
 , E v

ijt   0, for i  2, 1,? ?j N   , t 1,, T  

A key feature of the moment-based model is that it contains a different parameter vector i for 

each moment function, thus providing a general representation of the yield distribution without 

imposing arbitrary restrictions on its properties. However, the model specified with “full” 

moments as in (2) does restrict the way that conditioning variables X can influence asymmetry 

described as negative and positive deviations from a reference point such as the mean. To 

provide a more flexible way to characterize and estimate asymmetric effects of inputs on output 

distributions, Antle (2010) proposed a partial-moment model that is a generalization of the full-

moment model.  Based on equation (2), the partial-moment functions can be specified as, 

(3) | |t t
i

j j in i tju X v   , E v
ijt   0 , 2i   , 1,? ?j N   , t 1,, T for 0jtu    

(4) | |t t
i

j j i i ptp ju X v   , E v
ijtp   0 , i  2, 1,? ?j N   , t 1,, T  for 0jtu    

The flexibility of the partial-moment specification comes at a statistical cost of more parameters 

to be estimated, but this flexibility may be particularly important for representation of odd-order 

moments (Antle 2010). Using this model, the hypothesis of symmetric effects of inputs on 

moments can be tested by testing if in ip   for each moment i  or for all moments jointly. If this 

hypothesis is rejected, then the model can be used to evaluate the different effects that exogenous 

variables have on the negative and positive tails of the distribution.  

Because we use panel data, it is likely that the errors in equation (1) exhibit 

autocorrelation. Following the procedures described in Antle (1983), we use the standard 

transformation of the mean equation (1), 
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(5) 1 1 11 j j jt t t t jj tY Y         , j 1,, N , t 1,, T   

and we assume 

1jt jt jtu u     , | | 1    

' '
,

0, ', '
( )

, ', '
h l
jt j t

h l jt

j j t t
E

j j t t
 

 

 
   

 

Note that under this error structure and the moment function specification in (2), it follows that 

the moments of the errors jtu  are equal to the moments of the jt  at the sample means of the 

exogenous variables. Thus, the higher- moment functions can be estimated by transforming the 

mean equation and then applying the procedures described above to the resulting residuals. We 

note that in this specification, we assume away spatial autocorrelation; extension of this type of 

analysis to include spatial autocorrelation remains a topic for future research.  

 An important feature of this model is the use of residuals taken to powers and used as 

dependent variables to estimate higher moments. A potential problem with this procedure – like 

all econometric procedures using residuals – is that specification errors in the mean function can 

be transmitted to the higher moments. Tack, Harri and Coble (2012) proposed the alternative 

procedure of estimating zero-order moments to avoid this potential problem. Note, however, that 

while this approach makes sense for the entropy method they propose, which can be 

implemented with zero-order moments, their method does not provide a convenient way to 

summarize the effects of exogenous variables on behavioral-relevant properties of distributions, 

such as changes in dispersion or skewness. If one does want to compute conventional measures 

of dispersion or skewness, then estimating zero-order moments does not eliminate the bias 

problem. For example, one can compute the variance of a random variable as the difference 

between the zero-order second moment and the mean squared. Thus, if the mean is estimated 
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with bias due to mis-specification, that error squared will be transmitted to the estimated 

variance. To address the mis-specification problem, our approach is two-fold: first, we use a 

“flexible” functional form for the mean function; and second, we test for the robustness of the 

higher-order moment functions to alternative specifications.  

Data 

County level winter wheat yields, planted acres and irrigated acres from 1979-2010 in PNW 

were collected via the National Agriculture Statistics Services (NASS). In order to control soil 

quality, we include soil characteristic variables, including soil erodibility K-factor, slope length, 

salinity, fraction flood-prone, wetlands, fraction sand, faction clay, moisture capacity and 

permeability, for 2002, obtained from Deschenes and Greenstone (2012) and Fish et al. (2012).  

We constructed the index of irrigation management as the proportion of irrigated acres to the 

total winter wheat planted. Lacking input data at the county level, we use real per capita income 

and population obtained from the Bureau of Economic Analysis, and a time trend, as proxies for 

technical efficiency and management. 

Regarding weather variables, the standard agronomic approach for modeling temperature 

is to convert daily temperatures into degree-days, which represent heating units and is an 

important indicator to capture the nonlinear effect of temperature on crop yields (Thomas 

Hodges 1991; William Grierson 2002; Schlenker et al. 2005; Schlenker and Roberts 2009). 

Schlenker et al. (2006) and Deschenes and Greenstone (2012) use the definition of degree-days 

with the lower threshold equal to 8 °C and the upper threshold to 32 °C 1 and summed over the 

growing season to get the seasonal degree days.  Following Schlenker et al. (2006), we define the 

level beyond 32°C as the harmful threshold for crop growth, but note that for winter wheat in the 

                                                            
1 In other words, a day with a temperature below 8 oC results in zero degree days; a day with a temperature between 
8 oC and 32 oC contributes the number of degrees above 8C; a day with a temperature above 32oC degrees 
contributes 24 degree days.  
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PNW region such temperatures are rare. In the PNW, winter wheat is typically planted in 

September and October and harvested in July and August of the following year (USDA 2010). 

Based on crop growth processes, we defined the growing season as the reproductive period of 

winter wheat from November through April2 and use mean growing season temperature, total 

growing season precipitation and growing season degree-days with temperature between 8oC to 

32oC to represent the micro-climate of the county. These data were obtained from the CMIP5 

Statistically Downscaled for Western USA (http://nimbus.cos.uidaho.edu/MACA/).    

Another factor affecting crop growth in the PNW region is drought, defined as a pattern 

of temperature and precipitation that is unfavorable to crop growth. We constructed indices of 

extreme drought weather based on the information of Palmer drought severity index (PDSI), 

which uses a 0 as normal, with drought indicated by negative numbers. Using this index we 

constructed two dummies,  1Moderate Drought   if 2 0PDSI   ,  otherwise 0; and 

 1Severe Drought   if 2PDSI   , otherwise 0.  

Projected climate data 

Nearly forty CMIP5 GCMs were evaluated for their ability to capture spatiotemporal 

characteristics of climate in the PNW (Rupp et al. 2013). Irrespective of model skill in 

simulating historic climate, GCM projections run with two emission scenarios (RCP45 and 

RCP853) show substantial changes in seasonal climate of the PNW over the 21st century.  As 

shown in Table 1.  These changes include significant and unanimous increases in temperature, 

with most acute warming during the summer months.  Slight increases (5%) in annual mean 

precipitation are projected, with over 75% of the models showing an increase in precipitation.  

                                                            
2 We also test the model specification with growing season defined from November to June, and find consistent 
results to table 4 and table 5 in this paper.  
3 RCP85 refers to business-as-usual with an additional 8.5 W m-2 (~1370 ppm CO2 equivalent) by 2100 and RCP45 
refers to a particular experiment in which a “representative concentration pathway” (RCP) has been specified which 
leads to an approximate radiative forcing of 4.5 W m-2(Riahi, Gruebler and  Nakicenovic 2007).    
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However, models project that most of the increase in precipitation will be manifest during the 

cool season, with decreased precipitation during June to August. These projections are very 

similar to the previous generation of modeling results as documented by Mote and Salathe 

(2010).  

Daily output from 14 of the CMIP5 models was statistically downscaled using the 

Multivariate Adaptive Constructed Analogs method (Abatzoglou and Brown 2012) to 4-km 

resolution using the same training dataset used in our historical analysis. Downscaling was 

completed for both historical forcing (1950-2005) and for future emission scenarios, RCP45 and 

RCP85, from 2006 to 2100. Growing season degree-days and drought index were calculated 

following the same procedure as previously mentioned. 

Table 2 provides summary statistics of the data. To test whether higher moments of the 

micro-climate affect county-average yields, we also included the standard deviation of 

temperature over the growing season (precipitation variability cannot be calculated using the 

available data). Following other studies, we specify the model to be quadratic in mean 

temperature and total precipitation with interactions between these variables and the irrigation 

(Lobell, Schlenker and Costa-Roberts 2011; Schlenker and Roberts 2006; 2009; Roberts, 

Schlenker and Eyer 2012).  

Estimation Results and Hypothesis Tests 

Using the model and data described above, we can test a variety of hypotheses that are motivated 

by the agronomic, economics and climate change literatures.  

Yield distributions are stationary and exhibit autocorrelation 

To test the presence of unit root in panel data, we use Fisher-type tests (e.g., Augmented Dickey-

Fuller unit-root tests and Phillips-Perron unit-root tests) to test for unit roots of variables in the 
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mean equation, with the null hypothesis that all the panels contain a unit root (Choi 2001). As 

shown in table 3, Augmented Dickey-Fuller Unit-root test results show that all variables reject 

the null hypothesis of unit roots for all cross-sections of the panel, suggesting it is not necessary 

to difference the variable before being included in the estimation model. Although our data show 

that yields are stationary, there may be autocorrelation in the errors, e.g., due to the effects of soil 

moisture carry-over from the previous season. Wooldridge’s test for autocorrelation in panel data 

(Drukker 2003; Wooldridge 2002) rejects the null hypothesis of no first-order autocorrelation 

with a F-value of 40.46 (p=0.000). Thus, we apply the moment-based model to the 

autocorrelation-transformed data as described above (equation (5)).  

The mean and higher moments of county-level yield distributions are functions of climate 

variables  

Table 4 shows estimates of the mean, second-, third- and fourth- order full moment functions. 

All full moment functions are statistically significant functions of the exogenous variables except 

for the third full moment (see further discussion below), and many climate variables are 

statistically significant. The upper part of table 6 presents the calculated marginal effects and 

elasticities of variables with quadratic and interaction term in full moment estimations.   

Controlling for soil characteristics, the mean equation estimates show that a higher mean 

temperature increases winter wheat yield to a threshold of 3.4 oC and then reduces it, with an 

elasticity of effect of 0.45 at the sample mean. An important implication is that higher average 

temperatures of  more than1.4 oC would reduce yields, and as table 1 shows, mean temperature 

increases are projected to be larger than this as soon as the 2030s. The model shows that higher 

temperature variation also increases the crop yield. Although other studies show that variability 

of temperature increases the variance and reduces the mean yields (Urban et al. 2012; McCarl, 
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Villavicencio, and Wu 2008), table 4 shows that this is not the case for winter wheat production 

in PNW. One explanation for this finding is that in this system where the mean temperature over 

the growing season is around 2oC, an increase in temperature variation may shift outward the 

maximum potential yield, thus increasing the mean and also increasing the negative tail of the 

distribution as evidenced by the effect on the third full moment and on the partial moments.  

Similar to the effect of temperature, winter wheat will increase along with the total 

precipitation over the growing season to a threshold of 178 cm and then decline, and these results 

are consistent with previous studies of the relationship between precipitation and mean crop 

yield (Roberts, Schlenker  and Eyer 2012; Lobell, Schlenker and Costa-Roberts 2011; Schlenker 

and Roberts 2009). As expected, total precipitation and irrigation are substitutes. Controlling all 

other variables at their means, the marginal effects of precipitation on mean winter wheat yield is 

0.07 and the elasticity is 0.18.  

The results also show that crop yields decrease with extreme drought, although the mean 

effect is a relatively small, about 3 bushes per acre. In determining the mean crop yield, 

irrigation is another important factor. Controlling all other variables at their means, the marginal 

effect of irrigation on the mean crop yield is 31 with the elasticity of 0.37. Other variables 

including total population and per capita income are also statistically significant, suggesting that 

crop yield will increase if technology and management are improved. In addition, there is an 

inverted U-shape time trend to capture the effect of technological progress on crop yield.  

For higher order moment equation estimations, the third moment function is not 

statistically significant with the overall p-value equals to 0.12.  Therefore, we only interpret 

results of the second and fourth moment functions. As we discuss below, however, the third 

partial moments are statistically significant.  
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Total precipitation over the growing season has an inverted-U shape effect on the second 

and fourth moment of winter wheat yield distributions, by first increasing to some thresholds 

(86cm for the second and 89cm for the fourth moment) and then decreasing. With increased 

(reduced) “fat tails” by increased total precipitation (over a threshold), the probability of a 

county to have extreme yields, including low and high, will increase (decrease). Correspondingly, 

the variance of county yields will change.  

Unsurprisingly, increased severe drought will increase the variability and “fatness” of the 

tails of the yield distribution. Following our argument above, the 2012 drought in Midwest is an 

example of how extreme weather destroyed or damaged yields of corn and soybeans, resulting 

extremely low yields and high variability of county yield distributions.    

The second moment of winter wheat yield distribution is reduced by irrigation alone but 

will increase as precipitation goes up. The marginal effect of irrigation on the variance of winter 

wheat yield is about 43 considering the strong interaction effect, with a small elasticity of 0.12. 

In addition, mean temperature and moderate drought will also increase yield variability with the 

marginal effect of temperature equals to 3.7 and elasticity of 0.06.  

The effects of climate variables on yield distributions are asymmetric 

Table 5 shows estimates of the second, third and fourth partial moment functions along with the 

symmetry test results. The tests for equality of the negative and positive partial moment function 

parameters are all strongly rejected. Inspection of the parameters confirms that this is due to a 

logical pattern of effects of the climate variables. To account for the quadratic form of the model 

with the irrigation interaction, the marginal effects of temperature and precipitation were 

calculated for low and high values of the irrigation variable, and at the sample means of all 

variables (Table 6 and Figure 1). When irrigation is very low, the marginal effect of temperature 
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on the lower tail is positive, but this effect decreases as irrigation increases. Unlike the case of 

temperature effects, increased irrigation reduces the positive marginal effects of precipitation on 

the upper tail but increases the positive effects on the lower tail, consistent with the substitution 

between irrigation and precipitation.    

Higher temperatures and drought conditions increase the “fatness” of yield distribution tails 

As shown in table 5, mean temperature is statistically significant on the fourth partial moment. 

Higher temperature increases the fatness of the lower tail, resulting in higher probability of low 

yields. However, this effect is reduced by the strong interaction effect with irrigation.  As 

irrigation rate goes up, the marginal effect of temperature will decrease the fatness of the lower 

tail (please see the solid gray lines in figure 1).  The relationship between higher temperature and 

increased “fat tails” could also be explained by the effect from the severe drought index. As 

weather gets extremely droughty, the yield distribution is more likely to have “fat tails” (results 

from table 4), and more specifically, the “fatness” is stronger in the lower tail as shown in table 5.   

Projection under Future Climate Scenarios 

Since our statistical model captures the yield distributions in response to weather variables to a 

reasonable degree, we proceed to predict the shape of yield distributions for two periods, 1980-

2010 and 2006-2100, using CMIP5 projections for 14 GCMs and 2 emission scenarios (i.e., 

RCP45 and RCP85). By the end of this century, average temperature and total precipitation over 

the growing season are expected to increase in PNW, and inter-annual standard deviation of 

temperature is also expected to increase in most counties. Using parameters estimated from our 

statistical models, varying all climate variables and controlling all other variables at their sample 
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means, figure 2 shows the predicted historical yields under climate effects4. Compared to the 

observed historical yields, our predicted yields have the same trend as the observed one.   

Using projected future climate data from 14 GCMs, we predict the mean of winter wheat 

yield distribution under two emission scenarios (RCP45 and RCP85) as shown in figure 3. 

Generally speaking, the mean winter wheat yield is increasing under future climatic conditions; 

however, the magnitude depends on the GCMs and emission scenarios we choose. In most cases, 

the increasing trends under two emission scenarios are very close in the early period, while they 

are distinguished with each other by the end of this century for all cases and the mean winter 

wheat yield increases more under the higher emission scenario (RCP85), which projects a higher 

temperature and less precipitation (on average from table 1). Nevertheless, winter wheat 

production in PNW will benefit from future climate change partly because the current mean 

temperature is relatively low. Although all GCMs project increased temperature by 2100, it will 

continue to have positive effects on winter wheat production unless the combined effects of 

temperature and precipitation become unfavorable.  

Following the same procedure, we predict values of the second and fourth full moment 

under future climate scenarios in figure 4 and figure 5, respectively5.  On average, the variability 

of winter wheat yield is decreasing in some cases, while increasing in others. Compared to 

RCP45, the absolute values of changes in the second moment is much larger under RCP85, 

although the magnitude is depending on which GCM climate data we use.  Figure 4 also shows 

that it is necessary to use climate data from multiple GCMs when looking in future. Using one or 

                                                            
4 For estimation purpose, we transferred our data to correct serial correlation for the mean equation. Thus, to get 
correct predicted values of the mean yield equation, we use equation (5) and estimated parameters to predict the 

mean yield as, 1 1 1( ) j jt t jt jty X Xy       
. If using the lagged predicted error 1jtu 


 from equation (1), we 

then can get the correct predicted mean yield, 1 1jt jt jty X u     
.  

5 Our estimation model of the third full moment is insignificant, thus, we only predict values of the second and 
fourth moment.  
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two GCMs or emission scenarios is not sufficient to capture the uncertainty of future climate 

change. 

As shown in figure 5, predicted values of the fourth moment have a declining trend by 

the end of this century in most cases; however, they barely change when using climate data from 

GCM10 (i.e., inmcm4), which projects a large drop in precipitation and small increase in 

temperature (see table 1 for details). Even with a trend, the trend is flatter under RCP45 than that 

under the “business as usual” emission scenario (RCP85).  

In conclusion, results from figure 3, 4 and 5 show that future climate change will re-

shape the distribution of winter wheat yield in PNW, although the magnitude of this shift 

depends on which GCM climate data and emission scenario we use as inputs.  

Concluding Remarks 

In this paper, we first examine how historical climate conditions affect the distribution of winter 

wheat yield using the moment and partial moment based approaches developed by Antle (1983; 

2010); and then predict how future climate change will re-shape the yield distribution using 

projected climate data from 14 GCMs and 2 emission scenarios.   

The winter wheat yield distribution is substantially determined by climatic variables. 

Mean temperature and total precipitation affect not only mean yield, but also the second and 

fourth full and partial moments. Due to the asymmetric effects of climate variables on higher-

order full and partial moments, we found higher temperatures and drought conditions are likely 

to increase the variability, skewness and fatness of the lower tail of winter wheat yield 

distribution and total precipitation would increase the upper tail, up to a threshold.   

When predicting to the future, we found mean yield has an increasing trend across all 

GCMs and 2 emission scenarios. However, the direction of changes in second and fourth full 
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moment is not certain, depending on which GCM climate data and emission scenario we use. 

This result raises a concern for assessing climate change impacts in a regional or global study: 

how many and which GCM and emission scenario should we use?  Due to the uncertainty of 

future climate change implied by the climate projections, it would be an interesting extension to 

compare predicted results in this paper with that from other model groups, i.e., crop simulation 

models, particularly considering that GCMs have shown to under predict the magnitude of inter-

annual to decadal variability for the PNW in general (Sheffield 2013; Rupp et al. 2013). 
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Table 1 Average changes in precipitation and temperature in PNW climate  

GCM Model name % Precipitation (Seasonal) Temperature Change(oC) 

RCP45 

  2030s 2050s 2090s 2030s 2050s 2090s

1     bcc-csm1-1 89.7 100.9 92.7 1.4 2.1 2.7

2     BNU-ESM 103.9 113.9 105.5 2.0 3.3 3.9

3     CanESM2 95.1 105.5 105.6 2.3 3.4 4.3

4     CNRM-CM5 101.1 100.9 114.3 1.6 2.4 3.0

5 CSIRO-Mk3-6-0 91.2 87.6 92.2 1.3 3.2 3.7

6     GFDL-ESM2G 103.2 102.3 107.4 0.9 2.4 2.5

7     GFDL-ESM2M 108.2 98.0 100.3 1.2 1.4 1.8

9     HadGEM2-ES 95.0 96.1 92.6 1.6 3.3 4.3

8     HadGEM2-CC 96.5 89.3 93.3 1.6 3.0 3.9

10     inmcm4 100.1 93.5 90.3 0.6 1.2 1.9

11     MIROC5 99.7 97.3 94.2 1.4 2.4 3.1

12     MIROC-ESM 102.8 105.3 104.6 1.9 3.5 4.3

13 MIROC-ESM- 
CHEM 

97.3 102.3 108.3 1.8 3.5 4.3

14     MRI-CGCM3 102.9 100.9 100.7 0.9 1.3 2.2

Average 99.1 99.6 100.1 1.5 2.6 3.3

  RCP85 

1     bcc-csm1-1 89.9 103.5 90.6 1.9 3.2 5.1

2     BNU-ESM 101.4 114.3 109.8 2.2 4.3 6.5

3     CanESM2 94.3 104.8 112.8 2.4 4.5 7.1

4     CNRM-CM5 106.5 106.3 100.7 1.7 3.1 5.3

5 CSIRO-Mk3-6-0 94.6 88.1 91.9 1.5 3.8 6.1

6     GFDL-ESM2G 105.0 107.7 104.3 1.4 2.7 4.6

7 GFDL-ESM2M 96.4 97.3 97.1 1.5 2.6 3.9

9     HadGEM2-ES 94.7 84.1 82.9 2.0 4.2 7.2

8     HadGEM2-CC 95.5 88.5 89.2 1.8 4.5 6.9

10     inmcm4 96.3 86.9 94.6 0.9 2.0 3.3

11     MIROC5 99.5 101.8 102.9 1.5 3.0 4.8

12     MIROC-ESM 99.2 101.4 109.2 1.9 4.2 6.8

13 MIROC-ESM- 
CHEM 

101.8 106.8 106.1 2.0 4.4 6.9

14     MRI-CGCM3 98.8 103.6 98.3 1.0 1.9 3.7

Average 98.1 99.7 99.3 1.7 3.5 5.6

Note: All changes are benchmarked to average temperature and precipitation for 1950-2005. We use the average 
overgrowing seasons in 2011-2040, 2041-2070 and 2071-2100 as the mean for 2030s, 2050s and 2090s. Then we 
calculate the changes in temperature and precipitation across all 14 GCMs for each emission scenario and timeline. 
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Table 2 Statistics and descriptions of variables 

Variable Mean Std. Dev. Min Max
Winter wheat yield (bushes/acre) 68.86 24.19 0.00 136.80
Mean temperature (oC) 2.03 3.18 -7.65 9.22

Standard deviation (SD) of temperature 3.19 0.71 0.84 5.17

Total precipitation (cm) 69.56 59.85 7.10 348.25

Growing season degree-days 54.75 45.99 0.00 316.60

Irrigation rate 0.33 0.38 0.00 1.00
Total population (1000 persons) 81.50 183.59 0.68 1937.16
Per capita income (1000 dollars) 19.57 8.52 5.20 70.46
Moderate Drought 0.35 0.48 0 1
Severe Drought 0.15 0.35 0 1
Salinity  0.01 0.02 0.00 0.13
Fraction flood-prone 0.20 0.23 0.00 1.00
Wetlands 0.04 0.05 0.00 0.33
Soil erodibility K-factor 0.32 0.10 0.00 0.50
Slope length 361.82 204.74 0.00 1200.56
Fraction sand 0.02 0.04 0.00 0.25
Fraction clay 0.10 0.16 0.00 1.00
Moisture capability 0.18 0.03 0.09 0.32
Permeability 1.77 1.01 -0.69 5.70

Note: values of climate variables are reported corresponding to the growing season from November to 
April and degree-days are calculated with temperature between 8oC to 32oC; Per capita income is deflated 
using consumer price index.    
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Table 3 Fisher-type Panel Unit Root Tests 

Variable  Augmented Dickey-Fuller 
 Unit-root Tests

Phillips-Perron Fuller  
Unit-root Tests 

N T 

 Z-statistic Z-statistic   
Winter wheat yield  -12.92*** 

(0.000)
-22.20*** 

(0.000) 
104 25 

Mean temperature  -28.07*** 
(0.000)

-29.99*** 
(0.000) 

119 32 

SD of temperature -18.94*** 
(0.000)

-37.81*** 
(0.000) 

119 32 

Total precipitation -30.16*** 
(0.000)

-38.50*** 
(0.000) 

119 32 

Growing season degree-days -17.87*** 
(0.000)

-40.53*** 
(0.000) 

119 32 

Irrigation rate -3.34*** 
(0.0004)

-14.74*** 
(0.000) 

104 23 

Total population  -22.38*** 
(0.000)

6.17 
(1.0000) 

119 32 

Per capita income -2.18** 
(0.0147)

-2.46*** 
(0.0069) 

119 32 

Ho: all panels contain unit roots; Ha: at least one panel is stationary. p-values are in parentheses; * p<0.1, 
** p<0.05 and *** p<0.01  
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Table 4 Estimation Results of the 1st, 2nd, 3rd and 4th Full-moment Functions 

Variable 
1  2  3  4  

Mean temperature2 -0.136*** -0.675 6.262 -600.4 
 (0.0339) (0.525) (17.72) (558.3) 
Mean temperature 0.915*** 7.381** -178.8 6907.5 
 (0.270) (3.649) (127.7) (4331.0) 
SD of temperature 1.205* 5.837 -746.8* 10438.5 
 (0.640) (12.36) (440.6) (15753.8) 
Total precipitation 0.332*** 0.844* 26.49 1338.7** 
 (0.0394) (0.489) (17.67) (600.4) 

Total precipitation2 -0.000932*** -0.00489** -0.104 -7.483** 
 (0.000162) (0.00236) (0.0885) (3.081) 
IrrigationTotal precipitation -0.400*** 1.411** -58.57** 1189.7 
 (0.0527) (0.675) (25.82) (848.0) 
IrrigationMean temperature 0.245 -2.833 227.1 -4917.6 
 (0.391) (4.809) (161.9) (5126.5) 
 Growing season degree-days 0.0125 -0.172 9.748* -208.6 
 (0.0102) (0.183) (5.814) (172.3) 
Moderate Drought -0.0219 20.69* -56.11 10668.0 
 (0.580) (11.60) (411.6) (14203.2) 
Severe Drought -2.836*** 52.95*** -59.00 32468.7** 
 (0.759) (14.58) (487.0) (14712.6) 
Irrigation rate 58.60*** -49.16** 2067.4** -34842.4 
 (2.725) (23.83) (822.7) (24500.7) 
Total population 0.0212*** -0.0694 -0.0717 -134.6* 
 (0.00785) (0.0609) (2.224) (77.93) 
Per capita income 0.628*** 3.471 -117.7 4278.6 
 (0.207) (2.198) (83.96) (3096.1) 
Time trend 0.332** 2.038 56.25 1240.4 
 (0.130) (2.627) (97.83) (3661.8) 

Time trend2 -0.0108** -0.0929 0.530 -102.2 
 (0.00426) (0.0857) (3.207) (119.4) 
Constant -10.19** -30.38 9032.4** -191325.0 
 (5.102) (117.0) (4260.1) (150382.2) 
Soil variables Y Y Y Y 
N 2107 2107 2107 2107 
adj. R-sq 0.375 0.043 0.010 0.024 
r2 0.382 0.0542 0.0214 0.0349 
F 48.95 4.370 1.343 2.538 
p 0.0000 0.0000 0.123 0.0001 

Note: standard errors are in parentheses; * p<0.1, ** p<0.05 and *** p<0.01 
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Table 5 Estimation Results of the 2nd, 3rd and 4th Partial-moment Functions 

 
2  3  4  

 Na Pb N P N P 

Mean temperature2 -0.781 -1.236 -25.66 -29.25 -901.3 -759.2 
  (0.733) (0.798) (24.70) (22.71) (925.1) (687.2) 
Mean temperature 12.22** 1.878 472.5*** -60.06 17689.2*** -3963.9 
 (5.037) (5.255) (174.2) (165.1) (6730.4) (5629.0) 
SD of temperature 29.63 -16.49 1066.9 -550.7 40071.6 -17343.9 
 (19.73) (15.66) (743.6) (473.0) (31667.3) (15386.3) 
Total precipitation -0.433 1.852*** 11.33 52.31*** 1086.6 1571.5*** 
 (0.909) (0.645) (32.56) (18.53) (1301.1) (598.3) 

Total precipitation2 0.00259 -0.00891*** -0.0668 -0.241*** -6.332 -7.025*** 
 (0.00510) (0.00273) (0.183) (0.0791) (7.313) (2.604) 
IrrigationTotal precipitation 3.590*** -0.00743 104.4** -5.773 3399.7* -331.6 
 (1.367) (0.648) (50.73) (17.00) (1984.0) (498.3) 
IrrigationMean temperature -13.20* 2.674 -456.5* 80.81 -17534.3* 2670.8 
 (7.427) (6.863) (244.3) (203.6) (9263.0) (6642.4) 
Growing season degree-days -0.396* 0.123 -14.62** 4.819 -507.3** 170.5 
 (0.225) (0.275) (6.498) (7.876) (209.3) (241.1) 
Moderate Drought 27.11* 17.27 549.0 446.6 11163.0 12231.5 
 (16.25) (15.57) (551.7) (473.1) (20552.4) (15761.9) 
Severe Drought 69.98*** 43.90** 1633.8*** 1240.9** 38069.1* 34836.2* 
 (19.79) (20.27) (601.4) (593.5) (19874.9) (18346.9) 
Irrigation rate -131.0*** 9.727 -3439.6** 314.4 -104857.3** 11513.0 
 (40.67) (31.20) (1381.9) (868.0) (51326.9) (26030.3) 
Total population -0.0395 -0.0882 -3.271 -2.909* -170.5 -96.05* 
 (0.104) (0.0625) (3.772) (1.755) (148.0) (56.17) 
Per capita income 3.629 2.430 156.7 46.19 6487.4 622.0 
 (3.276) (2.293) (121.8) (59.67) (4825.7) (1715.1) 
Time trend 0.315 4.707 18.89 107.7 1402.0 2604.9 
 (4.135) (3.322) (155.9) (105.7) (6450.9) (3794.1) 
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Time trend2 -0.0341 -0.168 -2.623 -3.624 -149.9 -76.04 
 (0.136) (0.105) (5.126) (3.248) (210.8) (113.7) 
Constant -213.9 229.1 -11088.4* 6218.6 -476496.2* 182415.9 
 (172.0) (155.7) (6424.8) (4808.9) (265213.2) (161566.7) 
Soil variables Y Y Y Y Y Y 
N 1052 1055 1052 1055 1052 1055 
adj. R-sq 0.079 0.025 0.066 0.013 0.049 0.005 
r2 0.0997 0.0473 0.0876 0.0358 0.0712 0.0278 
F 2.958 3.135 2.222 2.336 1.699 1.796 
p 0.0000 0.0000 0.0007 0.0003 0.0193 0.0108 
Symmetry test 70.17 

[0.0000] 
 61.88 

[0.0000] 
 58.31 

[0.0000] 
 

Note: a  indicates the negative residual from the mean equation; b indicates positive residuals from the mean equation. * p<0.1, ** p<0.05 and *** 
p<0.01; Symmetry test with the Ho: the coefficients estimated from the positive partial moment function are equal to the coefficients estimated 
over the negative one; p-value of the symmetric test statistic is in square-parenthesis.   
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Table 6 Marginal Effects and Elasticity of Precipitation, Temperature and Irrigation on Winter 
Wheat Yield 

  Total precipitation Irrigation rate Mean temperature
  MFXa ELSb MFX ELS MFX ELS

1   0.0698*** 
(0.0201)

0.1756*** 
(0.0505)

31.2407*** 
(2.6509)

0.3739*** 
(0.0317)

0.4465 
(0.2808) 

0.0327 
(0.0206)

2   0.6302*** 
(0.2502)

0.3735*** 
(0.1483)

43.2652 
(34.8937)

0.1219 
(0.0983)

3.7095 
(4.3745) 

0.064 
(0.0755)

3   -7.3603 
(9.1154)

3.6256 
(4.4901)

-1546.204 
(1336.677)

3.6203 
(3.1297)

-78.3139 
(150.0708) 

1.1236 
(2.1532)

4   691.0952** 
(308.9291)

0.8792** 
(0.393)

37941.97 
(44889.39)

0.2294 
(0.2714)

2849.017 
(4881.207) 

0.1056 
(0.1809)

2  Pc 0.6107** 
(0.3092)

0.3725** 
(0.1886)

14.628 
(34.5768)

0.0424 
(0.1002)

-2.2475 
(6.4085) 

-0.0399 
(0.1139)

3  P 16.8207** 
(8.358)

0.549** 
(0.2728)

76.528 
(943.5162)

0.0119 
(0.1464)

-151.8616 
(188.4451) 

-0.1444 
 (0.1792)

4  P 484.5796* 
(247.7805)

0.702* 
(0.3589)

-6142.386 
(27708.64)

-0.0423 
(0.1908)

-6157.051 
(5958.744) 

-0.2598 
(0.2514)

2  Nd 1.1146** 
 (0.4504)

0.6376** 
(0.2577)

91.9713 
(67.374)

0.2501 
(0.1832)

4.691 
(5.9461) 

0.0782 
(0.0991)

3  N 36.5433** 
(16.4934)

1.0281** 
(0.464)

2897.021 
(2510.118)

0.3874 
(0.3357)

217.6215 
(199.4464) 

0.1783 
(0.1634)

4  N 1329.691** 
(657.9002)

1.4665** 
(0.7256)

96085.62 
(97419.61)

0.5037 
(0.5107)

8240.246 
(7478.226) 

0.2647 
(0.2402)

Note: standard errors are in parentheses; * p<0.1, ** p<0.05 and *** p<0.01; a indicates marginal effects; 
b indicates elasticity; c indicates positive residuals from the mean equation; d indicates the negative 
residual from the mean equation. 
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Figure 1 Marginal Effects of Mean Temperature and Total Precipitation Response to Irrigation Rate (Note: we control precipitation or 
temperature at their sample means when calculating the marginal effects in the graphs. Therefore, the marginal effects are only corresponding to 
changes of irrigation rate. In addition, marginal effects of the 3rd and 4th partial moments are rescaled by dividing 100 and 1000, respectively) 
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Figure 2 Predicted v.s. Observed Winter Wheat Yield (Note: the black line of “Predicted_CC” shows the predicted mean yield only 
varying climate variable and controlling all other variables at sample means; the gray line of “Predicted” shows the within sample 
prediction) 

55
60

65
70

75
80

W
in

te
r W

he
at

 Y
ie

ld
 (B

us
he

s/
ac

re
)

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

Observed Predicted Predicted_CC

Fitted values of observed Fitted values of predicted Fitted values of predicted_CC



31 
 

 
Figure 3 Predicted Mean of Winter Wheat Yield Distribution under Different GCM Climates 
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Figure 4 Predicted Value of the Second Moment under Different GCM Climates 
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Figure 5 Predicted Value of the Fourth Moment under Different GCM Climates (Note: values of the fourth moment are rescaled by 
dividing 1000)  
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