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Abstract. The standard neoclassical growth model with Cobb-Douglas production predicts a 

monotonically declining saving rate, when reasonably calibrated. Ample empirical evidence, 

however, shows that the transition path of a country’s saving rate exhibits a rising or non-

monotonic pattern. In important cases, hyperbolic discounting, which is empirically strongly 

supported, implies transitional dynamics of the saving rate that accords well with empirical 

evidence. This holds true even in a growth model with Cobb-Douglas production technology. 

We also identify the cases where hyperbolic discounting is observationally equivalent to 

exponential discounting. In those cases, hyperbolic discounting does not affect the saving rate 

dynamics. Numerical simulations employing a generalized class of hyperbolic discounting 

functions that we term regular discounting functions support the results. 
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1. Introduction 

 

This paper considers the question of whether or not hyperbolic discounting adds enough 

flexibility to an otherwise standard growth model for the saving rate to exhibit non-monotonic 

dynamics. It is well known that the standard neoclassical growth model with Cobb-Douglas 

technology and isoelastic preferences – one of the most frequently used frameworks in 

macroeconomics – exhibits a monotone transition path of the saving rate. For a reasonable 

calibration, it exhibits a monotonously declining transition path as an economy develops. This 

property, however, is counterfactual. As discussed in Section 2, ample empirical evidence 

suggests two regularities: an increase in the saving rate as an economy experiences growth of 

per capita income; a non-monotone transition path, typically featuring a hump.  

 

The standard growth model’s counterfactual prediction of a monotone declining transitional 

path of the saving rate is unappealing. Often, analyses of the effects of tax shocks are 

concerned with effects on transitional paths. Or to think of another example, the analysis of 

development policy typically focuses on transitional dynamics. Therefore, a growth 

framework should be flexible enough to allow for a non-monotonic saving rate dynamics. 

 

The problem of the standard growth model’s counterfactual prediction of transitional 

dynamics has been addressed in the literature. Gómez (2008), among others, provides a 

solution by allowing for a more flexible CES technology. In this paper, we provide a different 

solution in that we allow preferences to exhibit hyperbolic discounting. Both approaches add 

enough flexibility to the otherwise standard growth model for the saving rate to exhibit non-

monotonic dynamics. 

 

In the standard neoclassical growth model, preferences are independent of time. Empirically, 

however, there is abundant evidence for the pure rate of time preference to decline over time, 

i.e., for hyperbolic discounting (cf., e.g., Ainslie 1992, and Laibson 1997). Discount rates are 

time sensitive, exhibiting a “present bias”: people tend to put especially high weight on a 

given gain/loss delayed in the near future as opposed to the same gain/loss delayed in the 

more distant future. In this paper, we investigate the effects of hyperbolic discounting on 

transitional paths of the saving rate in three frameworks. The first one is a “standard” 

framework in which sophisticated households fully commit to their initial intertemporal 
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consumption plans in spite of hyperbolic discounting. In the second framework, along the 

lines of Caliendo and Aadland (2007) as well as Findley and Caliendo (2011), naïve 

households, who are not aware of their future impatience, are revising their initial 

intertemporal consumption plans at every instant in time. In the third framework, we 

reconsider Barro’s (1999) Cournot-Nash equilibrium without commitment. Employing these 

frameworks, our analysis gives rise to the following results.  

 

First, in most cases, hyperbolic discounting adds enough flexibility to the otherwise standard 

growth model (with Cobb-Douglas technology) for the saving rate to exhibit non-monotonic 

dynamics. In some cases, however, hyperbolic discounting is observationally equivalent to 

exponential discounting, so that the saving rate dynamics is monotone. Second, observational 

equivalence occurs in two cases: in the framework with naïve households when utility is log-

linear and the discounting function belongs to the class of regular discounting functions (see 

below); in the Cournot-Nash framework when utility is log-linear and the rate of interest is 

constant over time. Third, we introduce the class of regular discounting functions. This class 

captures cases in which the second order growth rate of the discount rate is a constant 

multiple of the first-order growth rate. Most discounting specifications employed in the prior 

literature are special cases of the regular discount function, notably exponential discounting 

(i.e., the discount rate is constant), less-than-exponential discounting, classical hyperbolic 

discounting (Ainslie 1992), or zero discounting. 

 

This paper is related to several previous studies on saving rate dynamics. Gómez (2008) and 

Smetters (2003) introduce a CES production technology with elasticities of substitution 

differing from one. They show that a CES between capital and labor below (above) unity 

might imply a hump shaped (inverse-hump shaped) transitional path of the saving rate. 

Gómez (2008) provides a more general analysis than Smetters (2003) in the presence of CES 

technology. Litina and Palivos (2010) introduce endogenous technical progress. Both Gómez 

(2008) and Litina and Palivos (2010) show conditions under which there is overshooting 

(undershooting) behavior of the transition paths of the saving rate. Antràs (2001) shows that 

the introduction of a minimum consumption level (Stone-Geary preferences) may also imply 

a hump shaped savings profile. In his model, the intertemporal elasticity of substitution (IES) 

rises over time, which first weakens the substitution effect and later on, the substitution effect 

dominates the income effect, thereby generating a hump shaped transitional path. He also 
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provides econometric evidence in support of the non-monotonic transitional path of the saving 

rate both in OECD countries and in a larger cross-section of countries.  

 

The previous literature demonstrates that the saving rate may exhibit a non-monotonic 

transition path in a neoclassical growth model with CES technology. In our paper, we 

maintain Cobb-Douglas technology. However, in contrast to the prior literature, we allow 

preferences to exhibit hyperbolic discounting. We contribute to the existing literature by 

showing that the introduction of hyperbolic discounting is an alternative explanation for an 

increasing or non-monotonic transition path of the saving rate. The main mechanism works 

via the Euler equation. Hyperbolic discounting adds a discounting effect to the substitution 

and income effects. As the pure rate of time preference declines over time, the difference 

between the rate of interest and the rate of time preference increases which, ceteris paribus, 

raises the return on savings. Unless observational equivalence occurs, the discount rate effect 

gives rise to an increasing saving rate or to non-monotonic dynamics of the saving rate – even 

with Cobb-Douglas production technology.  

 

Section 2 provides empirical evidence supporting two stylized facts: as an economy grows, its 

saving rate tends to rise; the transitional path of a country’s saving rate behaves non-

monotonically over time. In addition, Section 2 briefly discusses the theoretical argument 

behind the non-monotonic dynamics of the saving rate in the presence of a discounting effect. 

Section 3 presents the benchmark model with hyperbolic discounting under full commitment. 

Transitional paths of the saving-rate are shown to be non-monotonic, even in the case of 

logarithmic utility. In addition, we introduce a generalized class of hyperbolic discounting 

functions that we term regular discounting functions. In Section 4, we focus on a model with 

naïve consumers having a short planning horizon – in the absence of commitment. We also 

briefly review Barro’s (1999) Cournot-Nash equilibrium. In both frameworks the saving rate 

may exhibit non-monotonic transition paths, but we also identify cases in which hyperbolic 

discounting is observationally equivalent to exponential discounting. Section 5 concludes, and 

the Appendix contains a number of derivations and proofs of propositions.  
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2. Empirical evidence of the behavior of the saving rate, and the theoretical argument 

 

2.1 Empirical evidence 

 

Data on gross national saving rates suggest two regularities: as a country develops, its saving 

rate tends to increase, at least over some range; and, over time, saving rates may behave non-

monotonically (hump-shaped). Neither of these regularities can be explained by a (reasonably 

calibrated) standard neoclassical growth model with Cobb-Douglas production, as shown by 

Barro and Sala-i-Martin (2004, p.135 ff.). 

 

Stylized Fact 1. As a country develops, its saving rate tends to increase.  

 

Maddison (1992) provides evidence for 11 countries whose savings account for about half of 

world savings. He finds that over the last hundred-twenty years, the saving rates of all but one 

country (U.S.A.) increased substantially over time. Table 1, which is based on Barro and Sala-

i-Martin (2004), provides empirical evidence for national saving rates. 

 

Table 1. Gross national saving rates (percent) 

Period Australia Canada France India Japan Korea U.K. U.S.A. 

1870-89 11.2 9.1 12.8 - - - 13.9 19.1 

1890-09 12.2 11.5 14.9 - 12.0 - 13.1 18.4 

1910-29 13.6 16.0 - 6.4 17.1 2.4 9.6 18.9 

1930-49 13.0 15.6 - 7.7 19.8 - 4.8 14.1 

1950-69 24.0 22.3 22.8 12.2 32.1 5.9 17.7 19.6 

1970-89 22.9 22.1 23.4 19.4 33.7 26.2 19.4 18.5 

Source: Barro, Sala-i-Martin (2004, p.15) 

 

In all countries, except for the United States, present saving rates are significantly above their 

levels in late nineteenth century. Similar evidence is seen in East Asia for the last half 

century. With the exception of the Philippines, gross national saving rates have increased in 

the Asian “Tiger-countries” over the last fifty years, as shown in Table 2. 
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Table 2. Gross national saving rates in East Asian countries (percent) 

Period Hong Kong Taipei Singapore Malaysia Thailand Indonesia Philippines 

1960’s 31  14  8  25   22  7  17 

1970’s 32  27  35  29   26  19  21 

1980’s 34 31  42  33   26  33  20 

1993 37  28  50  41   35  34  14 

Source: Leipziger and Thomas (1997) 

 

Along the same lines, Loayza et al. (2000) show for 98 countries that private saving rates rise 

with the level of real per capita income. We now turn to: 

 

Stylized Fact 2. The transitional path of a country’s saving rate behaves non-monotonically. 

For most countries, the respective transitional path exhibits a marked hump. 

 

That the gross saving rates are lower in the eighties than earlier is a well documented 

regularity (cf. Shafer et al. 1992). Schmidt-Hebbel and Servén (1999) as well as Antràs (2001) 

demonstrate that for most of 24 OECD countries, as well as for the OECD as a whole, the 

transitional paths of the saving rates exhibit a hump when considering the last half century. 

Maddison (1992) shows that in many countries, after World War II, the saving rate exhibits 

overshooting. Similar trends are reported by Bosworth et al. (1991), Christiano (1989), Chari 

et al. (1996), and Tease et al. (1991). 

 

Below, we show that when preferences exhibit hyperbolic discounting, a neoclassical growth 

model with Cobb-Douglas technology is, in many cases, consistent with those stylized facts. 

 

2.2 The theoretical argument, in brief 

 

As a country develops, the real rate of interest declines, giving rise to both a substitution and 

an income effect. As the return on saving declines, ceteris paribus households tend to lower 

the saving rate over time, 0s  (substitution effect). On the other hand, the desire for 

consumption smoothing requires a household in an economy distant from the steady state to 

consume more relative to actual income. As the economy develops, however, consumption 

relative to income declines. As a consequence, this income effect tends to raise the saving rate 
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over time, 0s . In general, these two effects may give rise to a complicated dynamics of the 

saving rate. With Cobb-Douglas production, however, it has been demonstrated by Barro and 

Sala-i-Martin (2004) that the dynamics of the saving rate is always monotonic – a 

counterfactual prediction, as shown in Section 2.  

 

The consideration of hyperbolic discounting in the standard framework adds a third effect that 

we term discounting effect. Over time, as the pure rate of time preference declines, the 

difference between the rate of interest and the rate of time preference increases, ceteris 

paribus. This causes the “return on savings” to increase, which lowers the substitution effect 

and tends to increase the saving rate. Taking the discounting effect into account, in addition to 

the substitution and income effects, may give rise to an increasing saving rate or to non-

monotonic dynamics of the saving rate – even with Cobb-Douglas production technology.  

 

This argument, while reasonable, holds true only in the absence of observational equivalence. 

In some cases, as analyzed below, a growth model with hyperbolic discounting is 

observationally equivalent to the corresponding standard growth model with a constant rate of 

time preference. That is, for every pattern of the hyperbolic discount function, there exists a 

constant rate of time preference that gives rise to exactly the same transitional dynamics of 

the saving rate (and those of the other variables of the model). In these cases, hyperbolic 

discounting does not affect the saving rate dynamics – specifically, hyperbolic discounting 

does not imply a non-monotonic saving rate dynamics. 

 

 

3. The neoclassical growth model with hyperbolic discounting 

 

We modify the standard neoclassical growth model in that we allow the pure rate of time 

preference to depend on time. Time is considered a continuous variable in our model.
2
 The 

most prominent example of a time-dependent rate of time preference occurs with hyperbolic 

discounting. Psychologists and behavioral economists argue that an individual discounts the 

near future at a greater rate than the distant future (cf. Ainslie 1992 or Laibson 1997). We 

argue below that, in the presence of commitment technologies, the resulting model is not 

                                                 

2
 For simplicity of notation, we let subscript t  denote time. 
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observationally equivalent to the standard neoclassical growth model (see also Gong et al., 

2007). In the subsequent section, we extend the analysis to a framework without commitment. 

 

3.1 The benchmark model  

 

3.1.1 Production 

 

Let the aggregate production function be 

 1( ) , 0 1t t t tY K A L , (1) 

where 
tY  is (date t-) output, 

tL  labor input, 
tK  capital input, and 

tA  an index of labor-

augmenting productivity that evolves through exogenous disembodied technical change: 

 , 0t

tA e . (2) 

We consider a closed economy so that national income accounting implies 

 
t t tY C I , (3) 

where 
tC  is aggregate consumption. The capital stock develops according to  

 , 0t t t tK Y C K , (4) 

where  is the rate of depreciation of capital.  

 

We now embed the described technology into a market economy with perfect competition. 

The representative firm chooses inputs so as to maximize the profit for a given real wage, 
tw , 

and capital rental rate, 
tR . Given equilibrium in the factor markets, the rental rate must satisfy 

/t t tR Y K , and the following no-arbitrage condition holds: 
t tr R , where 

tr  is the rate 

of return on the market for loans. 

 

The dynamics of the production sector is best described by the ratios of output to capital and 

consumption to capital. We denote the transformed variables by /t t tz Y K  and /t t tx C K .
3
 

In the following, dating of variables is suppressed unless when needed for clarity. Let 
y

g  

                                                 

3
 The transformation of variables allows for expressing the dynamic system as well as the phase diagrams in the 

Appendix in a simple way: growth rates become linear functions of ( , )x z . However, we continue to work with 

untransformed variables in the further frameworks below.  
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denote the growth rate of some variable y . Then the capital accumulation equation becomes 

Kg z x . Furthermore, the growth rate of output equals (1 )( )Y Kg g n , with 

0n  being the population growth rate. Combining both growth expressions, the dynamics of 

the production sector is given by 

 ( 1)( ) (1 )( )z Y Kg g g z x n . (5) 

 

3.1.2 A representative household 

 

The representative household has nt

tL e  members, each inelastically supplying one unit of 

labor per unit of time. We allow the pure rate of time preference, 
t
, to depend on time. 

Function 
t
 has the following properties. At 0t , 

0
. Following the literature on 

hyperbolic discounting, we allow 
t
 to decline over time: 0t

, and limt t
, where 

0  represents a lower bound on the instantaneous discount rate. Specifically, 
t

. 

We define a household’s discount factor by 0

t

sds

tD e , implying that the absolute 

instantaneous rate of time preference at date t is given by t
t

t

D

D
. 

 

A household’s preferences are described by an instantaneous CRRA utility function with 

absolute elasticity of marginal utility of consumption equal to . Facing given market prices 

and equipped with perfect foresight the sophisticated household chooses a consumption plan 

0t t
c  so as to  

0

1

0

0

0

1
max

1

s.t. , given,

lim 0,

t

t

s

t
t tc

t t t t t t t

r ds

t t

c
U L D dt

K r K w L c L K

K e

 

where 
tc  is per capita consumption, and the inequality is the No-Ponzi-Game condition. To 

ensure boundedness of the utility integral, we impose the following parameter restriction: 
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 (1 ) lim (1 ) 0.t tn n  (6) 

 

Define the Hamiltonian by 

 

 
1

( , , , ) ( )
1

t
t t t t t t t t t t t t

c
H c K t L D r K w L c L . 

 

Households are impatient but not shortsighted. They are aware of the fact that they are more 

impatient in the near than in the distant future (sophisticated households). In this section, 

households are considered to be able to fully commit to their optimal consumption plans over 

time. Below, we discuss commitment and analyze different frameworks without commitment. 

An interior solution satisfies the Keynes-Ramsey rule, 

 t t t t t

t

c r z

c
 (7) 

 

and the transversality condition 0lim 0

t

sr ds

t tK e .  

 

3.1.3 Dynamics of the economy  

 

Notice that 
x c Kg g n g . We can therefore describe the dynamics of the economy by two 

differential equations in the endogenous variables x
 
and z : 

 

 

1
( ) ( )

( 1)( ) (1 )( )

t t t t t t

t t t t

x z z x n x

z z x n z

, (8) 

 

where 
tx
 
is a jump variable, and 

tz
 
is a predetermined variable. 

 

Figure 1 shows the 0x - and 0z  lines in ( , )z x  space. The decline of the instantaneous 

discount rate makes the 0x  line shift downwards over time. The figure also shows a steady 

state. A (non-trivial) steady state (SS) of the system is a point * *( , )z x , with both coordinates 
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strictly positive, such that * * * *( , ) ( , ) 0x z x z z x , where an asterisk marks steady state values 

of variables. If parameter restriction (6) holds, there exists a nontrivial steady state with: 

 

 * *, , ( )z x n . (9) 

 

 

Figure 1. 0x - and 0z  lines in ( , )z x  space, 
0 1t t t  

 

In Figure 1, points A and B do not represent steady state equilibria. As the 0x  line shifts 

over time (and becomes stationary only asymptotically), the dynamical system exhibits an 

asymptotic steady state, SS, which is a saddle point and is saddle point stable by the fact that 

1.
4
 Figure 1 also shows that, both 

tx  and 
tz  decline along the transition paths, as a 

growing economy develops. 

 

3.2. Behavior of the saving rate under commitment 

 

At date t, the (gross) saving rate equals 1 /t t ts x z . As an economy develops, whether the 

saving rate increases or decreases (possibly non-monotonically) along the transition path 

depends on whether 
tz  declines by more or by less than 

tx .
5
 Generally, the behavior of the 

saving rate is complicated along the transition path as a substitution effect opposes an income 

                                                 

4
 The determinant of the Jacobian of the dynamical system at the steady state equals 

* *
(1 ) / 0x z . 

5
 Due to strict concavity of the production function, as tK

 
increases, /t t tz Y K

 
decreases. 
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effect. As an economy develops, 
tz  declines and so does the rate of interest. This substitution 

effect lowers the return on savings and tends to lower the saving rate. At the same time, as 
tz  

declines, the difference between current and permanent income decreases. That is, relative to 

income, consumption declines. This income effect tends to raise the saving rate.  

 

For a model with Cobb-Douglas production and without hyperbolic discounting (
t

), it is 

well known that, as an economy develops, the saving rate monotonically decreases (increases) 

if 
1 * * *1 /s x z  (if 

1 * * *1 /s x z ) (Barro, Sala-i-Martin 2004, p.135 ff.). For a 

reasonable calibration,
6
 if 17  – which is considered plausible

7
 – the saving rate 

monotonically declines as an economy develops. This implication, however, is counterfactual 

in the sense that more developed economies often exhibit a higher saving rate than less 

developed economies, as shown in Section 2. 

 

Moreover, the discounting effect opposes the substitution effect, giving rise to non-monotonic 

behavior of the saving rate.  

 

Proposition 1. Consider the neoclassical growth model with Cobb-Douglas production and 

exponential discounting ( 0t
). Then the transition path of the saving rate is monotone.  

In the case of hyperbolic discounting ( 0t
) with full commitment, however, the transition 

path of the saving rate can also exhibit non-monotone transition paths. Specifically, along the 

transition path, the saving rate may overshoot or undershoot towards its steady state level.  

 

Proof. See Appendix A. 

 

As shown in Appendix A, the sign of 
ts  depends on the sign of 

( ) / ( ) ( )t t n . Specifically,  

 

 sgn sgn( )t ts . (10) 

 

                                                 

6
 Barro and Sala-i-Martin (2004) suggest 0.3, 0.02, 0.05, 0.02, 0.01.n

.
 

7
 Hall (1988) favors a value of 5 . 
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Notice that / ( )t t
. Consider the case of exponential discounting: / ( ) 0t t

. 

In this case, the sign of 
t
 does not change over time, and the saving rate is either 

monotonically decreasing or monotonically increasing over time. 

 

In case of hyperbolic discounting, / ( ) 0t t
, several possibilities emerge. First, 0  

is large enough so that 
t
 is positive for all t. In this case, the saving rate monotonically 

declines, as was the case without hyperbolic discounting.
8
  

 

Second, 0t
 initially (for large 

0
), and 0t

 as time proceeds and
t
declines. In this 

case, the saving rate initially declines but then increases towards its steady state level (see 

Appendix A, Figure A1). Intuitively, while the lower interest rate provides the household with 

an incentive to reduce its saving rate, this incentive is outweighed by a larger incentive to save 

as the pure time preference rate declines, thus resulting in a higher saving rate ceteris paribus. 

Thus, households reduce savings by less as compared to the situation with a constant discount 

rate. Over time, the weight of the substitution effect declines, and the income effect takes 

over, eventually. At this point, the saving rate starts to increase towards its steady state value. 

 

Third, if the stable arm, in a phase diagram, shifts downward over time, but still has a positive 

slope in steady state, the saving rate first increases but starts to decrease as of a specific date 

(see Appendix A, Figure A2).  

 

In this framework, hyperbolic discounting is never observationally equivalent to exponential 

discounting. That is, given a hyperbolic discount function, there does not exist a constant rate 

of time preference that gives rise to exactly the same transitional dynamics of the saving rate. 

To see this, we employ standard methods to derive per capita consumption.
9
 To simplify the 

exposition, we assume 0n , 1tL , 1. Let 
0

( ,0)
t

sR t r ds . Then, per capita 

consumption becomes: 

 

                                                 

8
 Similarly, if o  is so small that t  is negative from the beginning, the saving rate monotonically rises over 

time. This possibility, however, requires an unrealistically high value of . 

9
 See Appendix B for a similar derivation. 
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( ,0) ( ,0)

0
0

0

R R t

t t

k w e d e

c D
D d

. (11) 

 

The denominator of (11) equals some constant in both cases, exponential- and hyperbolic 

discounting. Observational equivalence requires the factor 
tD  in case of exponential 

discounting to equal a constant ( ) times the discount factor in case of hyperbolic 

discounting for all 0t : 

 0 , 0

t

s ds
te e t . (12) 

 

Requirement (12), however, is satisfied if and only if 
t

 for all 0t .
10

 That is, under 

hyperbolic discounting, when 
t
 declines over time, the condition for observational 

equivalence, (12), is never satisfied. As a consequence, the saving rate may exhibit non-

monotonic transition paths. 

 

Observe that the results of Proposition 1 presume that the representative agent has access to 

commitment technologies and fully commits to his decisions. In Section 4 below, we discuss 

the significance of this assumption, and we consider a framework without commitment.  

 

3.3 Regular discounting 

 

In the following, we specify a rather general class of discounting functions that encompasses 

many special cases employed in the previous literature. Following the concepts employed by 

Groth et al. (2010), we call this class the class of regular discounting functions. 

 

The first-order growth rate of the discount factor is given by / 0D t t tg D D . The 

second-order growth rate of the discount factor is given by 
2, / /D D D t tg g g . Following 

Groth et al. (2010), we call discount functions regular, if  

                                                 

10
 Take the natural logarithm on both sides: 

0

ln
t

s
t ds = constant. Taking the derivative with respect 

to time yields: 
t
. 
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2, , 0D Dg g , (13) 

 

where the constant  is called the dampening coefficient. Given 
0 1D  and 

0 0 , the 

second order differential equation (13) has the unique solution 

 1/
(1 ) ,

1
t tD t

t
. (14) 

The regular discount functions (14) encompass a number of special cases, depending on the 

specific value of the dampening parameter. First, if 0 , 
t

. This is the case of 

conventional exponential discounting. Second, if 0 , the discount rate declines in t. This is 

the case of hyperbolic discounting. If 1 , 1
(1 )tD t . This is the case of classical 

hyperbolic discounting.
11

 As the dampening parameter rises, the rate of decline of the 

discount rate becomes larger, and as the dampening parameter approaches infinity, the 

discount rate declines to zero instantly. Table 3 summarizes regular discount functions. 

 

Table 3. Regular discount functions 

     
  t    tD  

Regular discounting (general)   / 1 t   1/
(1 )t  

Exponential discounting  0
  

   
t

e  

Classical hyperbolic discounting 1
  

/ 1 t   1/ 1 t  

No-discounting    0
        

1 

 

 

Figure 2 shows time paths of the discount rate for various values of the dampening 

coefficient. The figure illustrates that regular discount functions capture the whole spectrum 

                                                 

11
 In the original, classical psychological literature, hyperbolic discount functions like 1 / t  or 

1
(1 )t  were 

used (Ainslie, 1992). 
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of discount functions between exponential discounting, less-than-exponential (that is, 

hyperbolic) discounting, and no discounting at all.
12

 

 

 

Figure 2. Time paths of the discount rate with 
0 0.03 . 

 

With regular discounting, the growth rate of the saving rate becomes: 

 

 
/ 1

(1 )
t

s t t

z t
g z x n . (15) 

 

With this notation at hand, we are now prepared to study numerical simulations for transition 

paths of the saving rate.
13

 

 

3.4 Numerical simulations of the saving rate for regular discounting functions 

 

To assess the impact of hyperbolic discounting on the transition path of savings, we consider 

an adverse shock on the predetermined state variable z. At time zero, starting from an initial 

                                                 

12
 If 0 , lim 0

t t
 for regular discounting functions. For the more general framework discussed above, 

the limit, denoted by , was allowed to take on a positive value as well. 

13
 Regular discounting satisfies Farzin’s (2006) condition for Weitzman’s “stationary equivalence” property to 

hold also under a time-declining discount rate function (cf. Farzin 2006, p.528). Thus, there does exist a 

permanently sustaining constant consumption (utility) path under a time-declining discount rate. This does not, 

however, imply observational equivalence, as discussed for (11) above. 
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steady state, we increase the value of the predetermined variable, z , by 50%.
14

 The resulting 

time paths show the non-linearized transitions of the saving rate (and other variables of 

interest) from far away from the steady state to the steady state equilibrium. These transition 

paths are interpreted as showing the development of the saving rate (and other variables) as a 

country develops, i.e., as its stock of capital increases (z decreases).
15

   

 

Table 4. Baseline values of background parameters 

Preference parameters 0.03 , 3   

Production parameters 0.3 , 0.02 , 0.05  

Population growth  0.01n  

Note. The time unit is one year; the dampening coefficient, , varies across simulations. 

 

Figure 3, presents transition paths of the saving rates for the baseline values of background 

parameters and for various values of . The calculations of the transition paths are based on 

the Relaxation Algorithm (Trimborn et al., 2008). 

 

 

                                                 

14
 With 0.3 , this shock corresponds to a decline in the capital stock by 71%. As the capital stock increases, z 

decreases because of the concavity of the production function.  

15
 We employ the Mathematica implementation of the Relaxation Algorithm (Trimborn et al., 2008) to produce 

the numerical results documented in this paper. The code is available from the authors upon request. Notice that 

the shock is introduced on the state variable, not on a specific parameter. All parameters take on the same values 

before and after the shock. That is, the shock is introduced only to allow the Relaxation Algorithm to calculate 

transition paths. 
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Figure 3. Time paths of the saving rates with different values of the dampening factor. 

 

The steady state value of the saving rate depends on the value of the dampening factor. If 

0 , limt t
, and the associated steady state saving rate is denoted by 

*
s ( 0.17) . If, 

however, 0 , lim 0t t
, and the associated (higher) level of the steady state saving 

rate is denoted by 
**s ( 0.22) . The baseline value of the elasticity of marginal utility is 3 . 

Hence, with exponential discounting ( 0t
), the saving rate monotonically decreases 

along the transition path towards 
*

s .  

 

With hyperbolic discounting, however, transitional paths exhibit a non-monotonic pattern. 

Whether the saving rate over- or undershoots depends on the value of the dampening 

coefficient. Intuitively, if the dampening coefficient is “low,” the rate of interest declines at a 

higher rate than the discount rate. In this case, the optimal consumption growth rate, as given 

by (7), declines over time. That is, the household shifts consumption from the future to the 

present, thereby lowering the saving rate initially. Over time however, as the consumption 

growth rate declines, the saving rate increases towards its steady state level. In contrast, if the 

dampening coefficient is “high,” the rate of discount declines at a higher rate than the interest 

rate, i.e., the optimal consumption growth rate, rises over time, and the household shifts 

consumption from the present to the future. So, initially, the saving rate is increased. Over 

time however, as the consumption growth rate rises, the saving rate decreases towards its 

steady state level. 

 

The key feature of this model with full commitment – allowing for nonmonotonic saving 

behavior – consists in the fact that the (effective) discount rate, 
t
, declines over time. As 

discussed below, this feature may also occur in frameworks without commitment. 

 

Two more points are worth emphasizing. First, hyperbolic (regular) discounting generally 

implies a non-monotonic transition path of the saving rate, as observed empirically. Second, 

with a “low” value of the dampening coefficient, the saving rate increases over (most of the) 

time as per capita income grows. This is true for realistic parameter values, as given in Table 

2 (specifically 3 ). However, with a “high” value of the dampening coefficient, the saving 

rate exhibits a hump, as is consistent with Stylized Fact 2.  
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Corollary 1. Consider the neoclassical growth model with Cobb-Douglas production and 

logarithmic utility with hyperbolic discounting ( 0t
) under full commitment. The saving 

rate regularly exhibits non-monotonic transition paths.  

 

It is important to emphasize that the result of non-monotonic transition paths of the saving 

rate is not due to the fact that 3 . As long as the representative agent commits to her 

decisions, non-monotonicity of the transitional paths of savings is also present for a log-linear 

utility function. Figure 3A displays the transitional paths of the saving rate – parallel to those 

of Figure 3 – but with 1 rather than 3 . 

 

 

Figure 3A. Time paths of the saving rate with different values of the dampening factor under 

log-linear utility. 

 

4. Behavior of the saving rate under hyperbolic discounting without commitment 

 

In the previous section, households are assumed to commit to their decisions. Partial or full 

commitment is a more convincing case than one is inclined to think at first consideration. 

There is an abundance of commitment technologies. These include all illiquid assets. "All of 

the illiquid assets … have the same property as the goose that laid golden eggs. The asset 

promises to generate substantial benefits in the long run, but these benefits are difficult, if not 

impossible, to realize immediately." (Laibson 1997, p.445) Specific illiquid assets include 

retirement plans, or assets that are associated with a steady stream of benefits but are hard to 
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sell, like houses. As emphasized by Laibson (1997, p.445), in the FED publication Balance 

Sheets for the U.S. Economy 1945-1995, two thirds of domestic household assets are 

considered illiquid – not even taking into account social security wealth or human capital. 

 

Notwithstanding these arguments, we consider the case of no commitment in the following. 

The proceeding sections are concerned, respectively, with sequential planning of households 

with short planning horizons, and with Cournot-Nash equilibria, both in the absence of 

commitment. 

 

4.1 No commitment and short-term planning 

 

In the previous section, we argue that in a model with hyperbolic discounting and full 

commitment, it is the time-dependency of the discount rate that yields non-monotonic saving 

paths. In the prior literature, it is argued that under hyperbolic discounting – in the absence of 

commitment – one ends up with a constant effective discount rate so that the model is 

observationally equivalent to the respective model without hyperbolic discounting (Findley 

and Caliendo 2011). Here, we argue that this, while quite possible, is for the most part not the 

case. 

 

In this subsection, we consider a framework with a naïve household who is not aware of its 

time-inconsistent preferences, that is, of its future impatience. The household, endowed with a 

short planning horizon, h , re-optimizes at all 
0t t , thereby altering its original (time-

0t t ) 

intertemporal consumption plan. Will we still encounter non-monotonic transition paths of the 

saving rate? The answer depends on whether or not the discounting function is regular and 

utility is log-linear. As shown by Findley and Caliendo (2011), short-term planning perfectly 

offsets hyperbolic discounting in case of log-linear utility.  

 

In the following, the exponential discount function is characterized by
16

 

 

                                                 

16
 In the previous section, we denoted the discount factor by 0

s
ds

D e . Here we generalize this notation to 

allow for any initial t : ( , )D t . 
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s

, ( )
( , ) t

ds
tD t e e  , 

1
( , )

h
t h

t

e
D t d , (16) 

 

while regular hyperbolic discount functions are characterized by 

 

 

1/

( 1 )/

, ( , ) 1 ( ) ,
1 ( )

1 (1 )
( , ) .

( 1 )

s
t

ds

s

t h

t

D t e t
s t

h
D t d

  (17) 

 

( , )D t  represents the discount factor at date  as seen from date t .   

 

Every household only plans for some period of finite length, h, and we allow a household to 

re-optimize at every date t. The procedure applied follows Caliendo and Aadland (2007), and 

Findley and Caliendo (2011). In order to simplify notation, we consider 0n .  

 

At every point t , a household solves a short-horizon (fixed-endpoint) control problem: 

 

 

0

0

0

0

1

0 0 0

0 0

1
max ( , ) , [ , ]

1

s.t. , given, [ , ]

0.

t h

c

t

t

t h

c
D t d t t h

k r k w c k t t h

k

 (18) 

 

In (18), 
0( , )D t  is a general discounting function, where discounting is pursued from the 

viewpoint of 
0t . The solution to (18) is planned consumption from the perspective of 

0t . The 

(fixed-endpoint) terminal condition 
0

0
t h

k  indicates that the household is concerned only 

with the “next” h periods. It does not imply that wealth (capital) is actually equal to zero at 

0t h , as the household’s planning horizon is continuously sliding forward. As the planning 

horizon is sliding forward, previous consumption plans are invalidated, and the household re-

optimizes and updates its consumption plan at every t. That is, although a household plans to 
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exhaust its resources within h periods, it never actually exhausts its resources in finite time, as 

it keeps re-planning its consumption plans.
17

  

 

As demonstrated in the Appendix, application of the Maximum principle to (18) yields 

 

 

0

( , )

1 1
( , )

,

( , )

, given .

t h
R t

t
t

t
R tt h

t

t t t t t t

k w e d
c

D t e d

k r k w c k

  (19) 

 

Equation (19) presents optimal consumption of a short-sighted household with hyperbolic 

discounting, as captured by the denominator. In (19), 
tc  is derived as the envelope of 

infinitely many initial values from a continuum of planned time paths (cf. Appendix). 

 

The important insight from (19) consists in the fact that the denominator accounts for the 

propensity to consume out of total wealth. The denominator, however, does not necessarily 

depend on the shape of the discounting function. Consider 1. Then, the propensity to 

consume depends on the integral, that is, on the area below the discounting function. In other 

words, if the integrals of different discounting functions – for example an exponential- and a 

hyperbolic discounting function – yield the same values then these discounting functions are 

observationally equivalent.  

 

Proposition 2. Consider a naïve household with a short planning horizon, h , and with 

logarithmic utility, 1. Then, every framework with regular hyperbolic discounting, under 

( , | )D t , is observationally equivalent to a corresponding framework with exponential 

discounting, under ( , | )E t , for some 
max

0, , where . As a consequence, the 

saving rate follows a monotone transition path in spite of hyperbolic discounting. 

 

                                                 

17
 Suppose the discount rate is constant in time. Then, only in case h approaches infinity, the transversality 

condition induces the household to pick the optimal consumption path. As h approaches infinity, the short-term 

planning model approaches the neoclassical standard model. Once h is finite, however, the short-term 

consumption plans differ from the standard optimal neoclassical consumption plan. 
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Proof.  Let ( , | )E t  denote the exponential discount function, and let ( , | )D t  be the 

regular hyperbolic discount function with 0 . The upper bound 
max

 is implicitly defined 

by max( , |1) ( , | )
t h t h

t t
D t d E t d . Figure 4 provides intuition for the proof that is 

analytically given in the Appendix. || 

 

The idea of the proof is depicted in Figure 4. For 0 , ( , ) ( , )
t h t h

t t
D t d E t d h . 

For (0,1]  and 0 , ( , | ) ( , | )
t h t h

t t
D t d E t d . In Figure 4, it can easily be 

seen that for all 0,1 , there exists 
max

0,  for which the condition for observational 

equivalence holds. Specifically, for 1, 

 

 ( , | ) ( , | ) , 0.
t h t h

t t
D t d E t d t  (20) 

 

 

Figure 4. Observational equivalence of exponential and regular hyperbolic discounting under 

log-linear utility. 

 

It follows from Proposition 2 that under hyperbolic discounting, there always exists a constant 

discount rate – independent of calendar time – for which consumption and saving rate 

dynamics are equal to the ones in a model with exponential discounting. As a consequence, 

under the conditions of Proposition 2, a model with regular hyperbolic discounting does not 

exhibit a non-monotonic saving rate dynamics. This result is in stark contrast to Proposition 1 
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and Corollary 1, where it is shown that under full commitment and an infinite planning 

horizon, the saving rate dynamics may be non-monotonic – even with logarithmic utility.  

 

A special case of Proposition 2 refers to classical hyperbolic discounting ( 1) and was 

previously discussed already by Findley and Caliendo (2011). 

 

Corollary 2. (Classical hyperbolic discounting) 

Consider a naïve household with a short planning horizon, h , and with logarithmic 

utility, 1. Then, classical hyperbolic discounting is observationally equivalent to 

exponential discounting. As a consequence, the saving rate follows a monotone transition 

path. 

 

As argued by Findley and Caliendo (2011), under the conditions of Corollary 2, short period 

planning perfectly offsets the effects of classical hyperbolic discounting.  

 

Proposition 2 does not capture that case of non-regular hyperbolic discount functions. 

Remember, following Groth et al. (2010), we call a hyperbolic discount function regular, if 

the second order growth rate of the discount rate is a constant multiple of the first-order 

growth rate. In contrast, we consider a hyperbolic discount function to be non-regular, if the 

second order growth rate of the discount function is a time-dependent multiple of the first-

order growth rate. That is, 

 

 
',t

t t t t

t

 for some , ' 0t t . (21) 

 

Corollary 3. Consider a naïve household with a short planning horizon, h , and with 

logarithmic utility, 1. Then, non-regular hyperbolic discounting is not observationally 

equivalent to exponential discounting. As a consequence, the saving rate may follow a non-

monotonic transition path. 

 

With a general path of 
t
, (20) is not satisfied, as ( , | )

t h

t
D t d  depends on calendar time, 

while ( , | )
t h

t
E t d  does not. Therefore, with non-regular hyperbolic discounting, 



25 

 

according to (19), the propensity to consume out of total wealth is time-varying, and so is the 

saving rate.  

 

It is not that clear, though, whether or not the case of non-regular hyperbolic discounting – in 

a short planning horizon framework – is a natural case. In a model with cohorts, however, one 

may argue that 
t
 differs among, say, younger and older households. 

 

Proposition 3. Consider a naïve household with a short planning horizon, h  and with 

1. If the rate of interest is not constant over time, no regular or non-regular hyperbolic 

discounting function allows for observational equivalence with exponential discounting. As a 

consequence, the saving rate may
18

 follow a non-monotonic transition path. 

 

Proof.  With a constant rate of interest, considering (19), an equivalence condition similar to 

(20) can be formulated, namely: 

 

 
1/ 1/

( , ) ( , ) , 0
t h t h

t t
D t d E t d t . 

 

This condition can be satisfied for regular discount functions. Once the rate of interest 

becomes time-dependent, however, the corresponding equivalence, 

 

 
1 1 1 1

( , ) ( , )

( , ) ( , )
R t R tt h t h

t t
D t e d E t e d  , (22) 

 

is not generally satisfied for all 0t . Both the left hand side and the right hand side integrals 

become time-dependent. As, over the planning horizon, different profiles 1/
( , )D t  and 

1/( , )E t  are multiplied by the same time-dependent factor 
1

( , )R t

e , (22) is generally not 

satisfied for all t . || 

 

                                                 

18
 For specific parameter constellations, the saving rate may still follow a monotone transition path. Therefore we 

are careful to state “…the saving rate may follow…”. 
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To summarize, with full commitment, hyperbolic discounting always leads to the possibility 

of a non-monotonic saving rate dynamics. This result does not generally carry over to a model 

of naïve consumers with a short planning horizon. In the latter case, regular discounting with 

logarithmic utility or with a constant rate of interest rules out the case of a non-monotonic 

saving rate dynamics – due to observational equivalence. 

 

4.2 No commitment and Nash equilibrium 

 

In this section, we focus on a Nash equilibrium involving a sophisticated representative 

consumer. Each date- t -self decides how much to consume and how much to save so that 

neither the present nor any future self will have an incentive to deviate from the equilibrium 

path. We employ the perturbation method developed in Barro (1999). We consider the same 

setup and utility integral as with full commitment, above. For the sake of simplicity, we 

assume a constant population, 0n , 1tL . In order to simplify notation, we employ three 

discount factors: ( , ) ( )
t

t s ds ; ( , ) ( )
t

R t r s ds ; ( , ) ( )
t

t s ds . For regular 

discounting, 1( , ) ln 1 ( )t t , with 
0lim ( , ) ( )t t , and 

( , )
( , )

tD t e . 

 

 
1 1 1

( , ) ( , ) ( , )1 1 1

1 1 1

t t tt t tc c c
U e dt e dt e dt . (23) 

 

For a small , we approximate
19

 

 

 
1 1

( , )1 1

1 1

ttc c
U e dt . (24) 

 

Next, we consider the growth rate of (per capita) consumption: 

 

                                                 

19
 Between  and , we consider consumption constant, and the discount factor equal to one. Below, we are 

interested in the limit, as approaches zero. 
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 t t t

t

c r

c
, (25) 

where we call 
t
 the effective discount rate (to be calculated). Due to hyperbolic discounting, 

t
 is generally different from the discount rate 

t
. If 

t
 varies over time, the transition path 

of the saving rate may exhibit a non-monotonic pattern. In contrast, if it turns out that 
t
 is 

constant over time, then the transitional path of the saving rate follows a monotone pattern, 

and the model with hyperbolic discounting becomes observationally equivalent to a model 

without hyperbolic discounting. In the proceeding analysis, we follow Barro (1999) to derive 

t
 in a Cournot-Nash equilibrium.  

 

Taking into account (25), we re-write (24) as: 

 

 

1 1
( , ) ( , )

1 1
( , )1 1

1 1

R t t

tc c e
U e dt  . (26) 

 

At any , for a given path of 
t
, consumption is chosen so as to maximize (26). The resulting 

optimality condition becomes 

 

 
1 1

( , ) ( , )
( , ) ( , )

1 0
R t t

t t
e e dt  , (27) 

 

where the derivation is given in the Appendix. We employ (27) to derive a more instructive 

(but still implicit) path of 
t
 from the optimality condition (27). A quick look at the 

optimality condition shows that without hyperbolic discounting – ( , ) ( )t t  – for (27) 

to hold, the term in square brackets must be equal to zero, that is, 
t

. This is the 

conventional case of the neoclassical standard model with exponential discounting.  

 

Differentiating (27) with respect to  (see Appendix) yields: 

 

 
1

( , ) ( , ) ( , )( , ) ( , )
, ( , ) .

( , )

R t t tt t dt
t e

t dt
  (28) 
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The effective discount rate turns out to be a weighted average of all future discount rates, 

( , )t . As demonstrated in Barro (1999), the weights ( , )t  reflect the sensitivity of c  with 

respect to a marginal increase in k . This result leads directly to 

 

Proposition 4. Consider the neoclassical growth model with Cobb-Douglas production and 

hyperbolic discounting. Under no commitment, for the Cournot-Nash equilibrium,  

(i) observational equivalence occurs if and only if 1 or 
tr r ; 

(ii) the transition path of the saving rate may exhibit a non-monotonic pattern if 1 and 

tr r . 

 

Proof. Statement (i) of Proposition 4 states the conditions for observational equivalence. In 

this framework, by observational equivalence we mean a situation with a constant effective 

discount rate: 
t

. In this case, the standard neoclassical growth model – with a constant 

discount rate equal to  – can perfectly mimic the model with hyperbolic discounting, with a 

constant  (probably different from ). Under conditions (i),  is independent of time, as 

( , )t  only depends on the difference ( )t , but not on calendar time. Similarly, if 1 

and r r , all discount factors in (28) depend on the difference ( )t , but no discount factor 

depends on calendar time. Therefore, under conditions (i),  is independent of time, and 

observational equivalence occurs. 

Statement (ii) presents necessary requirements for the saving rate to exhibit non-monotonic 

transition paths. The weights ( , )t  depend on calendar time (not only on the difference 

( )t ) if and only if both conditions in (ii) are met, in which case,  is time-dependent. || 

 

Proposition 4 suggests several results. In the absence of commitment technologies, hyperbolic 

discounting does not necessarily lead to non-monotone transition paths of the saving rate. For 

example, if either the rate of interest is constant or the IES equals one, the Cournot-Nash 

effective discount rate is time-invariant. In this case, the transition path of the saving rate is 

monotone, in spite of hyperbolic discounting. 
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For the saving rate to exhibit a non-monotonic transition pattern, in addition to hyperbolic 

discounting, an IES different from one and a time-varying rate of interest are needed. Suppose 

1 (as is empirically supported, cf. Footnote 7), then ( , )t  declines with 
tr . As '( , )t  

also declines over time, the effective rate of time preference, 
t
, declines over time. The fact 

that households effectively become more patient over time (discounting effect) gives rise to a 

non-monotonic transition path of the saving rate.
 

 

To summarize, with full commitment, the effective discount rate is time dependent, and so the 

transition path of the saving rate may be non-monotonic. With no commitment, a Cournot-

Nash equilibrium implies a time-dependent effective discount rate only if utility is not log-

linear and the rate of interest is not stationary. 

 

 

5. Conclusions 

 

The standard neoclassical growth model with Cobb-Douglas technology exhibits – for a 

reasonable calibration – a monotonously declining transition path of the saving rate, as an 

economy develops. This property is counterfactual and therefore unappealing for the analysis 

of policy shocks on transitional dynamics of an economy.  

 

In this paper, we consider the question whether or not hyperbolic discounting adds enough 

flexibility to the otherwise standard growth model for the saving rate to exhibit non-

monotonic dynamics. The answer depends on the specific framework used as well as on 

whether or not commitment technologies are available. The answer is “yes” for the standard 

framework under full commitment. For the other two investigated frameworks – naïve 

consumers with short planning horizons, and the Cournot-Nash equilibrium – the answer is 

“yes”, unless utility is log-linear and the rate of interest is constant. In the latter case, 

hyperbolic discounting is observationally equivalent to exponential discounting and does not 

affect the transitional dynamics of the saving rate.  

 

We also present a functionally specified generalized discounting function (regular 

discounting) that nests many cases employed in the prior literature as special cases. By 

varying a single parameter, the uncountable collection of resulting discounting functions 
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includes the cases of no discounting, exponential discounting, and classical hyperbolic 

discounting.  

 

The prior literature shows that the saving rate exhibits a non-monotonic dynamics in a 

neoclassical growth model with CES technology. In our paper, we show that the introduction 

of hyperbolic discounting – by adding a discounting effect to the substitution- and income 

effects – is also able to explain a non-monotonic transition path of the saving rate, even in a 

framework with Cobb-Douglas production technology.  

 

Several questions are open for future research. The propositions provide necessary, not 

sufficient conditions for the saving rate to exhibit non-monotonic dynamics. As seen in the 

figures depicting the numerical simulations, there exist parameter constellations for which 

transitional paths are monotone, in spite of the absence of observational equivalence. One 

research task then is the derivation of necessary and sufficient conditions for the saving rate to 

exhibit non-monotonic transition paths. Another open research question refers to partial 

commitment. If we allow for the more appealing case of partial rather than full commitment 

in the standard framework of Section 3, will the saving rate still exhibit non-monotonic 

transitional behavior? Notwithstanding those open questions, we still hope to have shed some 

light on the impact of hyperbolic discounting on saving rate dynamics in the neoclassical 

growth model. 

 

6. Appendix 

 

A. Proposition 1.  

In the following, time indexes are suppressed, unless needed for clarity. Define ˆ / ( )k K AL , 

ˆ ( ) / ( ) / ( )c cL AL C AL , ˆ / ( )y Y AL . Clearly, ˆ ˆ/ / /x z C Y c y . Considering the 

production function, ˆŷ k . Finally, ˆ ˆ1 / 1 /s x z c y . We express the dynamic system 

in the two variables 1ˆ , /k x z . Development is considered as the case in which k̂  (thereby 

1k̂ ) increases over time. Consequently, we are interested in whether the saddle path 

1ˆx
k

z
 increases or decreases in 

1k̂ . In the former (latter) case, the saving rate decreases 

(increases) as an economy develops. In order to consider this relationship, we express the 
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dynamical system in the variables 1ˆ , /k x z  in a phase diagram. Consider first the 

developments of /x z  and k̂  over time: 

 1 1 1 1
/ ˆ ˆ ˆ( ) ( ( / ) ) (1 )( ) ( / )t

d x z
k n k x z k n x z

dt
, (29) 

 
ˆ

ˆ ˆ ˆ( / ) ( )
dk

k x z k k n
dt

. (30) 

Solve both differential equations at / / 0d x z dt , and ˆ / 0dk dt  for ( / )x z : 

 1

( / )/ 0
ˆ(1 1/ )d x z dt t

x
k

z
, (31) 

 1

ˆ( )/ 0

ˆ1 ( )
d k dt

x
k n

z
, (32) 

where ( )t
t n .  

In 1ˆ( , / )k x z  space, ˆ( )/ 0d k dt

x

z
 is downward sloping, as ( ) 0n . At the same time, 

( / )/ 0d x z dt

x

z
 is upward (downward) sloping if 0t

 (if 0t
). It can easily be verified that 

in 1ˆ( , / )k x z  space, the stable arm has a positive (a negative) slope if 0t
 (if 0t

).
20

  

 

Consider the case of exponential discounting (
t

). If 0t
 (if 0t

), as an economy 

develops, ( / )x z  monotonically increases (decreases), and the saving rate monotonically 

decreases (increases). Now, consider the case of hyperbolic discounting that introduces two 

complexities. First, 
t
 is not constant over time, and its sign may switch from positive to 

negative. For this reason, ( / )x z  may rise for some period, followed by a decline, that is, the 

saving rate declines for some period and then increases towards its steady state (see Figure 

A1).  

                                                 

20
 See Barro, Sala-i-Martin (2004), p.108. 
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Figure A1. A decline followed by an increase of the saving rate 

 

Second, with 0t
, the stable arm changes its location from one date to another. That is, the 

movement of ( / )x z  in time not only depends on the slope of the stable arms, but also on their 

respective shifts over time. This presents a second reason for non-monotone behavior of the 

saving rate over time. Suppose, 0t
 – i.e., the slope of the stable time-t-arm is increasing – 

but the next date’s stable arm (with lower slope) intersects with the time-t-arm at a lower 

value of 
1k̂  (see Figure A2). Then, although the slope of the stable arms is positive, ( / )x z  

declines and the saving rates increase over time. This situation is depicted as a move from 

point A to point B in Figure A2. Furthermore, if 0t
 still holds in the steady state, then 

( / )x z  eventually increases towards its steady state. In such a situation, the saving rate first 

increases but starts to decrease towards its steady state level as of a specific date. || 

 

 

Figure A2. An increase followed by a decline of the saving rate 
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B. Short-term planning 

B.1 Derivation of (19). 

The procedure follows Findley and Caliendo (2011). Considering (18), we set up the 

Hamiltonian: 

 

 
1

0 0 0

1
( , ) , [ , ]

1

t
t t t t t

c
H D t t r k w c t t t h  . 

 

The first order condition with respect to 
tc  yields: 1/ 1/

0( , )t tc D t t . As / ,t t tr   

 

 
0

0

1 1
( , )

1/

0( , )
R t t

t tc e D t t  . (33) 

 

Considering (33) in the equation of motion of 
tk  yields 

 

 
0

0

1 1
( , )

1/

0( , )
R t t

t t t t tk r k w e D t t , 

 

which can be solved as: 

 

0
0

0 0
0

1 1
( , )

( , ) 1/ ( , )

0( , )
R tt

R t t R t

t t t
t

k k e w e D t e d . 

 

Considering the above equation at 
0t t h  together with the terminal condition 

0
0

t h
k , 

and solving for the costate variable yields: 

 

 

0
0

0
0

0
00

0

( , )

1/

1
( , )

1/

0( , )

t h
R t

t
t

t
R tt h

t

k w e d

D t e d

 . (34) 

 

Considering (34) in (33) yields an expression for planned consumption as seen from 
0t : 
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0
0

0 0
0

00

0

( , )
1

( , )
1/

0 01
( , )

1/

0

( | ) ( , )

( , )

t h
R t

t R t tt

R tt h

t

k w e d
c t t e D t t

D t e d

 . 

 

The household follows this consumption plan only at 
0t t . So, we consider the envelope, by 

setting all 
0t t . In the resulting expression, we then replace 

0t  by t , which directly yields 

(19): 

 

( , )

1 1
( , )

( , )

t h
R t

t
t

t
R tt h

t

k w e d
c

D t e d

 . 

 

B.2 Proof of Proposition 2. 

(i) In the proof, we employ the following lemma. 

Lemma. Let a . Then 1 (1 / 2)ae a a .  

To show the Lemma, notice that both functions, 
a

e  and 1 (1 / 2)a a  are strictly 

monotonically increasing in a . For 0a , 0 1 0(1 0 / 2)e =1. To prove the lemma, we 

need to show that the slope of 
a

e  exceeds the slope of 1 (1 / 2)a a  for all a . That is, 

1ae a  for all a . Consider the difference (1 )ae a . As (1 ) / 1a ae a a e , 

the difference is strictly increasing in a . That is,  
a

e  increases more strongly in a  than 

1 (1 / 2)a a  does, which proves the lemma.  

(ii) With exponential discounting, ( , ) (1 ) /
t h

h

t
E t d e . Regular hyperbolic 

discounting, according to (17), leads to 
( 1 )/1 (1 )

( | )
( 1 )

t h

t

h
D t d . Both integrals 

only depend on the planning horizon, but they are independent of calendar time t .  

(iii) Both integrals have the same limit, as  approaches zero: 

0lim ( , )
t h

t
D t d 0lim ( , )

t h

t
E t d h . Both integrals decline in .  

(iv) For any given 0 , with 0 , ( , | ) ( , | )
t h t h

t t
D t d E t d . To show this 

inequality, first, we notice that ( , )
t h

t
D t d  is strictly monotonically increasing in . 
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Graphically, this is seen as the area above the discounting curves in Figure 2. We take a first-

order approximation about 0  to evaluate  

 

 
1 (1 / 2

( , | ) ( , | )

h h
t h t h

t t

e e h h
D t d E t d  . 

 

By the Lemma, taking a h , the right hand side is strictly positive for any given 0 , 

showing that ( , | ) ( , | )
t h t h

t t
D t d E t d  in fact holds. Therefore the discounting 

curves can be drawn as depicted in Figure 4. 

(v) As a consequence, there exists  for which ( , | ) ( , | )
t h t h

t t
D t d E t d . 

Observational equivalence follows immediately from considering (19). In spite of hyperbolic 

discounting, consumption and saving follow the same path as under exponential discounting. 

As a consequence, Barro and Sala-i-Martin’s (2004, p.135 ff.) result applies, i.e., the 

dynamics of the saving rate always is monotonic. || 

 

C. Cournot-Nash: Derivation of conditions (27) and (28). 

Following Barro (1999), we first approximate 

 

 (1 )k k r w c ,  (35) 

 

implying that 
k

c
. Next, we employ the intertemporal budget constraint 

 

 

( , )

( , )

,

,

R t

t

R t

t

c e dt k h

h w e dt

  (36) 

 

where h  denotes the present (date- ) value of human capital. Taking the consumption 

growth rate (25) into account, we are able to re-express (36) as: 
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1 1

( , ) ( , )

( )

R t t

c e dt k h .  (37) 

 

From (37), we infer that 1( )
c

k
. Next, consider 

1( )
dc dc dk

dc dk dc
. The first-order condition of (26) with respect to c  yields: 

 

 
1 1

( , ) ( , )
( , )

( ) 0
R t t

t
c c e e dt , 

 

where we divided by  and multiplied by ( ) . We next take the limit as  approaches 

zero, and divide by c : 

1 1
( , ) ( , )

( , ) ( , )
1 0

R t t
t t

e e dt , 

 

which corresponds to (27). || 

In order to derive (28), we note that (27) is identically true. Define 
1 1

( , ) ( , )

( , )
R t t

t e , 

and 
1 1

( , ) ( , ) ( , )

( , )
R t t t

t e . Then (27) becomes ( , ) ( , )t dt t dt . Differentiating 

with respect to  yields: 

 

 

1 1 1 1
'( , ) ( , ) ( , )

1 1
( , ) ,

r t t dt r t dt

r t dt

  

 

which, upon simplifying, becomes: 

 



37 

 

 

1 1
'( , ) ( , ) ( , )

'( , ) ( , ) 0

'( , ) ( , )
. ||

( , )

t t dt t dt

t t dt

t t dt

t dt
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