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Abstract

Many aspects of social welfare are intrinsically multidimensional. Composite indices at-

tempting to reduce this complexity to a unique measure abound in many areas of economics

and public policy. Comparisons based on such measures depend, sometimes critically, on

how the different dimensions of performance are weighted. Thus, a policy maker maker may

wish to take into account imprecision over composite index weights in a systematic manner.

In this paper, such weight imprecision is parameterized via the ε-contamination framework

of Bayesian statistics. Subsequently, combining results from polyhedral geometry, social

choice, and theoretical computer science, an analytical procedure is presented that yields a

provably robust ranking of the relevant alternatives in the presence of weight imprecision.

The main idea is to consider a vector of weights as a voter and a continuum of weights as an

electorate. The procedure is illustrated on recent versions of the Rule of Law and Human

Development indices.

Keywords: multidimensional welfare, composite index, ε-contamination, polyhedral ge-

ometry, social choice, approximation algorithms
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1 Introduction

Many aspects of social wellbeing are inherently multidimensional. Development, poverty, in-

equality, the rule of law, education: these are all concepts that depend on a number of different

criteria that cannot be captured by simple quantitative measures. Yet, there is still a need

to compare and eventually order possible alternatives on the basis of such multidimensional

information. Composite indices attempt to accomplish this task by integrating the various di-

mensions into a single, one-dimensional measure. This is achieved by assigning weights to the
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different dimensions and aggregating over them. This aggregation is usually either additive or

geometric.

It should be intuitively clear that the chosen weights can have a major effect on composite

scores and therefore on the final ranking of the various alternatives. This means that weights

need to be assigned in a systematic, transparent, and judicious fashion. Many different methods

for doing so have been proposed by academics and practitioners, including principal component

and factor analyses, data envelopment, public opinion polls, budget allocation, analytic hierar-

chy processes, and expert consultation, among others. The interested reader is referred to [9, 21]

for a comprehensive survey.

Despite the wealth of available techniques to determine composite index weights, their

determination often remains controversial. Indeed, there is frequently no one “right” way to

set them and we are often justified, if not compelled to, consider the effect of many different

weights at once. Such an analysis would serve two goals: (a) to examine how robust a given

ranking of alternatives is to changes in weights, and (b) to determine a compromise ranking

that is in some sense “optimal” in the presence of weight imprecision.

Earlier work in assessing the robustness of composite indices with respect to the choice of

weights primarily focused on Monte Carlo simulation (Saisana et al. [24], OECD and JRC [21]).

These computational approaches assessed the importance of weights in the context of a broader

uncertainty and sensitivity analysis of given indices. Practically oriented, they did not propose

a systematic theoretical framework to model weight imprecision and its effects. Of greater rele-

vance to the work I will present, Foster et al. [11, 12] adopted a parametric structure for weight

imprecision based on the ε-contamination model of Bayesian analysis (Hodges and Lehmann [13],

Berger [7]).1 In their setting, Foster et al [11] defined a pairwise comparison between alternatives

to be robust with respect to a given level of weight imprecision if all of the weight vectors cor-

responding to it (i.e., this level of weight imprecision) produce composite scores that maintain

the same relative ranking. Numerical examples applying their model to study the robustness

of various indices were presented in [12]. Permanyer [22] generalized the approach of Foster

et al. [11] by considering (i) alternative ways of parameterizing weight imprecision beyond ε-

contamination, and (ii) the proportion of weights favoring one alternative over another given

a level of weight imprecision. Permanyer’s contribution is mostly conceptual, as he does not

discuss how one can actually calculate the proportions in question. Moreover, beyond formal

completeness, it is not clear what is gained by the discussion of alternative parameterizations

of weight imprecision beyond ε-contamination2, which itself is intuitive, theoretically grounded,

and computationally tractable. Finally, both Foster et al. [11, 12] and Permanyer [22] are fo-

cused on providing rigorous methods for assessing the robustness of a given ranking to changes

in weights, and are not directly concerned with proposing an optimal “compromise” ranking

1The ε-contamination model has also been studied in the economics and decision theoretic literature ( [20, 15],

among many others) on Knightian uncertainty, which however places more emphasis on the normative foundations

and behavioral implications of such belief imprecision.
2No theoretical arguments or empirical illustrations are provided in the paper.
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given weight imprecision.

My paper makes three contributions to the literature. First, I adopt the ε-contamination

setting of Foster et al. [11]3, and use results from polyhedral geometry (Lawrence [17]) to

efficiently compute the results of pairwise comparisons between alternatives. That is, given

two alternatives a1 and a2 and a set of weights adhering to the parametric structure of ε-

contamination, I adapt the insights of Lawrence [17] to present a closed-form formula for the

proportion of those weights ranking a1 above a2 and vice-versa. Moreover, I am able to prove

that these proportions are monotonic in ε, the magnitude of weight imprecision. I implement

Lawrence’s formula computationally in the context of the applied exercises of Section 5.

The second contribution of the paper is to use the theory of social choice to propose a

“good” compromise ranking of the alternatives given weight imprecision. Viewing each vector

of weights as a “voter” who expresses his/her preferences over alternatives via the composite

score, the previous polyhedral analysis provides the results for all pairwise contests between

alternatives over an “electorate” of weights defined by the ε-contamination structure. With this

interpretation in mind, I propose the Kemeny aggregation procedure (Kemeny [14]) as a way

of computing a compromise ranking, given the preferences of this electorate of weight vectors.

Well-established in the social choice literature, Kemeny aggregation produces a ranking (referred

to as “Kemeny-optimal”) that minimizes the sum of pairwise rank disagreements with respect

to stated voter preferences. In an important paper, Young and Levenglick [27] validated its

intuitive attractiveness by showing that it rests on strong axiomatic foundations. Subsequently,

Young [26] showed that Kemeny aggregation provides the maximum likelihood estimate (in the

statistical sense of the term) of the true societal ranking of the alternatives. The intuitive,

normative, and statistical appeal of Kemeny aggregation make it a very (if not the most)

desirable aggregation procedure (Moulin [18]).

The paper’s third contribution centers on the computational implementation of the above

ideas. This is because, despite its many virtues, Kemeny aggregation suffers from one very

serious drawback: the computation of a Kemeny-optimal ranking is NP-hard [6], even when the

number of alternatives is just four [10]. In practical terms this means that we cannot hope to

devise a fast algorithm to implement Kemeny aggregation. Thus, to deal with this difficulty,

when the Kemeny-optimal ranking cannot be readily identified by first principles, I implement

the best-known approximation algorithm available from the theoretical computer science liter-

ature to compute a provably-good approximation of it. This algorithm, due to Van Zuylen and

Williamson [28], efficiently produces a compromise ranking whose sum of pairwise disagreements

is guaranteed to be no greater than 4/3 times the minimum.4 To my knowledge, this is the first

paper in the economics and social science literature to apply rigorous approximation algorithms

in the determination of Kemeny-optimal rankings. I proceed to illustrate the proposed method-

3This choice is not crucial, and the methods of the paper could extend to alternative parametric structures,

albeit at a potentially higher computational cost.
4Using first principles and a “local Kemenization” procedure discussed in Dwork et al. [10], I am often able

to improve this performance guarantee even further (see Sections 4.3 and 5.2).
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ology to two well-known composite indices: the World Justice Project’s Rule of Law Index [1],

and the United Nations Human Development Index [25]. In both cases, my procedure correctly

identifies Kemeny-optimal rankings under varying levels of weight imprecision.

Paper outline. The structure of the paper is as follows. Section 2 introduces the formal model

and ε-contamination framework. Section 3 focuses on pairwise comparisons between alternatives

and shows how to adapt the results of Lawrence [17] to my setting. Section 4 draws connections

with social choice theory and Kemeny aggregation in particular, and presents a procedure

for computing a provably-robust ranking given weight imprecision. Section 5 implements the

proposed procedure to the Rule of Law and Human Development Indices, while Section 6

provides concluding remarks. All mathematical proofs, tables, and figures are collected in the

Appendix.

2 Model Description

Consider a set of alternativesA indexed by a = 1, 2, ..., A and a set of indicators I indexed by i =

1, 2, ..., I. Let xai ∈ < denote alternative a’s value of indicator i, and xa ∈ <I its “achievement”

vector collecting all such information (all vectors are taken to be column vectors). The composite

score corresponding to alternative a is computed through a weighted average of the components

of its achievement vector, xa. For clarity I focus on standard linear aggregation, though the

analysis easily extends to the generalized weighted means discussed in Permanyer [22].5 The

employed vector of weights is given by a vector w belonging in ∆I−1 = {w ∈ <I : w ≥
0,

∑I
i=1wi = 1}, the (I − 1)-dimensional simplex. Here, wi represents the weight given to

indicator i.

Clearly, the choice of weights w is very important in determining composite scores on the

basis of which alternatives are ranked. Thus it is important to have a sense of how robust

a ranking is with respect to changes in w. Suppose we are given an initial vector of weights

w̄ ∈ ∆I−1. Now suppose that we are willing to consider weights deviating from w̄ that belong

in the set W ε(w̄), where6

W ε(w̄) ≡W ε = (1− ε)w̄ + ε∆I−1 =

{
w ∈ <I : w ≥ (1− ε)w̄,

I∑
i=1

wi = 1

}
. (1)

Here, the parameter ε ∈ [0, 1] measures the imprecision associated with the initial vector of

weights w̄. If ε = 0, then we are completely confident in our choice of w̄, while if ε = 1 we assign

no special status to w̄ and consider all possible weight vectors equally valid. Originally proposed

by Hodges and Lehmann [13] in Bayesian analysis, this way of parameterizing probabilistic

imprecision is referred to as ε-contamination. From a statistical point of view, the parameter

5Indeed, see Section 5.2 for an application of our model to the geometric aggregation framework of the HDI.
6To avoid cumbersome notation, from now on I suppress dependence of W ε(w̄) on w̄.
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ε may be interpreted as the amount of error attached to a prior w̄.7 The ε-contamination

parametric structure has also been studied in the economics and decision theoretic literature

on Knightian uncertainty ([20, 15], among many others), which however places more emphasis

on the normative foundations and behavioral implications of such belief imprecision.

3 Pairwise comparisons over a continuum of weights

Let us consider two alternatives a1, a2 ∈ A and their I-dimensional achievement vectors xa1

and xa2 . Suppose, further, that we are given an initial vector of weights w̄ ∈ ∆I−1 and a value

of ε ∈ [0, 1], capturing the degree of imprecision associated with w̄. How are we to decide which

of the two alternatives fares “better” given the set of weights W ε implied by Eq. (1)?

If ε = 0 the answer to the above question is simple: just see which alternative’s composite

score is higher under weights w̄, the unique element of set W 0. That is, we need only compare

w̄′xa1 and w̄′xa2 (the prime sign denotes the transpose operator). When we are dealing with

ε > 0 and a non-singleton set W ε, the situation is more complex. Nonetheless we may ask

an analogous question, namely: What proportion of weights belonging to W ε lead to a higher

composite score for a1 than a2?

Some additional notation would be useful. Let W ε
a1a2 denote the intersection of W ε with

the I-dimensional halfspace
{
w ∈ <I : w′xa1 ≥ w′xa2

}
. Introducing the difference vector

d = xa1 − xa2 , the polytope W ε
a1a2 is equal to

W ε
a1a2 =

{
w ∈ <I : w ≥ (1− ε)w̄,

I∑
i=1

wi = 1, d′w ≥ 0

}
. (2)

The proportion we are interested in, denoted by V ε
a1a2 , is defined as the ratio of the volumes of

polytopes W ε
a1a2 and W ε (V ol denotes volume):

V ε
a1a2 =

∫
W ε
a1a2

du∫
W ε du

=
V ol

(
W ε
a1a2

)
V ol(W ε)

∈ [0, 1]. (3)

When d′w̄ = 0 and ε = 0, I set V ε
a1a2 = 1/2. Now, basic geometric reasoning allows us to

establish an unambiguous monotonicity property of V ε
a1a2 with respect to the level of imprecision

ε. In addition to its theoretical appeal, this property, summarized in Theorem 1, may be of

considerable practical use (see Section 5.1).

Theorem 1 (i) Suppose d′w̄ 6= 0. Then, V ε
a1a2 is monotonic in ε. It is increasing (decreas-

ing) in ε if

d′w̄ < (>)0.

(ii) Suppose d′w̄ = 0. Then, V ε1
a1a2 = V ε2

a1a2 for all ε1, ε2 ∈ (0, 1]. There will in general be a

discontinuity at ε = 0.

7The interested reader may consult Chapter 4 in the survey by Berger [7] for many additional references on

ε-contamination.
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Proof. See Appendix.

Thus, when d′w̄ 6= 0 and a1 and a2 do not yield identical composite scores under the

initial vector of weights w̄, Theorem 1 establishes that the proportion of weights favoring one

alternative over another varies monotonically in the imprecision ε attached to w̄. The direction

of the relationship depends on the comparison of alternatives a1 and a2 under weights w̄. It

is decreasing if a1 initially dominates a2 and increasing otherwise. Conversely, when the initial

weights yield identical composite scores for a1 and a2, the situation is different. For any two

levels of imprecision ε1 and ε2 above 0, we will have V ε1
a1a2 = V ε2

a1a2 , while at ε = 0 we will have

(by definition) V 0
a1a2 = 1/2. Thus, V ε is constant when ε ∈ (0, 1] and will generally have a

discontinuity at 0.

Define the function

D(ε) = −1− ε
ε

d′w̄, (4)

and suppose that there exists at least one indicator i∗ ∈ I such that di∗ ≥ D(ε). If such an

i∗ does not exist, then we may immediately conclude that V ε
a1a2 = 0 (see proof of Theorem 1).

Without loss of generality (upon possible relabeling) suppose that i∗ = I and define w∗ ∈ <I−1

and d∗ ∈ <I−1 as the restriction of vectors w and d to variables I\{i∗} = {1, 2, .., I − 1} ≡ I∗.
Consider the following polytope W ε,∗

a1a2 (here e denotes a vector of all ones of dimension I − 1)

W ε,∗
a1a2 =

{
w∗ ∈ <I−1 : w∗ ≥ 0,

I−1∑
i=1

w∗i ≤ 1, (d∗ − dIe)′w∗ + dI ≥ D(ε)

}
. (5)

Polytope W ε,∗
a1a2 is obtained upon performing a sequence of simple affine transformations to

polytope W ε
a1a2 , ultimately reducing its dimension by 1 (see the proof of Theorems 1 and 2).

Using basic results from linear algebra (Lang [16]) we arrive at the following Theorem.

Theorem 2 Consider polytope W ε,∗
a1a2 given by (5). The quantity V ε

a1a2 defined in Eq. (3)

satisfies

V ε
a1a2 = (I − 1)! V ol

(
W ε,∗
a1a2

)
.

Proof. See Appendix.

In light of Theorem 2, the main challenge now lies in calculating the volume of polytope

W ε,∗
a1a2 . We make the following assumption.

Assumption 1 There does not exist i ∈ I such that di = D(ε).

Assumption 1 ensures that polytope W ε,∗
a1a2 is simple, i.e., that all of its vertices are nondegen-

erate. Primal nondegeneracy is a desirable property in linear programming as it facilitates the

application of the simplex method (see Chapter 2 in Bertsimas and Tsitsiklis [5]).

Proposition 1 Suppose Assumption 1 holds. Then the polytope W ε,∗
a1a2 is simple. Moreover it

has O
(
I2
)

vertices and O
(
I3
)

edges that can be readily identified (Eqs. (V1)-(V4) and (E1)-

(E8) in Appendix). Using this information we can construct a vector c ∈ <I−1 such that the

function f(w∗) = c′w∗ is non-constant on each edge of W ε,∗
a1a2 (Eq. (19) in Appendix). As a
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result, the volume of polytope W ε,∗
a1a2 can be computed efficiently using the formula in Theorem

1 of Lawrence [17] (Eq. (20) in Appendix).

Proof. See Appendix.

Thus, by Proposition 3 we have an efficient method of computing V ε
a1a2 for any two alter-

natives a1 and a2 and ε ∈ [0, 1]. We conclude by performing the following transformation on

V ε
a1a2 for all pairs a1, a2 ∈ A:

V ε
a1a2 ← V ε

a1a2 +
1−

(
V ε
a1a2 + V ε

a2a1

)
2

, V ε
a2a1 ← V ε

a2a1 +
1−

(
V ε
a1a2 + V ε

a2a1

)
2

. (6)

This transformation provides a fair tie-breaking rule for vectors of weights yielding identical

composite scores. It ensures that the volume of the polytope{
w ∈ <I : w ≥ (1− ε)w̄,

I∑
i=1

wi = 1, w′xa1 = w′xa2

}

is equally divided between alternatives a1 and a2 so that V ε
a1a2 can be interpreted as the pro-

portion of weights strictly favoring a1 over a2. Moreover, it implies that

V ε
a1a2 + V ε

a2a1 = 1, ∀a1, a2 ∈ A.

In practice, these adjustments may often turn out to be negligible.

Remark 1. Assumption 1 is not strictly necessary for the implications of Proposition 3 to

hold. As Lawrence himself notes in his paper’s conclusion [17], his method can be extended to

non-simple polytopes using standard linear programming techniques (see Bueler et al. [8] for

an application). I choose to impose Assumption 1 because it can be always easily satisfied by

a slight perturbation of w̄ or ε, while simplifying computations significantly.

Example 1. One of the strengths of the proposed framework is that it sheds light on subtle,

but important differences among alternatives. This is illustrated by the following example:

xa1 = (1, 2, 3, 4)′, xa2 = (4, 3, 2, 1.5)′, w̄ =

(
1

4
,
1

4
,
1

4
,
1

4

)′
.

Looking at just the ordinal dimension of the indicator data, we see that both a1 and a2 dom-

inate in exactly two dimensions. Moreover, the difference in the composite scores under zero

imprecision is quite small: 2.5 for a1 and 2.625 for a2. This may lead us to think that the two

alternatives are roughly equal, and remain all the more so when we take weight imprecision into

account. However, this is not true. Indeed, we see that in reality a2 fares significantly better

than a1 if we allow for weight imprecision (and our model makes quantitatively precise to what

degree this is so), especially if we only wish to consider small levels of ε:

V 0.1
a1a2 = 0.090, V 0.25

a1a2 = 0.312, V 0.5
a1a2 = 0.408, V 1

a1a2 = 0.458.
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Example 2. I provide an example of the discontinuity discussed in part (ii) of Theorem 1.

Consider:

xa1 = (1, 2, 3.5, 4, 5)′, xa2 = (3.5, 4, 5, 1, 2)′, w̄ =

(
1

5
,
1

5
,
1

5
,
1

5
,
1

5

)′
.

These data yield

V 0
a1a2 = 0.50, V ε

a1a2 = 0.478, ∀ε ∈ (0, 1].

4 Weight imprecision and social choice theory

4.1 Weight vectors as voters

In Section 2 I discussed how an initial vector of weights w̄ and a value of ε imply, via the

ε-contamination framework, the set of weights W ε of Eq. (1). Subsequently, in Section 3 I

demonstrated how, given a pair of alternatives a1, a2 ∈ A and a value ε ∈ [0, 1] we can use

Lawrence’s formula [17] to efficiently compute the proportion of weights within W ε whose com-

posite score for a1 is at least as high as for a2. After performing the transformation (6) for all

pairs of alternatives in A, this information can be summarized by a matrix V ε =
[
V ε
a1a2

]
a1,a2∈A

(whose diagonal entries are set to zero by definition, i.e., V ε
aa = 0 for all a).

Suppose now that we think of a vector of weights w ∈ W ε as a voter belonging to an

electorate W ε (the greater ε is, the larger the electorate). With this interpretation in mind, the

quantity V ε
a1a2 defines the percentage of voters within the electorate W ε preferring alternative

a1 to a2. Thus, all information on the pairwise preferences of the electorate W ε over the set of

alternatives A is succinctly summarized by the matrix V ε.

How can we use this information to compare and order alternatives? Given that the entries

of matrix V ε will generally fall strictly between 0 and 1, there will not be a ranking of A that

is consistent with the preferences of all weights belonging to W ε. Thus, the question arises:

In view of this inconclusiveness, what would be a “good” compromise ranking that takes into

account the results of pairwise comparisons across the electorate W ε?

4.2 Kemeny aggregation

Given a set of individual ranked preferences that may conflict with each other, what procedure

(i.e., rule) should society use to determine a consensus ranking? What properties should a

compromise solution aspire to satisfy?

These fundamental questions have concerned philosophers and social scientists since the

work of Condorcet and Borda in the 18th century. In a seminal paper, Arrow [4] famously

proved that there does not exist an aggregation procedure8 simultaneously satisfying a set of

four plausible axioms: unrestricted domain, non-dictatorship, efficiency, and independence of

alternative alternatives. Despite this negative result, a multitude of reasonable aggregation

8In the literature, the terms “voting rule” and “aggregation procedure” (and combinations thereof) are used

interchangeably.
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procedures have been proposed, and formal characterizations of such methods on the basis of

desirable properties that they do or do not satisfy abound in the social theoretic literature

(see Moulin [18]). For the purposes of this paper I focus on a particularly compelling property

known as the Condorcet criterion (originally proposed in the 18th century by the Marquis

de Condorcet). The Condorcet winner of an election is an alternative that, when compared

with every other, is preferred by a majority of voters. An aggregation procedure satisfies the

Condorcet criterion if it ranks the Condorcet winner first, whenever one exists. In turn, a

ranking is referred to as Condorcet if it is consistent with the Condorcet criterion.

One well-known problem with Condorcet winners is that it is easy to construct examples

of the so-called Condorcet paradox (originally noted by the Marquis himself), in which voters’

ranked preferences preclude their existence [18]. In such instances, the Condorcet criterion is

clearly of no help in choosing between different rankings. To deal with this issue, Kemeny [14]

introduced an aggregation procedure satisfying a generalization of the Condorcet criterion,

referred to in the literature as Kemeny optimality. Given a set of individual rankings, Kemeny

aggregation produces a ranking (referred to as “Kemeny-optimal”) that minimizes the sum of

its pairwise disagreements with respect to voter preferences. As a corollary, when a Condorcet

ranking exists, Kemeny’s rule is guaranteed to choose it.9 In an important article Young and

Levenglick [27] confirmed the intuitive appeal of Kemeny aggregation by proving that it rests on

solid axiomatic foundations. Moreover, Young [26] showed that, from a statistical standpoint,

Kemeny aggregation can be viewed as a providing the maximum likelihood estimate of the

“true” societal ranking of the alternatives.

The intuitive, normative, and statistical appeal of Kemeny aggregation make it a very

desirable voting rule. Indeed, Moulin [18] goes so far as to state that it is the “correct method”

for ranking alternatives. Unfortunately, however, Kemeny aggregation suffers from one very

serious drawback: the computation of a Kemeny-optimal ranking is NP-hard [6], even when

the number of alternatives is just four [10]. In practical terms this means that we cannot hope

to devise a fast algorithm to implement Kemeny aggregation. Nevertheless, spurred by the

applicability of rank aggregation methods for internet search, various fast heuristics have been

proposed in the computer science literature (e.g. Dwork et al. [10]).

In recent years, a burgeoning theoretical computer science literature has emerged that pro-

poses provably-good approximation algorithms for Kemeny aggregation. An intelligent synopsis

of these contributions is beyond the scope of this work and the interested reader is encouraged

to refer to Section 1 in Van Zuylen and Williamson [28] for more information. For the purposes

of this paper, I draw particular attention to the work of Van Zuylen and Williamson [28]. Their

algorithm (DerandFASLP-Pivot in Figure 1 of [28]) employs a polynomial-time recursive proce-

dure to produce a ranking whose sum of pairwise disagreements is within 4/3 of the minimum,

the best approximation guarantee currently available. Its running time is primarily constrained

by the solution of the linear programming relaxation of Kemeny aggregation. The output rank-

9Indeed, Kemeny-optimal rankings satisfy a stronger version of the Condorcet criterion known as the extended

Condorcet criterion [10].
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ing of this algorithm can be potentially improved by applying to it a procedure known as “local

Kemenization” (Dwork et al. [10]). Local Kemenization successively examines all adjacent pairs

of alternatives in a ranking and flips them if they result in an improved Kemeny performance.

It may be efficiently implemented in polynomial time and it is guaranteed to produce a unique

ranking that satisfies an extended version of the Condorcet criterion [10].

4.3 Application to composite index rankings

I now proceed to apply the above concepts to composite index rankings under weight impreci-

sion. Recall the set of alternatives A. A ranking R is a bijective map from A to {1, 2, ..., A},
where R(a) is interpreted as the rank of alternative a. Let RA denote the set of all rankings of

A. The Kendall-τ distance between two rankings R1 and R2, denoted by τ(R1, R2), is defined as

the number of pairs (ai, aj) such that R1(ai) > R1(aj) and R2(ai) < R2(aj). Hence, τ(R1, R2)

counts the number of (pairwise) relative rank disagreements between R1 and R2. Given a set of

rankings S, a ranking K is Kemeny-optimal if it minimizes the function
∑

S∈S τ(·, S) over the

set of rankings RA. In the usual formulation of the problem, the set S is finite so the above sum

is well-defined. However, in our context each weight vector in W ε corresponds to a different

ranking, implying that S is uncountable. Thus, to make sure the Kemeny-optimal ranking is

well-defined we normalize by
∫
S du and write:

K = arg min
R∈RA

{∫
S

τ(R,S)∫
S du

dS

}
.

To apply the preceding formula to our context, we need to identify the appropriate set of

rankings S, which would entail associating a ranking for every vector of weights belonging to W ε.

This task is already demanding when the set of voters is finite, let alone when it is uncountable.

Fortunately, however, I am able to sidestep this concern. This is because, to calculate a Kemeny-

optimal ranking we only need the results of all pairwise comparisons between elements in A,

given by matrix V ε, which can be efficiently computed using the methods in Section 3. Thus,

letting (a1, a2) ∈ A×A denote ordered pairs of alternatives in A, and Kε the Kemeny optimal

ranking given the set of weights W ε, we may write

Kε = arg min
R∈RA

∑
(a1,a2)∈A×A

1{R(a1) < R(a2)}V ε
a1a2 . (7)

Integrating the above discussion with that of Sections 2 and 3, I propose the following

procedure to address minimization problem (7) and provide a robust compromise ranking of

the alternatives given weight imprecision.
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Procedure 1 (Input: xa for all a ∈ A, ε, w̄.)

(a) Use the method outlined in Proposition 3 of Section 3 to compute the matrix V ε. Perform

transformation (6) on the elements of V ε.

(b) Given V ε, attempt to explicitly find Kemeny-optimal ranking Kε by first principles.

(c) If (b) is not possible, apply Van Zuylen-Williamson [28] algorithm to matrix V ε to compute

a 4/3-Kemeny optimal ranking KZW,ε.

(d) Perform local Kemenization [10] on KZW,ε to, if possible, decrease its objective function

value. Denote the final ranking by K̂ZW,ε.

Procedure 1’s performance guarantee. When Step (b) of Procedure 1 cannot be accom-

plished, it is important to know how close to Kemeny-optimal the output ranking K̂ZW,ε will

be. To wit, given a ranking R and ε ∈ [0, 1] define the function

κ (R, ε) =
∑

(a1,a2)∈A×A

1{R(a1) < R(a2)}V ε
a1a2

and consider the output ranking produced by the Van Zuylen-Williamson algorithm before local

Kemenization, denoted by KZW,ε. Its 4/3 performance guarantee implies that

κ
(
KZW,ε, ε

)
≤ 4

3
κ (Kε, ε) =

4

3
min
R∈RA

κ (R, ε) . (8)

Now, consider the ranking produced by the Van Zuylen-Williamson algorithm after local Kem-

enization, denoted by K̂ZW,ε, and define the constant αε ≥ 1 such that

κ
(
KZW,ε, ε

)
= αε · κ

(
K̂ZW,ε, ε

)
. (9)

Conversely, by first principles we may immediately establish the following lower bound:

min
R∈RA

κ (R, ε) ≥ 1

2

∑
(a1,a2)∈A×A

min
{
V ε
a1a2 , V

ε
a2a1

}
≡ lε. (10)

With bound (10) in mind, define the constant βε ≥ 1 such that

κ
(
K̂ZW,ε, ε

)
= βε · lε. (11)

Putting Eqs. (8)-(9)-(10)-(11) together, we may deduce the following guarantee on the perfor-

mance of K̂ZW,ε:

κ
(
K̂ZW,ε, ε

)
≤ min

{
βε,

4

3αε

}
· κ (Kε, ε) = min

{
βε,

4

3αε

}
· min
R∈RA

κ (R, ε) . (12)

Thus, we see that, depending on the values of αε and βε, the 4/3 performance guarantee of Van

Zuylen and Williamson can potentially be tightened.
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Note. I end this section by noting that the application of Kemeny aggregation to composite

indices has been previously pursued by Munda and Nardo [19]. However, their work differs

from mine in substantive ways. First, Munda and Nardo simply consider each indicator as a

voter, and do not introduce a systematic parametric structure for weight imprecision such as

ε-contamination. Hence, their “electorate” is simply the set of I weight vectors assigning full

weight to the different dimensions. As a result, calculating the proportion of voters favoring one

alternative over another reduces to simply counting the indicators resulting in a higher value

for it and cardinal information on the magnitude of this pairwise dominance is lost. Second,

even within this restricted setting, Munda and Nardo present a largely qualitative picture that,

beyond mentioning the existence of heuristics, does not propose a method for computing a

Kemeny-optimal ranking nor a provably-good approximation for it.

5 Applications

In this section, I apply Procedure 1 to two popular composite indices: (a) the World Justice

Project’s 2012 Rule of Law Index [1] and (b) the United Nations 2013 Human Development

Index (HDI) [25]. In both cases, I am able to explicitly identify Kemeny-optimal rankings under

different levels of weight imprecision. My analysis shows that the rankings of the Rule of Law

Index are completely robust to departures from equal-weight aggregation, whereas the situation

with respect to the HDI is a little more complex. Both Lawrence’s method for obtaining

the matrix V ε and van Zuylen and Williamson’s approximation algorithm are implemented in

Matlab.10

5.1 2012 Rule of Law Index

The World Justice Project (WJP) is a multi-national, multi-disciplinary US-based organization.

It produces an important multi-dimensional measure of the rule of law, the Rule of Law Index,

that encompasses issues from government power and corruption to fundamental rights and civil

justice. The WJP measures nine main dimensions of the rule of law: (1) limited government

powers, (2) absence of corruption, (3) order and security, (4) fundamental rights, (5) open

government, (6) regulatory enforcement (7) civil justice, (8) criminal justice and (9) informal

justice. The 2012 version of the index covers 97 countries, which are ranked along dimensions

(1)-(8) above.11 An aggregation of these 8 dimensions into one single composite measure was

not attempted by the authors of the 2012 report, presumably because there was no consensus

on whether and how such an aggregation should be performed.

For the purposes of this paper, I focus on the 21 European Union countries for which the

Rule of Law index has data. Table 1 summarizes the (normalized) data for this set of countries

(countries are ordered alphabetically). For an initial vector of weights, I consider equal weights

10Programs available upon request.
11Data on dimension (9) was gathered but not used by the authors of the 2012 Index, as it was deemed too

preliminary.
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across all indicators, i.e., w̄ = (1/8, 1/8, ...., 1/8)′. The second-to-last column of Table 1 presents

the ranking of the 21 countries on the basis of their composite scores for w̄, that is when ε = 0.

Using the notation of Section 4, I denote it by K0. Conversely, the last column of Table 1

shows that this same ranking will be Kemeny-optimal for any value of ε ∈ (0, 1]. This strong

conclusion is arrived at solely by focusing on ε = 1 and inspecting the matrix V 1 in Table 2.

Doing a simple check on the latter table, we see that there does not exist a pair of countries

(a1, a2) such that K0(a1) < K0(a2) and V 1
a1a2 < .5. By Theorem 1 this implies that no such

pairs exist for any V ε where ε < 1 either. Hence, the original ranking K0 based on equal weights

w̄ will satisfy

κ
(
K0, ε

)
= lε, ∀ε ∈ [0, 1],

where lε are the lower bounds defined in Eq. (10). As a result, we can unequivocally conclude

that K0 will be the unique Kemeny-optimal ranking for all possible levels of imprecision ε ∈
[0, 1].

5.2 2013 United Nations Human Development Index

The United Nations Human Development Index (HDI) is a prominent composite index of de-

velopment. The HDI focuses on three main dimensions of development: (1) life expectancy,

measured at birth (2) education, measured by mean years of schooling and expected years of

schooling (3) GNI per capita measured in US dollars by purchasing power parity. Each dimen-

sion constitutes its own subindex and the data are normalized to lie between 0 and 1. In its

most recent versions, the HDI is the geometric mean of the three dimension scores, where each

dimension is assigned equal weight. In light of its importance in international policy circles,

testing the robustness of the HDI rankings with respect to changes in weights has been pursued

in a number of alternative ways (e.g., Anderson et al. [3], Foster et al. [12], Pinar et al. [23]).

I proceed to apply Procedure 1 to the most recent version of the HDI published in 2013.

That the HDI is not a linear but a multiplicative composite does not complicate the use of my

methodology. Indeed, since achievement vectors are non-negative and the natural logarithm is

a strictly increasing function, the following relation holds

3∏
i=1

(xa1,i)
wi ≥

3∏
i=1

(xa2,i)
wi ⇔ log

(
3∏

i=1

(xa1,i)
wi

)
≥ log

(
3∏

i=1

(xa2,i)
wi

)
⇔

3∑
i=1

wi log (xa2,i) ≥
3∑

i=1

wi log (xa2,i) ,

which implies that I can safely apply Procedure 1 to a linear composite index utilizing the

natural logarithms of the HDI data.

Table 3 summarizes 2012 data for the three dimensions of the HDI for the countries having

the 20 highest HDI scores under equal weights w̄ = (1/3, 1/3, 1/3)′ (this ranking appears as K0

in the Table’s fourth column). The last four columns of Table 3 present the rankings obtained

by applying Procedure 1 (to the natural logarithm of the data) for ε ∈ {1/4, 1/2, 3/4, 1}.
How close are these rankings to the Kemeny-optimal ones? To answer this question I

refer to quantities αε and βε defined in Eqs. (9)-(11). Table 4, in combination with in-

equality (12), immediately establishes that Procedure 1 yields a Kemeny-optimal ranking for
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ε ∈ {1/4, 1/2, 3/4}. When ε = 1, the performance guarantee given by bound (12) is slightly

above 1 (i.e., min{1.279, 1.001} = 1.001) and I cannot immediately establish the Kemeny op-

timality of K̂ZW,1. Instead, it is necessary to examine the ranking K̂ZW,1 in more detail. To

account for the value of β1 > 1, I search for pairs of countries a1, a2 simultaneously satisfying

V 1
a1a2 < .5 and K̂ZW,1(a1) < K̂ZW,1(a2). With regard to these pairwise comparisons K̂ZW,1 goes

against the wishes of a majority of weights. We find two such pairs. They are

(1) Singapore-France (a1 = 17, a2 = 6). Here we have V 1
a1a2 = 0.498 but KZW,1(a1) = 17 <

K̂ZW,1(a2) = 20.

(2) Switzerland-Japan (a1 = 19, a2 = 12). Here we have V 1
a1a2 = 0.484 but KZW,1(a1) = 8 <

K̂ZW,1(a2) = 11.

Such issues turn out to be inevitable. This is because we find ourselves in an instance of the

Condorcet paradox discussed in Section 4.2. Indeed, the electorate associated with the set of

weights W 1 produces what are known as Condorcet cycles [18], implying that there exists no

ordering of the countries that is able to respect majority rule for all pairwise comparisons.

Consulting the matrix V 1 computed in step (a) of Procedure 1 we identify two groups of

countries that form such Condorcet cycles:

(1) Singapore-Austria-Belgium-France (a1 = 17, a2 = 2, a3 = 3, a4 = 6). Here we have

V 1
a1a2 = 0.507, V 1

a2a3 = 0.513, V 1
a3a4 = 0.663, and V 1

a4a1 = 0.502.

(2) Switzerland-Iceland-Canada-Japan (a1 = 19, a2 = 10, a3 = 4, a4 = 12). Here we have

V 1
a1a2 = 0.511, V 1

a2a3 = 0.563, V 1
a3a4 = 0.549, and V 1

a4a1 = 0.516.

Focusing on the above two cycles, we may deduce by inspection that K̂ZW,1 resolves them in

a way that minimizes the total amount of pairwise disagreements. Thus, we conclude that,

similarly to our results for ε ∈ {.25, .50, .75} , K̂ZW,1 will be Kemeny-optimal. Given that

β1 = 1.001 ≈ 1, this does not come as much of a surprise.

6 Conclusion

Judgments based on composite indices depend, sometimes critically, on how different dimensions

of performance are weighted. As there is frequently no single “right” way to assign such weights,

it is important to take this imprecision into account in a systematic way. In this paper I have

presented a procedure for determining a provably-robust ranking of the relevant alternatives,

given a well-established parametric structure for weight imprecision. My procedure is based

on a combination of results from polyhedral geometry, social choice, and theoretical computer

science, and pays special attention to issues of practicality and computational tractability. Its

applicability was illustrated through numerical examples based on recent versions of the Rule

of Law and Human Development indices.

Interesting future avenues for research would include adding further structure to the basic ε-

contamination framework (e.g., to reflect normative concerns and/or operational constraints), as
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well as pursuing more complex empirical applications (e.g., the poverty measurement framework

of [2]). Broader connections with decision-theoretic models of Knightian uncertainty could also

be explored.

Appendix

A1: Proofs

Theorem 1. Let us first concentrate on the denominator of (3). We perform the following two

operations on the elements of W ε: (a) we translate them by −(1− ε)w̄, and then (b) multiply

them by 1/ε. The resulting polytope is ∆I−1, the standard (I − 1)-simplex. The volume of the

standard simplex ∆I−1 (which has a side length of
√

2) is given by

V ol
(
∆I−1) =

√
2
I−1√

I

(I − 1)!
√

2I−1
=

√
I

(I − 1)!
.

Basic linear algebra (see Lang [16]) implies that

V ol(W ε) =
√
ε2IV ol

(
∆I−1) = εI

√
I

(I − 1)!
. (13)

Now let us focus on the numerator. Recall the difference vector d = xa1−xa2 and the function

D(ε) = −1−ε
ε d′w̄, defined in Eq. (4). Performing the same affine transformation as before,

namely w ← w−(1−ε)w̄
ε , the polytope W ε

a1a2 is transformed into

Ŵ ε
a1a2 =

{
ŵ ∈ <I : ŵ ≥ 0,

I∑
i=1

ŵi = 1, d′ŵ ≥ D(ε)

}
, (14)

which in turn implies

V ol
(
W ε
a1a2

)
= εIV ol

(
Ŵ ε
a1a2

)
. (15)

Putting Eqs. (13)-(15) together, we obtain

V ε
a1a2 =

V ol
(
W ε
a1a2

)
V ol (W ε)

=
(I − 1)!√

I
V ol

(
Ŵ ε
a1a2

)
. (16)

Eqs (4)-(14) imply that the volume of Ŵ ε
a1a2 is increasing in ε if d′w̄ < 0, decreasing if d′w̄ = 0,

and constant if d′w̄ = 0. The result now follows from Eq. (16). When d′w̄ = 0 and ε = 0 the

quantity D(ε) is not well-defined, leading to the potential stated discontinuity.

Theorem 2. Consider the polytope W ε,∗
a1a2 of Eq. (5), obtained by eliminating variable I from

polytope Ŵ ε:

W ε,∗
a1a2 =

{
w∗ ∈ <I−1 : w∗ ≥ 0,

I−1∑
i=1

w∗i ≤ 1, (d∗ − dIe)′w∗ + dI ≥ D(ε)

}
.

The affine transformation f which maps polytope W ε,∗
a1a2 to Ŵ ε

a1a2 is given by f : <I−1 → <I ,
satisfying f(w∗) = T ·w∗ + [0, 0, ..., 0, 1]′, where T is an I × (I − 1) matrix equal to:
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T =



1 0 0 · · · 0

0 1 0 · · · 0
...

. . .

0 0 · · · 1

−1 −1 −1 · · · −1


⇒ T ′ · T =



2 1 1 · · · 1

1 2 1 · · · 1
...

. . .

1 1 · · · 2 1

1 1 1 · · · 2


Thus we have det [T ′ · T ] = I. Once again, basic linear algebra [16] implies that

V ol
(
Ŵ ε
a1a2

)
=
√

det [T ′ · T ] · V ol
(
W ε,∗
a1a2

)
=
√
I · V ol

(
W ε,∗
a1a2

)
. (17)

Eqs. (16)-(17) together imply

V ε
a1a2 = (I − 1)! V ol

(
W ε,∗
a1a2

)
.

Proposition 3. We first identify the vertices of polytope W ε,∗
a1a2 . In doing so, we divide the

set of indicators I∗ = {1, 2, ..., I − 1} into I∗1 and I∗2 , such that

I∗1 = {i ∈ I∗ : d∗i > D(ε)} , I∗2 = {i ∈ I∗ : d∗i < D(ε)} .

Assumption 1 ensures that {I∗1 , I∗2} is a partition of I∗. It will be useful to express polytope

W ε,∗
a1a2 in the following way:

W ε,∗
a1a2 = {w∗ ∈ <I−1 : y′kw

∗ ≤ b}, (18)

where the (I − 1)-dimensional vectors yk, k = 1, 2, ..., I + 1, and b satisfy (a) yk = −ek12 and

bk = 0 for k = 1, ..., I − 1, (b) yI = [1, 1, 1, ..., 1]′ and bI = 1, and (c) yI+1 = −d∗ + dIe and

bI+1 = −D(ε) + dI .

With representation (18) in mind, a vector v is a vertex of W ε,∗
a1a2 if it satisfies I − 1

linearly independent inequality constraints with equality [5]. The structure of vectors yk for k =

1, 2, ..., I+1 and b imply that a vertex of W ε,∗
a1a2 can have at most 2 nonzero entries. Furthermore,

Assumption 1 ensures primal nondegeneracy so that every vertex v will corresponds to a unique

basis matrix Bv, i.e., a unique set of linearly independent constraints satisfied with equality.

We may distinguish between four kinds of vertices and their corresponding bases:

(V1) v0 = 0. B0 = {y′k : k = 1, 2, .., I − 1}

(V2) vi = ei for all i ∈ I∗1 . Here Bi = {y′k : k = 1, ..., i− 1, i+ 1, .., I − 1, I}, for all i ∈ I∗1 .

(V3) vj = πjej , where πj = D(ε)−dI
d∗j−dI

, for all j ∈ I∗2 . Here Bj = {y′k : k = 1, ..., j−1, j+ 1, .., I−
1, I + 1}, for all j ∈ I∗2 .

(V4) vij = πijei + (1− πij)ej , where πij =
D(ε)−d∗

j

d∗i−d∗j
, for all i ∈ I∗1 and j ∈ I∗2 . Here Bij = {y′k :

k = 1, ..., i− 1, i+ 1, .., j − 1, j + 1, ..., I, I + 1}, for all i ∈ I∗1 and j ∈ I∗2 .

12Here ek denotes the corresponding standard basis vector in <I−1.
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Two vertices are connected by an edge if they share I − 2 common linearly independent active

constraints [5]. An examination of the preceding expressions for the vertices W ε,∗ of and their

bases, implies that we may identify the following eight kinds of undirected edges:

(E1) (v0,vi), for all i ∈ I∗1 .

(E2) (v0,vj), for all j ∈ I∗2 .

(E3) (vi,vk) for all pairs (i, k) where i, k ∈ I∗1 .

(E4) (vj ,vk) for all pairs (j, k) where j, k ∈ I∗2 .

(E5) (vi,vij) for all pairs (i, j) where i ∈ I∗1 and j ∈ I∗2 .

(E6) (vj ,vij) for all pairs (i, j) where i ∈ I∗1 and j ∈ I∗2 .

(E7) (vij ,vik) for all triplets (i, j, k) where i ∈ I∗1 and j, k ∈ I∗2 .

(E8) (vij ,vkj) for all triplets (i, j, k) where i, k ∈ I∗1 and j ∈ I∗2 .

Recall that we wish to exhibit a vector c ∈ <I−1 such that the function f(w∗) = c′w∗ is

non-constant on each edge of W ε,∗
a1a2 . To wit, recall the vertices of W ε,∗

a1a2 enumerated above and

the defined values of πj for j ∈ I∗2 and πij for all i ∈ I∗1 and j ∈ I∗2 . Define the following four

quantities

1. δ1 = min
j,k∈I∗2

{|πj − πk| : πj 6= πk}. If undefined, set δ1 = 1.

2. δ2 = min
i∈I∗1 , j,k∈I∗2

{|πij − πik| : πij 6= πik}. If undefined, set δ2 = 1.

3. δ3 = min
i,k∈I∗1 , j∈I∗2

{|πij − πkj | : πij 6= πkj}. If undefined, set δ3 = 1.

4. δ4 = min
i∈I∗1 , j∈I∗2

{|πij − πj | : πij 6= πj}. If undefined, set δ4 = 1.

Consequently let δ = min{δ1, δ2, δ3, δ4} and define C = 2
δ . Finally recalling sets I∗1 =

{i1, i2, ..., iI∗1 } and I∗2 = {j1, j2, ..., jI∗2 } we define the vector c satisfying

cik =

 C + k
I∗1

ik ∈ I∗1
k

I∗2 I
∗
1

ik ∈ I∗2 .
(19)

With this choice of c we can check all eight kinds of edges E1-E8 and verify that c′v 6= c′u

for all pairs of adjacent vertices (v,u). Thus the function f(w∗) = c′w∗ is non-constant on

each edge of W ε,∗
a1a2 . Hence, in conjunction with Assumption 1, we may apply Theorem 1 in

Lawrence [17] to conclude

V ol
(
W ε,∗
a1a2

)
=

∑
vertices v
of W ε,∗

a1a2

(c′v)I−1

(I − 1)! |det (Bv)|
I−1∏
i=1

[(
B′v
)−1

c
]
i

. (20)
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A2: Tables and Figures

Dimension Rankings

Country 1 2 3 4 5 6 7 8 K0 Kε (∀ε ∈ (0, 1])

1. Austria .823 .773 .885 .820 .802 .845 .735 .748 5 5

2. Belgium .781 .782 .837 .813 .668 .698 .670 .716 10 10

3. Bulgaria .515 .457 .739 .681 .531 .500 .557 .387 21 21

4. Croatia .611 .547 .768 .672 .529 .484 .503 .527 20 20

5. Czech Republic .711 .618 .810 .785 .491 .592 .638 .696 13 13

6. Denmark .928 .953 .913 .909 .824 .846 .778 .872 2 2

7. Estonia .795 .773 .823 .787 .713 .728 .698 .748 9 9

8. Finland .891 .931 .917 .900 .838 .821 .780 .867 3 3

9. France .797 .802 .841 .786 .751 .762 .677 .688 8 8

10. Germany .821 .820 .863 .804 .729 .732 .791 .760 6 6

11. Greece .641 .563 .732 .719 .508 .540 .605 .503 19 19

12. Hungary .629 .722 .830 .716 .518 .596 .542 .639 16 16

13. Italy .671 .624 .765 .723 .487 .556 .550 .673 17 17

14. Netherlands .858 .931 .859 .837 .903 .827 .795 .801 4 4

15. Poland .784 .718 .809 .847 .594 .611 .620 .733 12 12

16. Portugal .713 .679 .744 .750 .616 .572 .607 .625 14 14

17. Romania .580 .500 .802 .730 .509 .538 .577 .598 18 18

18. Slovenia .642 .621 .802 .775 .635 .586 .586 .592 15 15

19. Spain .753 .801 .788 .857 .614 .674 .637 .692 11 11

20. Sweden .916 .956 .889 .929 .935 .893 .770 .823 1 1

21. United Kingdom .785 .798 .843 .783 .782 .790 .716 .755 7 7

Table 1: 2012 Rule of Law Index: Data and rankings for 21 EU countries.
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Dimension Rankings

Country 1 2 3 K0 K̂ZW, 1
4 K̂ZW, 1

2 K̂ZW, 3
4 K̂ZW,1

1. Australia .981 .978 .871 2 3 3 3 3

2. Austria .859 .962 .871 18 18 18 19 18

3. Belgium .890 .947 .858 17 17 17 18 19

4. Canada .908 .964 .866 11 11 11 10 10

5. Denmark .920 .930 .858 15 15 15 15 15

6. France .871 .973 .843 20 20 20 20 20*

7. Germany .944 .955 .867 5 5 5 5 5

8. Hong Kong .831 .994 .904 13 13 12 12 12

9. Iceland .912 .977 .838 14 14 14 14 14

10. Ireland .964 .958 .835 8 8 8 8 9

11. Israel .912 .976 .822 16 16 16 16 16

12. Japan .888 1 .854 10 9 9 11 11◦

13. South Korea .942 .958 .833 12 12 13 13 13

14. Netherlands .934 .960 .874 4 4 4 4 4

15. New Zealand 1 .959 .811 6 6 6 6 7

16. Norway .990 .966 .913 1 1 1 1 1

17. Singapore .804 .966 .925 19 19 19 17 17*

18. Sweden .913 .971 .870 7 7 7 7 6

19. Switzerland .873 .985 .886 9 10 10 9 8◦

20. United States .994 .926 .897 3 2 2 2 2

Table 3: 2013 HD Report data (recall that Procedure 1 will be applied to natural logarithms

of these data) and rankings. For ε = 1, the ∗ and ◦ signs identify the pairs of countries that

eventually lead to Condorcet cycles.

ε αε βε

.25 1.021 1.000

.50 1.002 1.000

.75 1.011 1.000

1 1.028 1.001

Table 4: Performance guarantee of Procedure 1 for rankings shown in Table 3.
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