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Compound-risk Aversion and the Demand for Microinsurance:

Evidence from a WTP Experiment in Mali

Ghada Elabed and Michael R. Carter

Preliminary and Incomplete

Abstract

We present a novel way to understand the low uptake of index insurance using the interlinked concepts

of ambiguity and compound-lottery aversion. Noting that the presence of basis risk makes index insurance

a compound lottery, we derive an expression of the willingness to pay (WTP) to eliminate basis risk.

Empirically, we implement this WTP measure using framed �eld experiments with cotton farmers in

Southern Mali. In this sample, 57% of the surveyed farmers reveal themselves to be compound-risk averse

to varying degrees. Using the distributions of compound-risk aversion and risk aversion in this population,

we simulate the impact of basis risk on the demand for an index insurance contract. Compound-risk

aversion decreases the demand for index insurance relative to what it would be if individuals had the same

degree of risk aversion but were compound-risk neutral. In addition, demand declines more steeply as

basis risk increases under compound-risk aversion than it does under risk neutrality. Our results highlight

the importance of designing contracts with minimal basis risk if potential buyers are compound-risk

averse.

Keywords: Index Insurance, Risk and Uncertainty, Compound Risk, Ambiguity, Field Experiments

1 Introduction

Informal risk mitigation mechanisms in developing countries typically insure against idiosyncratic shocks,

which a�ect a single individual, and the remaining uninsured risk leads to suboptimal decision-making

and forgone income (Alderman and Paxson 1992; Carter et al. 2007). Covariate shocks, which a�ect a

group of people simultaneously, remain widely uninsured in developing countries, contributing to household

vulnerability (Jalan and Ravallion 2001). A growing body of research has produced compelling evidence

that uninsured risk impedes economic growth; it leads to a persistence of ine�cient traditional agricultural

technologies (Morduch 1995) and may thereby contribute to poverty traps (Dercon and Christiaensen 2011;

Carter and Lybbert 2012). Therefore, formal insurance contracts could be a crucial instrument for improving

welfare in developing countries.
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Index insurance is an example of an innovative �nancial product designed to insure poor households

against such shocks. The index is chosen to be some variable that closely correlates with farmers' yields,

and an individual farmer receives his indemnity if the index falls below a pre-determined strike point.

Index insurance overcomes informational problems and reduces transaction costs of conventional indemnity

insurance, and is therefore cheaper. This type of insurance can therefore o�er coverage for poor, small-

scale farmers who are typically excluded from existing formal insurance markets. However, uptake of the

product remains unexpectedly low, despite a decade of e�orts to promote index insurance as a tool for

poverty reduction in developing countries (Gine and Yang 2007; Cole et al. 2010; Boucher and Mullally 2010;

Meherette 2009).

This paper hypothesizes and tests a mechanism that can help explain the low uptake rates of index

insurance. We begin our analysis by looking at index insurance from the farmer's perspective. Compared

to conventional indemnity insurance, index insurance is itself a probabilistic investment: payouts are not

perfectly correlated with the farmer's loss. For example, in the case of an area-yield insurance contract, the

farmer's yield can be low when the average yield in the area is high, and the farmer's yield can be high when

the average yield in the area is low. The probability of the �rst event is known as false negative probability

(FNP), and the probability of the second event is known as false positive probability (FPP). FNP and

FPP are two components of basis risk, the imperfect correlation between the index and the farmer's yield.

The presence of basis risk makes index insurance a compound lottery: the �rst stage lottery determines

the individual farmer's yield, and the second stage lottery determines whether or not the index triggers

an indemnity payout. When individuals satisfy the Reduction of Compound Lotteries (ROCL) axiom of

expected utility theory, they are able to consider the resulting simple lottery. This paper examines what

happens when this assumption about decision makers is not realistic.

A large body of literature examines alternatives to expected utility models of decision making under un-

certainty; we focus here on the interrelated concepts of ambiguity and compound risk aversion. Ambiguity

aversion was �rst demonstrated by Ellsberg (1961), who showed that individuals react much more cautiously

when choosing among ambiguous lotteries (with unknown probabilities) than when they choose among lotter-

ies with known probabilities. While the individual probabilities under index insurance are known, individuals

who cannot reduce a compound lottery to a single lottery are faced with unknown �nal probabilities as in the

Ellsberg experiment. Halvey (2007) corroborates this intuition by experimentally establishing a relationship

between ambiguity aversion and compound-risk aversion, showing that those who are ambiguity averse are

also compound-risk averse.

Theoretically, we use the smooth model of ambiguity aversion developed by Klibano�, Marinacci, and

Mukerji (2005) to describe the index insurance problem. Maccheroni, Marinacci and Ru�no (2010) derive

an ambiguity premium. We interpret this entity as a compound lottery premium, and we use it to derive

an expression of the willingness to pay (WTP) to eliminate basis risk. We de�ne this WTP as the max-

imum amount of money that a farmer is willing to pay and be indi�erent between index insurance and
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the corresponding conventional indemnity insurance contract. We then show how this measure varies with

compound-risk aversion and risk aversion. Empirically, we implement the WTP measure using framed �eld

experiments with cotton farmers in Southern Mali. In this sample, 57% of the surveyed farmers revealed

themselves to be compound-risk averse to varying degrees. We then simulate the impact of basis risk on the

demand for an index insurance contract, whose structure mimics the structure of an actual index insurance

contract distributed to this population in Mali.

Compound-risk aversion decreases the demand for index insurance relative to what it would be if indi-

viduals had the same degree of risk aversion but were compound-risk neutral. In addition, demand declines

more steeply as basis risk increases under compound-risk aversion. If basis risk were as high as 50%, only 35%

of the population would demand index insurance, as opposed to the 60% who would be willing to purchase

the product if individuals were simply maximizing expected utility.

The remainder of the paper is structured as follows. In the next section, we review the relevant literature.

We then present the theoretical framework and the derivation of the willingness to pay. In subsequent

sections, we describe and present the results of the �eld experiment in Mali. We conclude with policy

recommendations.

2 The microinsurance problem

The payout to agricultural index insurance is not based directly on damages to an individual farmer's crop,

but rather the value of an external index such as the average yield, rainfall or temperature in a given

region. Farmers receive a payout when the value of the index falls below a critical threshold. This section

provides a basic framework for thinking about the index insurance problem from the perspective of the

farmer, accounting for two main features of this type of insurance contract: First, because of basis risk,

index insurance is a probabilistic insurance. Second, because of the index lottery, index insurance appears to

the decision maker as a compound lottery. We then discuss the potential implications of these two features

on the uptake of index insurance, based on the �ndings of the literature.

To frame the discussion of the index insurance problem, Figure 1 provides a simple discretized payo�

structure under an area yield index insurance contract. Under this structure, the individual farmer gets a

good yield Y0 with probability p, and a low yield, Y0 − L, with probability 1 − p. If the individual farmer

experiences poor yields, there is a probability q2 < 1 that the index insurance will trigger a payo� Π, resulting

in an income of (Y0 − L− τ1 + Π) equal to the net income under bad yields, less the insurance premium τ1

plus the payo�. However, there is a probability 1 − q2 that the insurance contract fails to pay out, despite

the individual's bad yields . In this case, the individual receives a net income of Y0−L− τ1. The probability

1− q2 is the false negative probability (FNP).

If the individual yields are good, there is a probability 1−q1 that the index is not triggered. In that case,

no insurance payments are made and the individual receives an income equal to the net income under good
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yields less the insurance premium (Y0− τ1). However, there is a probability q1 < 1 that the index insurance

triggers a payo�, resulting in an income of (Y0 − τ1 + Π) equal to the net income under good yields, less

the insurance premium plus the value of the insurance indemnity payment. The probability q1 is the false

positive probability (FPP). FNP and FPP are two aspects of basis risk, or the imperfect correlation between

the individual farmer's yield and the index.

FNP makes index insurance appear to the farmer as a probabilistic insurance. Experimental evidence has

demonstrated that people dislike probabilistic insurance, preferring a regular insurance contract that pays

with certainty when a loss occurs (Wakker, Thaler, and Tversky 1997). The economic analysis explaining

this behavior consists of two basic strands. The �rst strand is expected utility theory, as developed by Von

Neumann and Morgenstern in 1947. Expected utility theory assumes that individuals make rational choices

so as to maximize a utility function.

Figure 1: The micro insurance problem

An expected utility maximizer faced with an actuarially fair insurance contract will insure the entire

amount at risk. If the risk can only be partially insured (as with an index insurance contract), an expected

utility maximizing agent will still purchase whatever partial insurance is available if it is priced at an

actuarially fair level. In a realistic setting, when insurance companies impose loadings to cover transaction

costs, expected utility theory predicts that a utility maximizer will leave part of the risk uninsured. Index

insurance contracts are an example of partial insurance, and typically have a loading of 20%.1 Therefore, a

risk averse agent will purchase index insurance only if basis risk is small enough compared to the fraction of

1USDA
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total risk to which he is exposed. In a recent example of this strand of the literature, Clark (2011) analyzes

the theoretical relationship between basis risk and the demand for actuarially unfair index insurance within

the expected utility framework.2 His main �nding is that increasing risk aversion does not necessarily lead

to an increase in the demand for index insurance; the predicted demand follows an inverted U-shape (zero-

increasing-decreasing) as the coe�cient of risk aversion increases. These results are a direct consequence of

the FNP: because index insurance increases the probability of the bad state of the world, the farmers perceive

it as risky. Though Clark (2011)'s use of expected utility theory to justify the aversion to probabilistic

insurance is compelling, several experimental and empirical studies suggest that people's decision making

often deviates systematically from the predictions of expected utility theory.

The second strand of research about probabilistic insurance, which is mainly used in behavioral economics,

relaxes the rationality assumption of expected utility theory. Kahneman and Tversky (1979) examine the

particular case of a probabilistic insurance in which the premium is paid back in case of a loss. They show that

aversion to this speci�c type of probabilistic insurance is consistent with risk seeking over the loss domain.3

Segal (1988) provides another non-expected utility explanation of the aversion to probabilistic insurance

using the rank dependent utility function developed by Quiggin (1982).4 He shows that this behavior is

explained by a concave utility function provided that the decision maker violates either the reduction of

compound lottery axiom of expected utility theory or the independence axiom. In another experiment,

Wakker et al. (1997) argue that the paradox is driven primarily by the probability weighting of prospect

theory, i.e. the fact that people tend to overweight small probabilities.5

Thus far, studies of the uptake of probabilistic insurance have ignored its structure as a compound

lottery from the decision maker's perspective. Compound lotteries are lotteries whose outcomes are simple

lotteries. They are also referred to as multi- stage lotteries since the �nal outcomes are determined only

after several uncertainties are resolved sequentially. Under expected utility theory, the structure of a lottery

should not a�ect rational decision maker's choices; by the reduction of compound lotteries axiom, a decision

maker should reduce the compound lottery to its equivalent simple lottery.6 In other words, under expected

utility theory, the farmer would value the index insurance lottery based only on the �nal outcomes and their

corresponding probabilities. (In �gure 1, the �nal probabilities are given in parentheses). A consequence of

the reduction of compound lottery axiom is that simple risk (or risk as represented by simple lotteries) and

compound risk (or risk represented by compound lotteries) are indistinguishable.

Although the reduction of compound lotteries axiom is attractive, several experiments have found that

2Clark (2011) de�nes basis risk as the joint probability of experiencing a loss and the index failing to trigger . Using the
notation of �gure 1, this corresponds to the FNP 1− q2multiplied by 1− p.),

3Under expected utility theory, this behavior is consistent with risk seeking.
4The rank dependent utility function is based on the assumption that a decision maker is not only intersted in the the

probabilities (as in expected utility theory or prospect theory), but the also the relative ranking of the di�erent payo�s.
5In their survey, Wakker et al.(1997) show the respondents demand about a 30% reduction in the premium to compensate for

a 1% FNP. Expected utility theory cannot explain these �ndings. Under reasonable assumptions, an expected utility maximizer
would be expected to demand only a 1% decrease in premium to compensate them for the 1% FNP.

6The observation that people often violate the reduction of compound lottery axiom provided the impetus of many studies
of decision making under uncertainty. Kreps and Porteus (1978) introduced the notion of temporal lotteries to study dynamic
choice behavior under uncertainty: the decision maker regards uncertainty resolving at di�erent times as being di�erent
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decision makers often violate it (see Budescu and Fisher(2001) for an extensive list of these experiments).

Hence, decision makers are compound-risk averse.7 Psychological studies �nd that the length and complexity

of compound lotteries impact a decision maker emotionally and psychologically (Budescu and Fischer 2001).

Furthermore, multiplying out the di�erent probabilities corresponding to the equivalent simple lottery can

be cumbersome to process, and might create something similar to ambiguity.8An ambiguous event is not

only uncertain, but in addition involves unknown probability distributions. Therefore, it involves a greater

degree of uncertainty than risky events (uncertain, with known probabilities). Under the classical subjective

expected utility theory developed by Savage (1954), the distinction in the nature of uncertainty does not

matter: a decision maker assigns subjective probabilities to all the alternatives and maximizes the corre-

sponding subjective expected utility. The Ellsberg (1961) paradox and many other subsequent experimental

observations have provided evidence against subjective expected utility theory, and showed that decision

makers tend to be averse to ambiguous events.

A growing body of literature models ambiguity aversion as aversion to compound lotteries. Segal (1987)

pioneered this method by representing the Ellsberg problem as a compound lottery. In the �rst stage, the

decision maker assigns the probability of getting the various lotteries in the second stage. Using the recursive

non expected utility model, Segal (1987) models ambiguity aversion as aversion to compound lotteries.

Several other studies of ambiguity aversion rely on the violation of the reducibility assumption (Klibano�

et al. 2005; Ergin and Gul 2009; Nau 2006; Seo 2009 ).9 Halevy (2007) corroborates these theoretical �ndings

experimentally by demonstrating the existence of a strong link between ambiguity aversion and compound-

risk attitudes. He �nds that ambiguity neutral participants are more likely to reduce compound lotteries,

behaving according to expected utility theory. Conversely, those who are ambiguity averse are also compound

risk averse.

Given the established relationship between compound lottery aversion and ambiguity aversion, we model

compound lottery aversion using the theory of ambiguity. Speci�cally, we use the Smooth Model of Ambiguity

Aversion formalized by Kilbano�, Marinacci and Mukerji (2005) (referred to as the KMM model). This model

captures risk preferences by the curvature of the utility of wealth function, and ambiguity preferences by a

second-stage utility functional de�ned over the expected utility of wealth. It therefore allows the separation

of attitudes towards risk and compound-risk, and makes it possible to elicit them in an experiment.

We apply this model in the more general case of multiple states of the nature. Let fy and fX be the

respective pdfs of the farmer's yield y and the index X. Denote the �nal wealth of the farmer after all

payments are made under the index insurance contract by ρ, with pdf fρ (y,X). Here, y is the farmer's

7According to the de�nition of Abdellaoui et al.(2011), a decision maker is compound-risk averse (seeking) if the certainty
equivalent for the compound lottery is below (above) the certainty equivalent of the simple lottery.

8Bryan (2010) also studies the uptake of index insurance under ambiguity aversion. The main assumption of his model
is that the farmer faces an ambiguity not only in terms of the probability distribution of the index, but also in terms of the
di�erent outcomes. For example, he ignores his yield outcome in case there is a drought and the index is not triggered. This
assumption is unrealistic since farmers know how their crops respond to droughts.

9Other theories of decision making under ambiguity include the seminal work of Gilboa and Schmeidler (1989) who developed
the max min expected utility theory: a decision maker has a set of prior beliefs and the utility of an act is the minimal expected
utility in this set.
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yield, I(X) is the insurance indemnity payment and τ1 is the index insurance premium.

Assuming that the individual's risk preferences are captured by the utility function u de�ned over �nal

wealth, and assuming that the farmer is risk averse by imposing concavity of u (u is as usual also increasing),

the objective function of an expected utility maximizer is the following:

Efρ [u (ρ)] (1)

However, as explained above, compound lotteries create something akin to ambiguity. While the indi-

vidual probabilities for the index insurance are known, decision makers perceive the �nal probabilities as

unknown. Under the KMM model, for each realization of the index, the farmer's expected utility is evaluated

by an increasing function v that captures compound risk preferences, and the farmer's objective function is

the expected value of v given the probability distribution of the yield. Thus, the farmer's objective function

is given by:

Efy
[
v
(
EfX‖yu (ρ)

)]
(2)

where Efy denotes the expectation with respect to fy. The expectation EfX‖y is taken with respect to fX‖y,

the probability distribution function of the index conditional on the realization of the yield. Similar to how

risk aversion is imposed by the concavity of u, compound-risk aversion is obtained by imposing concavity of

v: i.e. v
′
> 0 and v

′′ ≤ 0 in the KMM model. In the compound-risk neutral case (i.e., when v is linear), this

expression reduces to the conventional Von Neumann-Morgenstern expected utility maximization represented

by Equation 1.

Section 3 studies the implication of compound-risk aversion on insurance decisions. The results rely on

the concept of compound lottery premium. This premium was derived by Maccheroni et al. (2010) and is

an extension of the classical Arrow-Pratt premium, where the preferences are characterized by the KMM

model.

3 Index insurance and the KMM Model

This section applies the concept of compound lottery premium derived by Maccheroni, Marinacci and Ru�no

(2010) (MMR) to the index insurance case. This premium is the analogue of the classic Arrow-Pratt ap-

proximation under the presence of compound lotteries. Then this section uses this new concept to study the

willingness to pay for index insurance and the willingness to pay to eliminate basis risk.
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3.1 The compound lottery premium

In the case of index insurance, the compound lottery premium PX is de�ned such that the farmer is indi�erent

between receiving the net revenue from the index insurance contract and the certain average revenue ρ∗ =

Efρ (ρ). Under compound-risk aversion, this premium solves the following equation:

Efy
[
v
(
EfXpyu (ρ)

)]
= v (u (ρ∗ − PX)) (3)

If the farmer is compound risk neutral, then v is linear, and the compound lottery premium PNX is the regular

Pratt premium de�ned by Eρu (ρ) = u
(
ρ∗ − PNX

)
. Using Jensen's inequality, we have:

PX ≥ PNX

This �nding means that compound-risk aversion should increase the compound lottery premium for index

insurance relative to what it would be if individuals had the same degree of risk aversion but were compound-

risk neutral. In other words, index insurance appears riskier for a compound-risk averse farmer than to his

compound-risk neutral counterpart, for the same level of risk aversion.

Proof. Since u is concave, using Jensen's inequality:

v (u (ρ∗ − PX)) = Efy
[
v
(
EfXpyu (ρ)

)]
≤ v

(
EfyEfXpyu(ρ)

)
= v

(
Efρu(ρ)

)
= v

(
u
(
ρ∗ − PNX

))

Intuitively, the compound lottery premium should be a function of the farmer's preference (level of risk

aversion and compound-risk aversion) and the basis risk characterizing the contract. The approximation of

the compound lottery premium derived by MMR con�rms this intuition. They showed that it is the sum of

a compound-risk premium and the classical Pratt risk premium:

PX ' −
1

2
σ2
ρ

u
′′

(ρ∗)

u′ (ρ∗)
− 1

2
σ2
ρ∗

v
′′

(u (ρ∗))
(
u
′
(ρ∗)

)
v′ (u (ρ∗))

(4)

where σ2
ρ is the variance of the �nal net wealth when purchasing the index insurance contract :

σ2
ρ = Efy

[
EfX|y [ρ− ρ∗]2

]

8



For every realization of the �rst stage lottery (the yield lottery) the farmer faces a second stage lottery (index

lottery) that yields a given expected net wealth. σ2
ρ∗ is the variance of this net wealth measured with respect

to the probability distribution of the yield:

σ2
ρ∗ = Efy

[
EfXpy [ρ]

]2 − [Efy [Expy (ρ)]
]2

σ2
ρ∗ re�ects the uncertainty on the expected net wealth of the farmer due to the compound structure of the

prospect he faces. Therefore, if he faces a conventional indemnity insurance (a simple lottery) then σ2
ρ∗ = 0.

By the law of total variance, we have the following relationship between σ2
ρ and σ

2
ρ∗ :

σ2
ρ = Ey (var [ρ p y]) + V ar (EXpy [ρ p y])

= Ey (var [ρ p y]) + σ2
ρ∗

The �rst component E (var [ρ p y]) is called the expected value of conditional variances, which is the

weighted average of the conditional variances. It is the �within� component of the variance: the expected

variance of the net wealth realized in the secondary lottery. The second term σ2
ρ∗ is the �between� component

of the variance. It is the variance of the conditional means, which represents the additional variances as a

result of the uncertainty in the realization of the yield.

From Equation 4 note that:

1. For a compound-risk neutral individual, the compound-lottery premium reduces to the classical Pratt

premium,

PNX ' −
1

2
σ2
ρ∗
u
′′

(ρ∗)

u′ (ρ∗)

2. For conventional indemnity insurance, the compound lottery premium also reduces to the classical

Pratt premium, whether the farmer is compound-risk averse or not. This is because σ2
ρ∗ = 0 in the

case of a conventional indemnity insurance.

3. A compound-risk averse individual is willing to pay an extra premium to eliminate basis risk compared

to his compound-risk neutral counterpart, who has the same level of risk aversion. This extra premium

is denoted P c, and it is a function of the curvature of v, u and of σ2
ρ∗ .

P c ' −1

2
σ2
ρ∗

v
′′

(u (ρ∗))
(
u
′
(ρ∗)

)
v′ (u (ρ∗))

(5)

Let's de�ne an increase in basis risk as in increase in FNP, keeping the probability that the index triggers a
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payment constant. This increase in basis risk leads to an increase in σ2
ρ and in σ2

ρ∗ . Proposition 1 states the

impact of an increase in basis risk on the compound lottery premium.

Proposition 1. As basis risk increases, the compound lottery premium PX for the index insurance contract

increases for a compound-risk averse participant. This increase in compound lottery premium is higher than

under expected utility theory.

The following proof is for the discrete framework presented in Figure 1. The result can be generalized to

the continuous case.

First, de�ne the random variable q as the probability that the index is triggered. q yields q1with proba-

bility p, and q2 with probability 1− p .The index insurance contract presented in Figure 1 yields a payment

with a probability q given by:

q̄ = p ∗ q1 + (1− p) ∗ q2

Let's de�ne an increase in basis risk as a mean preserving spread in the probability of payment q̄ such as

the FNP (1− q2) increases. De�ne q
′
as the random variable yielding either q1 + h(1−p)

p or q2 − h, with

probabilities p and 1− p respectively:

q
′
(h) =

q1 + h(1−p)
p , p

q2 − h, 1− p
(6)

De�ne the random variable ε as follows:

ε =

(1− p) ∗ (q1 − q2 + h
p ), p

p ∗ (q2 − q1 − h
p ), 1− p

(7)

Then, the variable q
′
can be written as the sum of q̄ and ε:

q
′

= q̄ + ε

Note also that E (ε p q̄) = 0. Therefore, q
′
is a mean preserving spread of q.

Claim. De�ning σ
′
2
ρ as the variance of the farmer's wealth under the new probability distribution q

′
,
∂σ
′
2
ρ

∂h ≥ 0.

Proof. Using the notations de�ned in Section 2, we have:
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σ
′
2
ρ = p

(
q1 +

h ∗ (1− p)
p

)
(y0 − τ1 + Π− ρ∗)2

+ p

(
1− q1 −

h ∗ (1− p)
p

)
(y0 − τ1 − ρ∗)2

+ (1− p) ∗ (q2 − h) (y0 − L− τ1 + Π− ρ∗)2
+ (1− p) ∗ (1− q2 + h) (y0 − L− τ1 + Π− ρ∗)2

= σ2
ρ + h ∗ (1− p) ∗ (y0 − τ1 + Π− ρ∗)2 − h ∗ (1− p) ∗ (y0 − τ1 − ρ∗)2

+ (1− p) ∗ (−h) (y0 − L− τ1 + Π− ρ∗)2
+ (1− p)h((y0 − L− τ1 − ρ∗)2

∂σ
′
2
ρ

∂h
= (1− p)(2ΠL)

≥ 0

since L ≥ 0 and Π ≥ 0.

Claim. De�ne σ
′
2
ρ∗ as the analogous of σ

2
ρ∗ under the probability of payment q

′
. Then

∂σ
′
2
ρ∗

∂h ≥ 0

Proof. De�ne ρ̄
′
1 and ρ̄

′
2 as the conditional means of the net wealth under the high yield and low yield,

respectively. The variance σ
′
2
ρ∗ can be written in the following way:

σ2
′

ρ∗ = p ∗ (ρ̄
′
1 − ρ∗)2 + (1− p) ∗ (ρ̄

′
2 − ρ∗)2

= p ∗ (ρ̄1 +
h(1− p)

p
π − ρ∗)2 + (1− p) ∗ (ρ̄2 − hπ − ρ∗)2

∂σ
′
2
ρ∗

∂h
= 2

h(1− p)2

p
π + 2(1− p)hπ2 + 2(1− p)(ρ̄1 − ρ̄2)

≥ 0

since ρ̄1 > ρ̄2.

An increase in basis risk leads to an increase in both the Pratt premium and the compound-risk premium.

Therefore, the impact of basis risk is exacerbated by compound-risk aversion.

3.2 Implication 1: willingness to pay for index insurance

This section investigates the willingness of a farmer to pay for index insurance WTPX using his compound-

risk attitudes. WTPX is de�ned as the di�erence between the certainty equivalent of the index insurance

contract CEX , and the certainty equivalent of the income lottery he faces if he does not purchase any

insurance CENI .The certainty equivalent of the index insurance contract CEX is de�ned by:

CEX ≡ ρ∗ − PX

The certainty equivalent of the no insurance option is de�ned by:
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CENI ≡ ρ∗NI +
1

2
σ2
ρNI

u” (ρ∗NI)

u′ (ρ∗NI)

where ρ∗NI=Efρ (ρ) is the expected �nal net wealth the farmer gets without insurance, and σ2
ρNI is the

variance of the farmer's �nal net wealth without insurance. Therefore, WTPX is given by:

WTPX = (ρ∗ − ρ∗NI) +

(
1

2
σ2
ρ

u
′′

(ρ∗)

u′ (ρ∗)
− 1

2
σ2
ρNI

u” (ρ∗NI)

u′ (ρ∗NI)

)
+

1

2
σ2
ρ∗

v
′′

(u (ρ∗))
(
u
′
(ρ∗)

)
v′ (u (ρ∗))

Thus, the magnitude of the willingness to pay for index insurance depends on the farmer's risk aversion,

compound-risk aversion and on basis risk. If the farmer is compound-risk neutral, then his willingness to

pay reduces to:

WTPNX = (ρ∗ − ρ∗NI) +

(
1

2
σ2
ρ

u
′′

(ρ∗)

u′ (ρ∗)
− 1

2
σ2
ρNI

u” (ρ∗NI)

u′ (ρ∗NI)

)

Notice that for a given level of basis risk, WTPX ≤WTPNX . If basis risk increases, since σ2
ρ increases and u

is concave, WTPNX decreases. Since an increase in basis risk leads to an increase in σ2
ρ∗ , the e�ect of basis

risk on WTPX is exacerbated under compound-risk aversion.

The next section describes a methodology to characterize the compound-risk attitudes of the participants.

The idea is to give the participants a choice between the index insurance and some equivalent conventional

indemnity insurance. The outcome of this procedure is the elicitation of the willingness to pay to eliminate

basis risk.

3.3 Implication 2: willingness to pay to eliminate basis risk

Compared to index insurance, conventional indemnity insurance does not have basis risk. The farmer

receives a payment whenever he experiences a loss in his farm. Therefore, a measure of his willingness to

pay to eliminate basis risk WTPBR can be obtained by comparing his attitude towards index insurance and

conventional indemnity insurance. Let us imagine the situation where a farmer has to choose between the

index insurance contract and a conventional indemnity insurance contract. This latter contract yields a net

wealth δ and pays for sure when the farmer's yield is low. What is the amount of money that makes the

farmer indi�erent between the two contracts? By de�nition, WTPBR is the maximum amount of money the

farmer is willing to give up in order to be indi�erent between the index insurance contract, and the individual

insurance contract. Equivalently, WTPBR is de�ned as the di�erence between the certainty equivalent of

the index insurance contract CEX , and the certainty equivalent of the income lottery he faces if he purchases

the individual insurance CEII .

The certainty equivalent of the individual insurance CEII contract is by de�nition:
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CEII ≡ δ∗ − 1

2
σ2
δ

u
′′

(δ∗)

u′ (δ∗)

where δ∗=Efy (δ) is the expected �nal net wealth the farmer gets with the individual insurance, and σ2
δ is

the variance of the farmer's �nal net wealth with individual insurance. Therefore, WTPBR is de�ned by:

WTPBR ≡ CEIX − CEII

or equivalently,

WTPBR = (ρ∗ − δ∗) +

(
1

2
σ2
ρ

u
′′

(ρ∗)

u′ (ρ∗)
− 1

2
σ2
δ∗
u” (δ∗)

u′ (δ∗)

)
+

1

2
σ2
ρ∗

v
′′

(u (ρ∗))
(
u
′
(ρ∗)

)
v′ (u (ρ∗))

Using the same reasoning as in section 3.1, we can verify that a compound-risk averse individual has a

higher WTP compared to his compound-risk neutral counterpart, for the same level of risk aversion. WTPBR

is a measure that can be easily elicited in an experiment. For a given level of basis risk and risk aversion, this

measure depends only on compound-risk aversion. Therefore, combining the �nding of a game that elicits

WTPBR with the �ndings of a game that elicits the coe�cients of risk aversion allows the elicitation of the

coe�cients of compound-risk aversion. Section 4 describes such games.

4 Experimental Design and Data

To test these hypothesis, 331 cotton farmers from 34 cotton cooperatives in Bougouni, Mali participated in

a set of framed �eld experiments. A �rst game allowed the measurement of their risk aversion coe�cients. It

was framed in terms of insurance decisions.. The second game elicited their WTP to eliminate basis risk as

de�ned in Section 3, which allows the elicitation of the compound-risk aversion coe�cients. This last game

closely resembles the theoretical framework described in Section 2 with one di�erence. If the individual

yield is high, the index is no longer triggered. The reason is to mimic the structure of an area yield index

insurance product that was designed as part of the ongoing project �Index insurance for Cotton farmers in

Mali�, and launched by the Index Insurance Innovation Initiative (I4). More details about this project and

the structure of the distributed contract can be found in Elabed et al. (2013).

4.1 Experimental Procedure

The participants are 331 members of 34 cotton cooperatives selected at random from the list of cooperatives

participating in the project mentioned above. In addition, a survey gathered detailed information on various

socio-economic characteristics of the participating farmers such as demographic characteristics, wealth, assets
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owned, agricultural production and shocks. Data collection for the survey took place in December 2011

through January 2012, and the experiments took place in January and February 2012.

Three rural area animators translated the experimental protocol from French to Bambara, the local

language, and ensured that it is accessible to a typical cotton farmer. Game trials were conducted with

graduate students in Davis, CA, and with high school students and cotton farmers who were not part of the

�nal experimental sample in Bougouni, Mali. Local leaders (secretaries of cotton cooperatives and/or village

chiefs) assisted us in recruiting the eligible participants from a list of names that we provided.

The sessions took place in a classroom on weekends and in the village chief's o�ce on weekdays. The

sessions took place with members of the same cooperative, and they lasted around two and a half hours.

We divided the sessions into two parts with a short break between each. Each participant played one pure

luck game and four decision and luck games. Each decision and luck game started with a set of six �low

stakes� rounds aimed at familiarizing them with the rules, which were followed by a set of six �high stakes�

rounds. The only di�erence between these two types of rounds was the exchange rate used to compute the

gains in cash: the gains from a high stake round were 5 times higher than the gains from a low stake round.

At the end of the session, we paid the players for only one of the low stake rounds and one of the high

stake rounds of every game by having a farmer roll a six-sided die. We used this random incentive device

in order to encourage the players to choose carefully. The animator announced the selection procedure to

the players at the beginning of every game. In order to incentivize the players to think more carefully about

their decisions, we repeated the following sentence �There is no right or wrong answer. You should do what

you think is best for you and your family whether it is choice #1, choice #2, etc.�.

At the end of the session, participants received their game winnings in cash, in addition to a show up fee

of 100 CFA. Minimum and maximum earnings, excluding show up fee, were 85 CFA and 2720 CFA and mean

earnings was 1905 CFA. The daily wage for a male farm labor in the areas where we ran the experiments

were between 500 CFA (0. 93 USD) and 2000 CFA (3.75 USD) and on average 1040 CFA (1.95 USD). Since

literacy rates are very low in the area, we presented the games orally with the help of visual aids. In addition

to the main animator, two rural animators assisted the players with the various materials.

4.2 The Games

The players, endowed with one �hectare of land�, had to take decisions framed in terms most familiar to

them: their decisions were centered on cotton -their main cash crop. Before playing the risk aversion game,

the participants learned how to determine their yields and the resulting revenue. Then participants had to

choose among di�erent insurance contracts.

4.2.1 Determining the Yield:

Based on historical yield distributions and pooling all the available data across years and cooperatives, we

discretized the density of cotton yields into six sections with the following probabilities (in percent): 5, 5,

14



5, 10, 25 and 50, respectively. The individual yield values corresponding to the mid-point of those sections

are (in kg/ha): 250, 450, 645, 740, 880 and 1530, respectively. Table 1 shows the yield distribution and the

corresponding revenue in d, the local currency.

Yield range (kg/ha) Mid point Probability Revenue (in d)

<300 250 5% 2400
300-600 450 5% 10400
600-690 645 5% 18200
690-790 745 10% 22000
790-780 880 25% 27600
>980 1530 50% 53600

Table 1: Yield distribution and corresponding revenues

Understanding the notion of probability associated with the yield determination is a challenge that we

addressed by using the randomization procedure used by Galarza and Carter (2011) in Peru to simulate

the realizations of the individual yields. Every participating farmer drew his yield realizations from a bag

containing 20 blocks (1 black, 1 yellow, 1 red, 2 orange, 5 green and 10 blue) which reproduce the probability

distribution mentioned earlier, going from the lowest to the highest yield. Figure 2 shows the visual aid

provided to farmers to help them understand the game better. Equation 8 computes the individual farmer's

per hectare pro�ts in d without any insurance contract:

profiti = p ∗ yi − Inputs (8)

where the price (p) of a kg of cotton is set at d40, the cost of the inputs is set at d7600 in order to

guarantee that the players never incur a real loss in the games with the di�erent contracts.
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Rendement 250 450 645 740 880 1530 

Intrants 
 

d7600 d7600 d7600 d7600 d7600 d7600 

Argent de la 
famille 

 

d2400  d10400 d18200 d22000 d27600 d53600 

Figure 2: Visual aid for yield distribution

4.2.2 Conventional Indemnity Insurance Contract

After having practiced determining their yields and the corresponding revenue, the player, indexed by i had

to decide whether to purchase an insurance contract. The contract is linear and the payment occurs if the

yield falls below the strike point T. The strike point T represents an exogenous reference point, or the yield

level below which the farmer feels that he experiences a loss. In case the farmer is eligible for an insurance

payment, the insurance reimburses the di�erence between the individual yield and the strike point such that

the farmer is guaranteed to have an income corresponding to yield T . The premium is set to include a

loading cost of 20%, such that the amount paid is 120% the amount received on average. Thus, the payment

schedule is the following:

payment(yi) =

p ∗ (T − yi), yi ≤ T

0 yi > T

(9)

4.2.3 The index insurance contract

The index insurance contract is characterized by a strike point T at the individual level, and by another

strike point Tz at the ZPA (aggregate agricultural area) level. Every participant farmer was explicitly told

that he represents a separate agricultural production area in order to emphasize the fact that the index is

independent from the realizations of the other farmers in the group. Thus, compared to the regular indemnity

insurance, in order to be eligible for a payment, the farmer has to satisfy an extra condition. The payment
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schedule is the following:

payment(yi) =

p ∗ (T − yi) : yi ≤ T and yz ≤ Tz

0 otherwise

(10)

Thus, from the player's point of view, once he su�ers a loss (i.e. his yield is below the individual strike

point), he risks not getting a payment with positive probability. Based on historical data from the area, this

probability is set at 20%. Further, the individual-level trigger is set at 70% of the median historical yield,

and the contract was priced with a loading cost of 20%. If a farmer decides to purchase an index insurance

contract, then he faces a two-stage game. First, he determines his own yield by drawing a block from the

yield sack. Then, if the yield is below the individual strike point, he draws another block from a second sack

which contains 4 brown blocks (i.e. the index triggered) and one green block (i.e. the index is not triggered).

4.2.4 Game 1: Eliciting risk preferences

The risk aversion game was framed in terms of an insurance decision to elicit risk preferences. While

alternative unframed methodologies exist in the literature, this framed design is chosen for pedagogical

reasons. Each subject had six di�erent possibilities: don't purchase an insurance contract, or choose among

�ve di�erent insurance contracts that di�er in their strike points, which were 100%, 80%, 70%, 60%, and

50% of the median historical yield (980 kg/ha). In terms of actual yields, this corresponds to 980 kg/ha, 790

kg/ha, 690 kg/ha, 600 kg/ha, and 300 kg/ha, respectively.

The net revenue of farmer i if he purchases contract j is given by the following formula:

profitij = p ∗ yi + Indemnityj − premiumj (11)

where indemnity is an indicator function for the insurance payment, and premium is the premium of the

insurance contract. Table 2 shows the di�erent revenues associated with each choice and the corresponding

risk aversion ranges.

In this game, each player had to determine whether he wanted to purchase an insurance contract, and if

so which one. Then, an assistant asked him to draw a block in order to determine his revenue.
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Contract # Trigger Premium Net Pro�t (d) CRRA range
(% ybar) (d) (d)

Yield 250 450 645 740 880 1530
(kg/ha)
Proba. 5% 5% 5% 10% 25% 50%

0 0 0 2400 10400 18200 22000 27600 53600 (∞; 0.08)
1 50 600 4280 10280 18080 21880 27480 53480 (0.08; 0.16)
2 60 1200 15200 15200 17000 20800 26400 52400 (0.16; 0.27)
3 70 1740 18260 18260 18260 20260 25860 52860 (0.27; 0.36)
4 80 2700 21300 21300 21300 21300 24900 50900 (0.36; 0.55)
5 100 6180 25420 25420 25420 25420 25420 47420 (0.55;∞)

Table 2: Individual insurance contracts and risk aversion coe�cient

The last column of Table 2 exhibits the CRRA ranges corresponding to every contract choice, assuming

a CRRA utility function. Let's assume that the player chose the third contract. Assuming monotonic

preferences, this implies that he preferred this contract to contracts 2 and contract 4. The upper (lower)

bounds of the CRRA range is found by equalizing the expected utility that the farmer derives from contract

2 and 3 (3 and 4). In this case, as Table 2 shows, the CRRA range of the player is (0.27; 0.36). Note that

as the level of coverage (measured by the trigger as percentage of the median yield) increases, the CRRA

increases.

4.2.5 Game 2: Eliciting the WTP to eliminate basis risk

After having practiced determining his revenue under the index insurance contract, every participant played

a game that aimed at eliciting the WTP measure de�ned above (the amount of money the farmer is willing

to pay above the price of the indemnity insurance contract). Speci�cally, we wanted to see whether the

player, whom we call Mr. Toure, preferred the indemnity contract to the index contract as we increase the

price of the individual contract from its base price (d1340) to d3540, by increments of d200.

The elicitation procedure was the following: The animator presented players with the following scenario:

Mr. Toure's friend, Mr. Cisse, is going to Bamako (the capital of Mali, 90 miles away). Mr. Toure asks Mr.

Cisse to buy an insurance contract for Mr. Toure. Mr. Toure knows that the price of the individual contract

can vary depending on the day, but the price of an index contract is always the same. After highlighting the

fact that at the price of d1340, it is always more pro�table to buy the individual insurance contract, Mr.

Toure was asked to tell Mr. Cisse at which price Mr. Toure should switch to favoring the index insurance

contract over the individual insurance contract. Thus, by the end of the game, we have the switching price

for every player from which we deduce his willingness to pay to eliminate basis risk.

The game reduces to ten choices between 10 paired insurance contracts whose net revenues are listed

in table 3. Notice that the price of the index insurance contract does not vary, whereas the price of the

individual insurance contract increases by d200 as we move down the table.
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Index Insurance contract Indemnity insurance contract Implied WTP Implied CRRA under EUT

d1400 d1740 0 (0; 0.49)
d1400 d1940 d200 (0.49; 0.71)
d1400 d2140 d400 (0.71; 0.87)
d1400 d2340 d600 (0.87; 0.99)
d1400 d2540 d800 (0.99; 1.09)
d1400 d2740 d1000 (1.09; 1.18)
d1400 d2940 d1200 (1.18; 1.25)
d1400 d3140 d1400 (1.25; 1.32)
d1400 d3340 d1600 (1.32; 1.37)
d1400 d3540 d1800 (1.37; +∞)

Table 3: Game 2: Eliciting WTP measure.

The last column of Table 3 presents the CRRA ranges implied by the measured WTP if the player behaves

according to the predictions of expected utility theory, i.e if he reduces the index insurance compound lottery

to a simple lottery. For example, if a player's i WTP is d800, then the expected utility he derives from the

index insurance contract is larger than the expected utility of the individual contract priced at d2340 and

smaller then the expected utility he derives from the individual contract priced at d2540: EU(π + 600) ≤

EU(ρ) 6 EU(π + 800). However, if a participant is compound-risk averse, then the elicited CRRAs do not

correspond to the true CRRA of the player.

In order to deduce the compound-risk aversion of a player, we impose a functional form on the function

v we de�ned earlier. For computational convenience, we impose constant relative compound risk aversion.

Thus, the function v de�ned in Section 2 is given by:

v (y) =


g1−y

1−g if g ∈ [0, 1)

log (y) if g = 1

(12)

where g is the coe�cient of constant relative compound-risk aversion, and y is measured in d.

Table 4 below lists the predicted coe�cients of compound-risk aversion based on the player's choices in

Games 1 and 2. To simplify the calculations, these measures are made after taking the midpoint of every

risk aversion range. For example, if the player chose contract 4 in Game 1, then the corresponding CRRA

is 0.45. The corresponding g is obtained using the de�ntion of WTP.
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Contract choice in Game 1:
WTP (d) 0 1 2 3 4 5

0 0.01 0.00 0.00 0.00 0.00 0.00
200 0.08 0.07 0.06 0.05 0.01 0.00
400 0.14 0.14 0.14 0.13 0.10 0.00
600 0.21 0.21 0.21 0.21 0.20 0.00
800 0.27 0.28 0.29 0.29 0.29 0.00
1000 0.34 0.35 0.36 0.38 0.39 0.00
1200 0.40 0.42 0.44 0.46 0.48 0.13
1400 0.47 0.49 0.51 0.54 0.58 0.29
1600 0.53 0.56 0.59 0.62 0.67 0.46
1800 0.59 0.62 0.66 0.70 0.76 0.63

Table 4: Predictions of the Coe�cients of Compound-Risk Aversion.

5 Descriptive analysis of the experimental results

5.1 Participants characteristics

Table 5 provides the descriptive statistics for the experiment participants. All the participants are male,

which is not surprising given the division of labor in the area of study: cotton is a male crop. The average

participant is approximately 47 years old, has limited formal education (three years of schooling), and belongs

to a household with almost 19 members. 71% of the participants are the head of their households, and almost

all of them have heard of the cotton insurance contract distributed in the �eld. The average household head

has been a member in the cooperative for almost 8.6 years. The average household economic status is

represented by a total livestock value of 1.8 million CFA, a house worth 400,000 CFA and a total land area

of 9.62 ha.

Variable Definition mean
head 1 if the participant is head of household 0.7
age Participant's agent 47.07 13.21
gender 1 if participant is male 1
education Participant's years of schooling 4.55 6.57

knowledge_ins 1 if participant heard about cotton insurance before 0.92

Head of the household's age 55.55 15.22

1 if head of the household is male 1

coop_years Number of years of household's head  membership in the cotton cooperative 8.62 6.28

Size of the household 18.82 11.88
livestock_2012 Value of livestock in CFA 1,822,602 5,634,664

Value of agricultural equipment in CFA 171,299 247,236
assets_value Value of household's  assets in CFA 204,200 164,468
house_value Value of the house in CFA 396,952 1,042,061
land_owned Total area of land owned in ha 9.62 7.81
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Table 5: Descriptive Statistics of the Participants
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5.2 Description of the results of Game 1

The last column of Table 6 below shows the distribution of the levels of CRRA of the participants, based

on the results of Game 1. The majority of the farmers (78%) chose an insurance contract, and 30% of them

chose the highest level of coverage which corresponds to a CRRA level of more than 0.55.

Contract # CRRA range %

0 (∞; 0.08) 22.56
1 (0.08; 0.16) 7.32
2 (0.16; 0.27) 9.76
3 (0.27; 0.36) 10.67
4 (0.36; 0.55) 17.99
5 (0.55;∞) 31.71

Table 6: Distribution of the CRRAs in the sample

6 Empirical analysis of the experimental results

6.1 On average, the participating farmers do not behave according to EUT

As we have seen in Section 3, a compound-risk averse farmer is willing to pay more money to switch from

the index insurance contract to the individual insurance contract, compared to his compound-risk neutral

counterpart who has the same level of risk aversion. Therefore, in order to empirically test the hypothesis

that farmers are on average compound-risk neutral (i.e. expected utility maximizers), one should compare

the distribution of the CRRA coe�cients elicited from Game 1 (column of Table 2) to those elicited from

Game 2 (last column of Table 4.2.5). Games 1 and 2 do not elicit the actual CRRAs coe�cients, but provide

CRRA classes that are not directly comparable. Therefore, before performing the hypothesis test, we begin

by �tting a continuous probability distribution to the CRRAs elicited from both games.

Instead of conducting an exhaustive search of every possible probability distribution, it is more practical

to �t a general class distribution to the data. Ideally, this distribution will be �exible enough to reasonably

represent the underlying parameters. This section uses the Beta of the �rst kind (B1), a three-parameter

distribution, as the continuous model that represents the data. The Beta distribution of the �rst kind is

one member of a class of distributions called Generalized Beta distributions (GB), a family of �ve-parameter

distributions that encompasses a number of commonly used distributions (Gamma, Pareto, etc.). The GB

is a �exible unimodal distribution and is widely used when modeling bounded continuous outcomes, such as

income distribution.

Since the B1 distribution is de�ned for bounded variables, one should make assumptions about the range

of the CRRAs. The participants are assumed to be risk-averse. We allow the upper bound of the elicited

CRRA to be 1.7.

Let B1(b, p1, q1) and B1(b, p1, q1) be the probability distribution functions of the CRRAs elicited from

Game 1 and Game 2 respectively. The parameter b is the upper bound of the CRRAs and is set at the value
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mean [95% conf Interval]

Game 1 p1 parameter 0.67 0.63 0.84
q1 parameter 1.98 1.80 2.58

Game 2 p1 parameter 2.07 1.92 2.57
q1 parameter 4.37 4.16 5.09

Table 8: Bootstrap con�dence intervals for the parameters.

1.7. The appendix explains the methodology used to estimate these parameters

Table 7 presents the results of the estimation method:

Game Game 1 Game 2

First parameter 0.68 2.07
Second parameter 1.99 4.36

Table 7: Estimated parameters of the distribution

We estimate the con�dence intervals for the di�erent parameters using the bootstrap method. Table 8

shows the con�dence intervals of parameters p1, q1, p2 and q2 at the 5% signi�cance level, obtained after

10000 simulations. It is clear that the bootstrap parameters are consistent estimates for the actual ones.

From Figure 6.1, it is clear that the parameters follow a normal distribution whose mean is close to the

observed values. Therefore, the estimation strategy provides a good �t for the data.
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Figure 3: Histogram of bootstrap for parameter p and q.

The test of equality of the distributions of the two CRRAs elicited from the games is performed using 10

000 bootstrapped simulations of the data. We reject the hypothesis that parameters of the two distributions

are the same at the 5% level. Therefore, on average, farmers are not compound-risk neutral.
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6.2 Participants are compound-risk averse to varying degrees

Overall, only 40.18% of the participants were indi�erent between the index insurance contract and the

individual insurance contract. This supports the hypothesis that basis risk reduces the demand for index

insurance. The remaining 60.82% participants have an average WTP of 395d, which represents 22% of the

price of the individual insurance contract.

We presented the coe�cient of compound-risk aversion for each demonstrated category of WTP in Table

4. Using the Table 4 coe�cients of compound-risk aversion, we derive the number of participants who are

compound-risk averse and disaggregate this number by risk aversion range. As shown in Table 9, 57% of

the players are compound-risk averse. Furthermore, most of the compound-risk averse farmers are also the

least risk averse (22.39%). While the existence of compound-risk aversion is important in and of itself, we

will study its impact on the demand for index insurance in the next section.

CRRA Range

(∞; 0.08) (0.08; 0.16) (0.16; 0.27) (0.27; 0.36) (0.36; 0.55) (0.55; 1.7)

Compound-risk averse participants 73 24 32 35 59 103 186

% of CRRA range 100 37.5 75.0 74.2 66.1 14.6

% of total participants 22.39 2.76 7.36 7.98 11.96 4.60 57.07

Table 9: Distribution of Compound- risk Attitudes by CRRA levels

6.3 Simulating the impact of basis risk under compound-risk aversion

Drawing on the �ndings of the experiments described above, this section simulates the impact of basis risk on

the demand of index insurance under expected utility maximization (equivalently, compound-risk neutrality),

and compound-risk aversion. In the following discussion, we assume that the distributions of risk aversion

and of compound-risk aversion among the farmers re�ect the distributions in the overall population.

Figure 4: Impact of basis risk.

The dotted curve of Figure 4 illustrates the impact of basis risk on the demand for index insurance
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assuming that:

1. Individuals are expected utility maximizers,

2. The price of index insurance is 20% above the actuarially fair price, and

3. The distribution of risk aversion in the population of farmers matches the distribution revealed by the

experimental games played in Mali.

Here, basis risk is the probability of getting a payment in the case the farmer experiences a loss. As the

basis risk increases under this contract structure, the probability of a payout decreases, and the price of the

insurance contract in turn declines. However, because the contract is not actuarially fair, a number of agents

drop out of the market as basis risk increases. As can be seen in Figure 4 , increasing basis risk in an index

insurance contract will discourage demand because it fails to su�ciently reduce the risk of collateral loss.

For a contract with zero basis risk, i.e. one that pays o� for sure in case of a loss, moderately and highly

risk averse farmers (70% of the population in the Mali experiment) ask for index insurance. As basis risk

increases, the farmers with the highest risk aversion coe�cient are the �rst to stop demanding the contract.

This drop in demand reaches as high as 15% for extremely high levels of basis risk (90%). Despite this

decrease in demand, the demand for the partial insurance provided by this index insurance contract remains

relatively robust even as basis risk increases (assuming that individuals maximize expected utility).

Basis risk matters even more when people are compound-risk averse. The solid line in Figure 4 shows ,

using the distribution of compound-risk aversion in the population of the farmers, the impact of basis risk

on demand for index insurance, using the distribution of compound-risk aversion in the population of the

farmers. As expected, compound risk aversion decreases the demand for index insurance relative to what it

would be if individuals had the same degree of risk aversion but were compound-risk neutral. In addition,

as can be seen in the �gure, demand declines more steeply as basis risk increases under compound-risk

aversion. Were basis risk as high as 50% (a not unreasonably high number under the kind of rainfall index

insurance contracts that have utilized in a number of pilots), demand would be expected to be only 35% of

the population as opposed to the 60% demand that would be expected if individuals were simply expected

utility maximizers. In short, under compound-risk aversion, designing contracts with minimal basis risk is

important, not only to enhance the value and productivity impacts of index insurance, but also to assure

that the contracts are demanded.

7 Conclusion

In the absence of traditional insurance markets, poor households in developing countries rely on costly risk-

managing mechanisms. Although index insurance provides a good alternative to these households in theory,

demand has been surprisingly low. In this paper, we presented a novel way to understand these low uptake

rates, using the interlinked concepts of ambiguity and compound lottery aversion.
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In a framed �eld experiments conducted with cotton farmers in Bougouni, Mali we elicited the coe�cients

of risk-aversion and the WTP measure, and we derived the compound-risk aversion coe�cients of the farmers.

Individuals generally did not behave in accordance with expected utility theory. Instead we observed 57% of

game participants revealed themselves to be compound-risk averse to varying degrees. In fact, the willingness

to pay of those individuals who demand index insurance is on average considerably higher than the predictions

of expected utility theory.

Using the distribution of compound risk aversion and risk aversion in this population, we simulated the

impact of basis risk on the demand for index insurance. As we expected we found that compound risk

aversion decreases the demand for index insurance relative to what it would be if individuals had the same

degree of risk aversion but were compound-risk neutral. In addition demand declines more steeply as basis

risk increases under compound-risk aversion.

Our results highlight the importance of designing contracts with minimal basis risk under compound-risk

aversion. This would not only enhance the value and productivity impacts of index insurance, but would

also assure that the contracts are popular and have the anticipated impact.
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A Appendix: Fitting a B1 distribution to the CRRA

In this section, we estimate the probability density function f of the coe�cient of constant relative risk

aversion r we elicited from an experiment.

We use Maximum Likelihood estimation assuming that r follows a Generalized Beta distribution of �rst

kind (GB1). The GB1 distribution is de�ned by the following pdf:

f (r; b, p, q) =

(
rp−1

(
1− r

b

)q−1
)

bpB (p, q)

for 0 < r < b where b, p and q are positive. The scaling factor B (p, q) is the Beta function:B (p, q) =

Γ(p)Γ(q)
Γ(p+q) where Γ (p) = (p− 1)!.

By construction, our data is paritioned in 6 intervals. Therefore, we do not observe the continuous variable

r. Following McDonald and Xu (1995), we obtain the parameters of interest (p and q) using a Maximum

Likelihood estimator based on a multinomial with an underlying density f(r; b, p, q) and cumulative function

F (r; b, p, q).

We now derive the log-likelihood function. Let j denote the risk aversion interval [rj,, rj1] . Player i's

true risk aversion coe�cient r has a probability pi = F (rj+1; a, b, p, q)− F (rj ; a, b, p, q) of being in interval

j. Denoting mj the number of observations in interval j, the likelihood function LN is the joint probability

function:

LN =

N∏
i=1

pi

Maximizing LNis equivalent to maximizing the log-likelihood function:
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LN (b, p, q) = logLN (b, p, q)

=

6∑
j=1

mj log (pj)

Where mj is the number of observations in the interval [rj,, rj1]. The probability pj of being in that

interval is

pj = F (rj+1; a, b, p, q)− F (rj ; a, b, p, q)

Since r is a Beta distribution of the �rst kind, its cumulative F is:

F (r; b, p, q) =

ˆ r
b

0

tp−1 (1− t)q−1

B (p, q)
dt

= I( rb )(p,q)

where I( rb )(p,q) the regular beta function is the cumulative distribution function of the Beta variable with

parameters pand q evaluated at r
b .

Proof. By de�nition:

F (r; a, b, pq) =

rˆ

0

tp−1
(
1− r

b

)q−1

bpB (p, q)
dt

using the change of variable x = t
b , we obtain the result.
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