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Abstract

The implications of supermodularity for comparative-static analysis in a generalized ver-
sion of the separable-effort representation of a firm facing stochastic prices and a stochas-
tic technology are. Previous analysis is generalized in two ways. (General risk-averse, as
opposed to expected-utility, preferences are considered. The stochastic technology is rep-
resented by an Arrow-Debreu state-space representation. It is shown that results familiar
from the theory of the price taking firm in the absence of risk generalize to the uncertain
case.
JEL classification: D21, D81
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Comparative Statics for State-Contingent Technologies

The concept of equilibrium, and the comparative static analysis of changes from one
equilibrium to another, are central to economics. In the last decade, the concept of super-
modularity has revolutionized the study of comparative statics, providing a range of tools
to unify and extend results previously obtained by techniques such as the manipulation of
first-order conditions. There has been particular interest in application of supermodularity
concepts to problems involving uncertainty (Milgrom 1994, Athey 2001) in generalizations
of the model introduced by Sandmo (1971).

A particularly interesting application of supermodularity is to the analysis of the pro-
ductive firm under uncertainty by Milgrom (1994). Milgrom’s key result is a meta-theorem
showing that results derived for a simple linear case analogous to the two-asset portfolio
problem can be extended to a range of more general problems considered in the Sandmov-
ian literature. More recently, Athey (2001) has considered firms with objective functions
of the general form U (x,0) = [u(x,s) f (s,0) dp (s), and provided an elegant treatment of
monotone comparative static results relating the optimal action vector to changes in 6.

This note studies the implications of supermodularity for comparative-static analysis in
a generalized version of the Newbery-Stiglitz (1979, 1981) separable-effort representation
of a firm facing stochastic prices and a stochastic technology. Specifically, we generalize
their model in two ways. First, we consider general risk-averse preferences, and second we
represent production uncertainty by a general Arrow-Debreu state-contingent technology.

Our approach capitalizes on the observation of Arrow and Debreu that the mathemat-
ical representation of price and production uncertainty is equivalent to the mathematical
representation of a multiple-output firm and on the further recognition that, in super-
modularity terms, the separable-effort model is isomorphic to the objective function for
a multiple output profit maximizing firm. These observations suggest that results famil-
iar from the theory of multiple-output firm can be transferred directly to the problem
of the firm facing price and production uncertainty. This note, in particular, shows that
familiar comparative static results for a firm exhibiting cost complementarities (submod-
ular cost structures) for non-stochastic technologies generalize immediately to risk-averse

decisionmakers facing a stochastic environment.



1. Notation

Uncertainty is represented by a state space €. So that the exposition can exploit parallels
with the standard model of multi-output production, we focus on the case where ) =
{1...5} is discrete. However, with a slightly different mathematical apparatus, the results
generalize straightforwardly to the case when () is an interval with Lebesgue measure
or a more general measurable set. We consider preferences over state-contingent income
distributions y € ®°, represented by a total ordering < . Under standard assumptions
of continuity and monotonicity, a canonical representation of preferences is given by the

certainty equivalent

e(y)=inf{p:y =2 pl}.

For any preference function over stochastic outcomes, W : #° — R, representing <, the

certainty equivalent may be defined implicitly by the relationship
Wie(y)l)=Wi(y)

where 1 = (1...1) € %7 is the unit vector.

For the case of expected-utility preferences,

S
e(y)=u"' (Z U (ys)> , (1)

where u is a von Neumann-Morgenstern utility function and the probability vector 7 is an
element of the unit simplex. In our analysis we do not assume the existence of either a
von Neumann-Morgenstern utility function or well-defined subjective probabilities.

Let Y C R* be a set ordered by the < relation.! We denote by x Vy the join of x and

y in Y, where
XxVy= (max{xlvyl} ) ...,max{xg,yg}) .
Denote by x Ay, the meet of x and y in Y, where

x Ay = (min{z1,y1},...,min{zs,ys}).

I'The terminology and notation here is borrowed directly from Milgrom and Shannon and Topkis.



We denote by C the strong set ordering induced by < on the power set of #*. A function

h satisfies the single crossing property in (n,v) if with v/ > v/ and n” > n’
h(n”,vYy>h(@n' ,v)=h@®",v")>h{@n, v"
A mapping f: ®° — R is supermodular if for all y,y’

FOVY)Y+FFfAY) 2 F)+ ).

If —f is supermodular then f is submodular.

2. The Production Structure

The production technology is modelled by a continuous input correspondence, X : 7 —

5, which maps vectors of outputs, z, into inputs capable of producing them
X (z)= {X € §RJX : x can produce z} Z € §Ri

When production is non-stochastic, the interpretation of X is as an input correspondence
for a multiple-output firm. When production is stochastic, X represents an input corre-
spondence for a vector of state-contingent outputs. In the latter case, the scalar z; € R
denotes the ex post or realized output in state s. In addition to continuity, we impose the
following axioms on the input correspondence:?

X.1 X(0s) =RY, and Oy ¢ X (z) for z > Os and z+0s.

X227z > z= X(z) C X(z).

X3 X (z)=X (z)+ RY, z eR?.

X.4 X (z) is a convex set, z €R?.

As is shown by Chambers and Quiggin (2002), this representation is sufficiently general
to encompass not only problems of production under uncertainty but also problems of
portfolio choice, with and without taxes and frictions. For the latter case, the vector x
represents purchases of N assets at prices w, and z is the associated payoff, net of any

transactions costs.

2Apart from X. 2, these properties are discussed in detail for nonstochastic technologies in Fire (1988)

and for state-contingent technologies in Chambers and Quiggin (2000).
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Given input prices w eRY. | we may define the cost function

c(w,z)=min{wx:x € X (z)}

if X (z) is nonempty and oo otherwise. By standard results (Fare, 1988, Chambers and
Quiggin, 2000), ¢ satisfies

C.1. ¢(w, z) is positively linearly homogeneous, non-decreasing, concave, and continu-
ous in w;

C.2. ¢(w,z) >0, ¢(w,05) =0, and c(w,z) > 0 for z >0g, z # Og;

C.3. ¢(w,z) is nondecreasing and continuous on % .

Let
x (w,z)=argmin{wx:x € X (z)}.

For simplicty, we assume that x (w, z) is unique, and thus by Shephard’s Lemma x (w, z)
corresponds to the gradient of the cost function in input prices. Letting V denote the
gradient with respect to subscripted vector, the cost function thus satisfies (McFadden,

1978; Fare, 1988)
x(w,z) = Vyc(w,z). (2)
And by standard duality theorems (McFadden, 1978; Fire 1988):

X (z)=Nwo{x:Wx >c(w,2z)}.

3. Monotone Comparative Statics under Certainty

For the moment, let us accept the interpretation of c¢(w,z) as a multiple-output cost
functions for a firm facing competitively determined input prices w and a competitively
determined vector of output prices, p € §Ri Our interest here is not in recapitulating the
entire received theory of comparative statics for such a firm but in providing a brief review

of existing strong monotone comparative static results.?

3These results, themselves, are well-known, but were originally derived by more direct methods.



We first consider conditions required for all inputs to be nonregressive in the sense that:

Z >z=x(wz)>x(w,z),
By (2), the requirement that all inputs be nonregressive implies for w'> w and z’ > z that
c(w',z)—c(w,z)>c(w,z')—c(w,z). (3)

and hence the cost structure must satisfy increasing differences in (—w,z). Using the
duality mapping, it is evident that (3) is always satisfied if X.2 is strengthened to z’' >
z = X(z) C X(Z'). Notice, in particular, that this comparative static result applies
regardless of whether ¢ (w, z) is interpreted as a multiple-output cost function or whether
it is interpreted as the cost function for a state-contingent production technology.
Turning to the profit maximization problem, the firm now seeks to maximize pz—c (w, z).

Denote
z(w,p) = argmax {pz—c(w,z)},

and to avoid unnecessary ambiguities, assume that the solution, when one exists, is unique.
Our emphasis here is on strong monotone comparative static results in terms of p and w
for z (w,p) and x (W, p).

We first consider z (w,p). Theorem 4 of Milgrom and Shannon (1994) shows that
z (w,p) isincreasing in p and decreasing in w if and only if pz—c (w, z) is quasi-supermodular
in z and satisfies the single crossing property in (z,p) and in (z, —w). Theorem 2.6.5 of
Topkis establishes that the objective function is quasi-supermodular in z if and only if
c(w,z) is submodular in z. Submodularity of the cost function requires that all outputs
be complementary in production.

Under properties C, pz—c(w,z) always satisfies the single crossing property in (z,p).
Our first lemma gives a necessary and sufficient condition for pz—c(w, z) to satisfy the

single crossing property in (z, —w) for all p. (All proofs are in an Appendix.)

Lemma 1. pz—c(w,z) satisfies the single crossing property in (—w,z) for all p if and

only if ¢ (w, z) satisfies (3).



Using Lemma 1 and Theorem 4 of Milgrom and Shannon establishes the following

well-known result for the multiple-output firm:

Theorem 2. p' > p=z(w,p') > z(w,p) and w > w=2z(w,p) < z(w,p) if and

only if ¢(w, z) is submodular in z and satisfies (3).
Upon recognizing that profit maximizing input demands are given by

x(w,p)=x(w,z(w,p)),
we have:

Corollary 3. Ifc(w,z) is submodular in z and satisfies (3), p’ > p = x(w,p’) > x (w,p)

and w' > w = x(w,p) < x(w,p).

4. The State-Contingent Firm

The preceding results are standard results from the theory of the multiproduct firm dressed
in the guise of monotone comparative statics. Our goal in this section is to show that the
supermodular structure of the problem under conditions of certainty is directly inherited
by a whole class of production models familiar from the literature on production under
uncertainty. This formal similarity allows us to transfer these standard results directly
to the problem of producers under conditions of price and production uncertainty. Here
z now assumes its interpretation as a vector of state-contingent outputs, and p is the
corresponding vector of state-contingent prices. The producer’s objective function is of

the form

h(z,p,w)=e(piz1, p222, ..., Ps2s) — c(W,Z) .

We, hereafter, maintain the assumption that c¢(w, z) is submodular in z. For simplicity,
we also continue to assume that the solution to this problem, which we continue to denote
by z(w,p) is unique. By Theorem 4 of Milgrom and Shannon (1994), we know that
the solution to this maximization problem will be monotonic in the parameters (p, w) if

and only if the objective function is quasi-supermodular and satisfies the respective single
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crossing properties. If this condition is met, then it follows immediately that Theorem 2
applies directly to this class of models. We first slightly generalize Theorem 2.8.5 of Topkis

to cover the problem at hand.

Lemma 4. h(z,p,w) is quasi-supermodular in z for the entire class of submodular cost

structures if and only if e is supermodular in z.
We also have the following extension of Lemma 1:

Lemma 5. h(z,p, w) satisfies the single crossing property in (z, p) for all cost structures if
and only if e (p1 21, p222, ..., Pszs) satisfies increasing differences in (z,p) . h (z, p, w) satisfies

the single crossing property in (z, —w) for all monotonic preferences if and only if ¢ satisfies

(3)
On the basis of these results, we have our first main theorem:

Theorem 6. If e is supermodular in p and z, satisfies increasing differences in (z,p), and

¢ is submodular in z
p’>p=z(wp)>z(wp).
If e is supermodular, and c is submodular in z and satisfies ( 3), then
w>w=z(w,p)<z(w,p).
An immediate corollary of Theorem 6 is available for input demands.

Corollary 7. If e is supermodular in p and z, satisfies increasing differences in (z,p) ,and

¢ is submodular in z
p'>p=x(w,p)>x(w,p).

If e is supermodular in p and z, c is submodular in z and c is submodular in z and satisfies

increasing differences in (z, —w), then

w >w=x(w,p) <x(w,p).



This analysis can be used to generalize a wide range of existing results. Let e be the
certainty equivalent for smoothly differentiable expected utility preferences of the form (1).
Then we observe that e is supermodular for all p and z if and only if 0 < r < 1 where r is

the coefficient of relative risk aversion. This can be seen as follows. For this case,

*u (ps2s)

=" 52 s +Ul s<s) Psis
Opuas (ps@s) (pszs) P

which is positive if and only

u” (pszs)

r = ———
W (Pszs) Ps?s

< 1

If this condition holds for all p, z, the result follows from Lemma 2.6.4 of Topkis, provided

u ! is convex, which will be true if and only if » > 0. Thus our results generalize a wide

range of existing comparative static results derived under the assumption of expected
utility preferences (Newbery and Stiglitz, 1979, 1981).

More generally, consider any objection function of the form

W (p121, p222, ..., pszs) — ¢ (W, z)

where W is twice differentiable and c is submodular in z. For our next result, we need some

new notation. Define g: R — R by and
W (p121, p222, ... pszs) = g (log p1 + log 21,1og po + log 20+, .., log ps + log 2s) ,
and let ¢, = log ps + log z5. The next theorem then follows by differentiation

Theorem 8. Any twice differentiable W : §Ri — R is supermodular in p, z if and only if

9%g
>0 Vs,t 4
9C.0¢, = @)

Theorem 8 provides an alternative approach to generalization of the results of Newbery
and Stiglitz. Consider the logarithmic utility function, with coefficient of relative risk
aversion equal to 1. If W corresponds to expected log utility, g is the arithmetic mean
which is a valuation. Hence, for any W more risk averse than log utility, g has the properties

required and W is supermodular in p and z.
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5. Concluding Comments

The concept of supermodularity permits both simplification and generalization of a wide
range of comparative-static results. Using this approach we have generalized the analysis
of Newbery and Stiglitz to encompass general risk-averse preferences in place of the empir-
ically questionable assumption of expected-utility maximization. More significantly, the
analysis applies to general state-contingent production technologies with arbitrary num-
bers of inputs and state-contingent outputs, in place of the stochastic production function
approach used by Newbery and Stiglitz. We have shown that comparative-static results

familiar form nonstochastic firm theory generalize to this case.
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7. Appendix: Proofs

Proof of Lemma 1: Sufficiency is obvious. For —w’ > —w, z’ > z the single crossing

property requires that
p(Z—z)>c(w,z)—c(w,z)=p(z —2)>c(w.,z)—c(W, z)

Because p can take any value in ®7, this requires

c(w,z')—c(w,z)>c(w,z)—c(W,z).

Proof of Lemma 4: Supermodularity of the cost structure requires
c(w,z)—c(w,zNZ)>c(w,zVZ)—c(w,z).
Setting p = 1, quasi-supermodularity requires that
e(z)—e(zNz)>c(w,z)—c(w,zNZ)=e(zVZ)—e(Z)>c(w,zVZ)—c(w,Z).

Thus,

e(z)—e(zNz) > c(w,z)—c(w,zNZ)
> c(w,zVz)—c(w,z)
implies

e(zVz)—e(Z)>c(w,zVz)—c(w,z)
for the entire class of submodular functions. Hence,

e(zVz)—e(@)>e(z)—e(zNZ).

Sufficiency is obvious.

Proof of Lemma 5: The single crossing property requires for p’ > p and z’ > z that
e(pz) —e(pz) > c(w,z') — c(w,z)
implies
e(Pp'z)—e(p'z)>c(w,z)—c(w,z).
which is true for all monotonic cost structures only if
e(p'z’) —e(p'z) > e(pz) —e(pz).

The converse is trivial.
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