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Abstract: One of the most important objectives in efficiency analysis is to investigate the rela-
tionships between production decisions and their contextual environments like geographical regions,
production time periods, modes of production, or policies and regulations. Using the measurement of
technical change as a template, the study presents a general framework to better understand varying
production decisions under different time periods by showing how such production heterogeneity can be
attributable to the differences in time-specific technological frontiers at industry level and the differences
in the prevalence of technical inefficiency at producer level. In DEA, a leading non/semi-parametric
frontier estimation method, these differences can be analyzed through decomposing Malmquist produc-
tivity index (MPI) into technical change (TC) and technical efficiency change (TEC) respectively. The
decomposition approach falls into the non-Hicks-neutral TC estimation as the mean distance measures
among time-specific frontiers, which is generally less restrictive than the Hicks-neutral TC estimation as
an intertemporal-shift component of the frontier specification under fixed substitution patterns across
time periods. The method is more generally applicable to the comparisons between any two different
contextual environments, including before and after a policy intervention, by which a sample can be
partitioned. To make the existing method more empirically accessible and appealing, the study pro-
poses a regression-based MPI decomposition that overcomes its limitations, or the need of balanced
panel data and the lack of control for potentially confounding non-production factors. The proposed
methodology is demonstrated with an empirical application using data from the Schedule F Tax returns
of 62 dairy farmers in Maryland during 1995-2009. For conventional, confinement dairy operations, the
preliminary results under preferred specifications show a 26.4%/decade expansion in technological fron-
tier, accompanied by a 6.3%/decade decline in the mean technical efficiency levels (i.e. increases in
the prevalance of technical inefficiencies). The indicators for farm ownership and off-farm income are
associated with a 4.5% increase and a 5.8% decrease in technical efficiency respectively. Higher sea-
sonal rainfalls and temperatures, except for winter rainfall and summer temperature, are associated
with larger technical feasibility in a given year.

*The study is a chapter of PhD dissertation. I thank professor Robert Chambers, the dissertation committee chair, for
his invaluable advice. I am also grateful for many helpful comments from professor Erik Lichtenberg and Dr. Jim Hanson
who served in the committee. The contribution of Mr. Dale Johnson is acknowledged for generously providing his data
for the current empirical application. All errors remain mine. Contact: kminegishi@arec.umd.edu
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1 Introduction

One of the most important objectives in efficiency analysis is to investigate the relationships

between production decisions and their contextual environments like geographical regions, pro-

duction time periods, modes of production, or certain phases of policies and regulations. For

example, production decisions may systematically differ between two time periods due to the

difference in technical feasibility at industry level and the difference in the prevalence of technical

inefficiency at producer level. In data envelopment analysis (DEA),1 these differences can be

analyzed through decomposing Malmquist productivity index (MPI) into technical change (TC)

and technical efficiency change (TEC) respectively. The method is more generally applicable to

the comparisons between any two different contextual environments, including before and after

a policy intervention, by which a sample can be partitioned. Despite the variety of issues in

which this method may offer new insights into the heterogeneity among production decisions,

such applications are rare.

To enhance its appeal, the current study considers an alternative to the standard MPI de-

composition technique. A major drawback of the existing method is the requirement for having

balanced panel data in order to compute MPI and its components at individual producer level

before summarizing them for industry-level averages. Balanced panel dataset is often unavail-

able for micro-data on production decisions, and if any, it may not be representative since it

does not account for entries and exits of firms over time. To address this limitation, the study

proposes a regression-based MPI decomposition (akin to ANOVA), in which the mean estimates

of MPI, TC, and TEC can be obtained using unbalanced panel data or repeated cross-sections

data. Intuitively, since TEC measures intertemporal change in inefficiency, the mean TEC can

be obtained as the difference in regression-means where the regression estimates the time-specific

mean prevalences of technical inefficiency. Also, since MPI measures intertemporal change in

productivity, the mean MPI is similarly obtained when using pseudo-technical inefficiency mea-

sured against a common, enveloping frontier (i.e. a meta-frontier) of all time periods. The

difference in the mean MPI and the mean TEC then isolates the mean intertemporal shift in

technological frontier, or the mean TC. Moreover, the regression-based MPI decomposition al-

lows the researcher to control for the intertemporal trends in producer-specific characteristics

like compositions in age groups or education levels of employees and the time-specific shocks in

weather or market outcomes that may confound the estimates of TEC and TC respectively.2

1 DEA (e.g. Charnes, Cooper, and Rhodes, 1978) is the leading nonparametric approach to efficiency analysis.
2In the standard MPI decomposition defined at producer level, the measurement of TC is independent of producer-

specific characteristics while MPI and TEC are not. The standard MPI, TEC, and TC measures all do not account for
time-specific characteristics.
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The mechanism is very simple and intuitive; the method compares efficiency and frontier levels

for their time-specific means while controlling for producer-specific characteristics, and those

means can be further orthogonally projected against time-specific factors.

The proposed method can be seen as a variant of the popular, second stage statistical analy-

sis that investigates the determinants of estimated technical inefficiency. In the two-stage DEA

procedure, observed input-output bundles are first evaluated for technical inefficiency, and then

predicted technical inefficiencies are analyzed for the systematic correlations with so-called en-

vironmental factors (i.e. shifters for the underlying distribution of technical inefficiency). The

current method builds on this procedure. In a first-stage DEA, context-specific technological

frontiers and the enveloping meta-frontier categorize observed production heterogeneity into

frontier gaps and technical inefficiencies at observation level. In a second-stage regression anal-

ysis, the efficiency estimates from the first stage are sorted out for the mean differentials at

sample level. Viewing multiple time periods as different contextual environments, the study es-

timates the mean MPI, TEC, and TC measures while controlling the confounding influences of

non-production factors on productivity, inefficiency, and technological frontier gaps respectively.

To ascertain a sound foundation for the proposed methodology, the study provides an alter-

native interpretation for the two-stage DEA procedure, which is often criticized for the lack of

a clear relationship to the data generating process (DGP), and as such for the poor statistical

inferences of its coefficients estimates in the second stage. Today, its leading statistical inter-

pretation is found in Simar and Wilson (2007), yet the use of the two-stage procedure is still

cautioned (e.g. Simar and Wilson, 2011b). The discussions in appendix A3 explore its statistical

coherence with the DGP using the framework of Kuosmanen (2008), in which DEA frontier is

cast as a sign-constrained convex nonparametric least squares (CNLS) for the single-output case.

It is shown that feasible estimation procedure and the corresponding assumption for the DGP

generally depend on the functional relationship between inefficiency measurement (i.e. either

additive or multiplicative) and the determinants of inefficiency. An additive inefficiency struc-

ture with linear marginal effects (of environmental factors) and a DEA frontier can be jointly

estimated by quadratic programming since the inefficiency and frontier specifications are both

linear in parameters. On the other hand, multiplicative inefficiency structure with proportional

marginal effects can be coherently estimated in above two-stage DEA procedure; provided that

the marginal effects dissipate toward zero at the frontier (i.e. at zero-inefficiency), the non-linear

3For the one-output, multiple-input production decisions case, appendix A contrasts two major approaches to frontier
modeling, or SFA and DEA, with additive and multiplicative technical inefficiency measurements to highlight functional
relationships in the frontier modeling. Its contents share many aspects with the main article but are discussed using a
different framework to better elaborate implications from various specification assumptions.
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estimation can be replaced with two separate, sequential linear estimations for the frontier and

inefficiency structures (with a log-transformation of inefficiency scores between the two). Statis-

tical inferences in these deterministic frontier models differ from those of the stochastic frontier

models where the DGP is directly modeled based on the presumed distributional structure.

However, they can be legitimately viewed in light of the goodness of fit in the least squares

framework.

The proposed methodology is demonstrated in an empirical application with Maryland dairy

production data during 1995-2009. Two groups of dairy operations are separately analyzed:

conventional confinement operations and intensive (rotational) grazing operations. The prelimi-

nary results under preferred specifications show 26.4%/decade and 19.2%/decade expansions in

the technological frontiers of confinement and grazing operations respectively, accompanied by

6.3%/decade and 14.4%/decade declines in the mean technical efficiency levels (i.e. increases

in the prevalance of technical inefficiencies). Among confinement dairies, the indicators for

farm ownership and off-farm income are associated with a 4.5% increase and a 5.8% decrease in

technical efficiency respectively. Higher seasonal rainfalls and temperatures, except for winter

rainfall and summer temperature, are associated with larger technical feasibility in a given year.

In measuring technical change in agriculture, it is essential to control for random factors like

weather conditions that could account for shifts in a technological frontier.

Lastly, the study briefly elaborates a broader scope for the proposed methodology to inte-

grate contextual information in an efficiency analysis. In general, the measurement of technical

change can serve as a template for a general conceptual framework for utilizing the information

on production environments through two distinctive channels, or technical feasibility and tech-

nical efficiency. That is, in relation to specific contextual information like different phases of

policies and regulations, observed heterogeneity in production decisions can be analyzed through

the average shifts in context-specific frontiers and the changes in the prevalence of technical in-

efficiency. The current study contributes to this perspective by making the concept of MPI

decomposition empirically more accessible and appealing for the targeted distance measurement

in the input-output space.

The rest of the study proceeds as follows. Section 2 discusses how the current methodology

fits to the general context of measuring technical change. After introducing notations and

preliminary concepts, section 3 describes the proposed methodology as a regression-based MPI

decomposition.4 The methodology is demonstrated with an empirical application to the data on

4 More general discussion on the joint modeling of a technological frontier and technical inefficiency is provided in
section Appendix A. Also, a simple extension to group-specific MPI decompositions is shown in section B.
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dairy production in Maryland in section ?? and discussed for its broader applications in section

5. Finally, section 6 concludes the study.

2 Measurement of Technical Change

Technical change (TC) refers to intertemporal shifts of a technological frontier. There are

two major classifications to define its measurement, depending on the restrictions placed on such

shifts.5 Under Hicks-neutral (hereafter “Hicksian”) TC, it is assumed that the intertemporal

shifts do not alter the marginal rates of transformations (MRTs) among inputs and outputs.6

The assumption allows a direct specification of the intertemporal frontier shifts as an integral

part of the frontier estimation. On the other hand, without Hicks-neutrality (“non-Hicksian”),

separate time-specific frontiers specification allows the predicted substitution patterns to vary

across time periods. In below, it is shown that summary non-Hicksian TC measures can be

obtained in a second-stage regression analysis as the mean distances among the estimated time-

specific frontiers.

Figure 1 illustrates such Hicksian and non-Hicksian TC in the space of two inputs x1, x2 where

a frontier (as a solid curve) represents the MRT between the two inputs holding outputs and

other inputs constant. Given a frontier Ft0 of time period t0, the postulates of the corresponding

frontier Ft1 in period t1 under Hicksian and non-Hicksian TC are depicted in relation to the

substitution patterns of Ft0. In this example, the Hicksian TC takes the form of an proportional

contraction from the origin while the non-Hicksian TC represents a contraction with unrestricted

changes in the substitution patterns. The direct measurement of Hicksian TC is obtained (in

the estimation process) by restricting local distances between the time-specific frontiers to be

at a constant proportion of one another along the frontier curvature. Meanwhile, the indirect

non-Hicksian measurement is obtained (after the frontier estimations) by taking the mean of

such local distances as a summary of intertemporal frontier relationships.

In parametric frontier models like stochastic frontier analysis (SFA: Aigner, Lovell, and

Schmidt, 1977; Meeusen and Broeck, 1977), the researcher typically estimates a frontier model

with Hicksian TC. The main advantage of Hicksian TC is the immediate interpretation of the

frontier shifts as an integral part of a statistical model for the data generating process. The

5Aside from the literature focusing on technical change, there is a large literature on the changes in productivity (and
sources of growth) Bartelsman and Doms (e.g. see 2000); Syverson (e.g. see 2011). In the context of MPI decomposition,
the study on the determinants of productivity can be seen as a special case under full technical efficiency. The two strands
of literature are complementary with offering important insights to one another, yet the MPI decomposition into TC and
TEC may yield more-detailed diagnosis on the change in productivity Jerzmanowski (e.g. 2007).

6Strictly speaking, there are several types of Hicksian TC, depending on the technological, homothetic restrictions
among inputs, outputs, and a time index. See Chambers and Fre (1994) for its details.
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assumption of time-invariant substitution patterns can be easily tested as a hypothesis on para-

metric restrictions. If the time-invariance is rejected, the researcher should employ the indirect

measures of technical change (see Appendix A). Such a hypothesis testing and frontier estimation

must proceed with caution, for the model identification heavily relies on the complex mutual

interactions between the assumed functional forms (i.e. technological frontier, technical ineffi-

ciency, and their intertemporal-shift structures) and the assumed distribution for the composite

error (i.e. technical inefficiency and stochastic noise components). With the lack of economic

theory to guide specification choices on all these accounts, the chance of misspecification can be

prohibitively high.

One way to mitigate this concern is to measure TC in Data Envelopment Analysis (DEA),

a leading methodology for non/semi-parametric frontier modeling. Its variable returns to scale

(VRS) frontier is solely built on the monotonicity and convexity of technical feasibility without

any presumed functional form or arbitrary distributional assumption on technical inefficiency.

For non/semi-parametric frontier models like DEA, frontier estimation under Hicksian TC is

generally infeasible. It is because in the absence of distributional assumptions, the proportional

shifts in the technological frontier (i.e. TC) and the proportional shifts in the prevalence of tech-

nical inefficiency (i.e. technical efficiency change :TEC) are indistinguishable from each other.7

Instead, indirect, non-Hicksian TC measure can be obtained through Malmquist Productivity

Index (MPI) decompositions (Nishimizu and Page, 1982).8 MPI (Caves, Christensen, and Diew-

ert, 1982a,b) is a generalization of Törnqivist index by allowing technical inefficiency (Fare et al.,

1994)9 and closely related to other important productivity indices like Fisher’s productivity in-

dex and its variants (e.g. see Grosskopf, 2003).10 Once time-specific frontiers are estimated, the

researcher can calculate MPI and its decomposition into TC and TEC at producer level, which

can be averaged for the whole sample. The most well-known applications include Fare et al.

(1994), Kumar and Russell (2002), Timmer and Los (2005), and Fare, Grosskopf, and Margaritis

(2006). As previously noted, the major drawbacks of the existing procedure are the requirement

for balanced panel data and the lack of control for potentially confounding non-production fac-

7In DEA, Hicksian TC may be implemented only under certain functional forms of intertemporal structures in TC
and TEC.

8In the context of the growth accounting literature, Nishimizu and Page (1982) first introduced the MPI decomposition
into TC and TEC (, equivalently technical catch-up,) as a mechanism to generalize a Solow’s model with a new source
of growth that a less developed economy catches up to more advanced economies through adopting the latter group’s
technological innovations and social institutions.

9Under CRS assumption and full technical (and allocative) efficiency, MPI and Törnqivist index, a discrete approxi-
mation to a continuous Divisia index, are equivalent.

10The ratio of a Malmquist output quantity index to a Malmquist input quantity index yields a comparable measure to
Törnqivist, Fisher, and its variants. These indices are suited for isolating input and output contributions to productivity
change. See also Fare, Grosskopf, and Russell (1998).
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tors. The proposed methodology below overcomes these drawbacks through a regression-based

MPI decomposition.

3 The Model

3.1 Preliminaries

A production technology is a set of feasible input-output bundles, denoted by F = {(x,y) ∈

R
L
+ ×RM

+ : inputs x can produce outputs y}. The boundary of set F is called a technological

frontier or production function. Technical efficiency is measured with respect this boundary, so

that technology F and its boundary can be interchangeably referenced throughout the study.

The technology specific to each time period t ∈ {1, .., T} is denoted by Ft = {∀(x,y) ∈ RL
+×RM

+ :

x can produce y in time t}. Each time-specific technology Ft is assumed to satisfy the following

properties: (a) feasible inaction ((0,0) ∈ Ft), (b) monotonicity ( (x,y) ∈ Ft, (−x′,y′) ≤

(−x,y) ⇒ (x′,y′) ∈ Ft), and (c) convexity ((x,y), (x′,y′) ∈ Ft, λ ∈ [0, 1] ⇒ λ(x,y) +

(1 − λ)(x′,y′) ∈ Ft). The collection of such time-specific technologies is referred to as meta-

technology F = ∪tFt, or a hypothetical technology that envelops subsample-specific technologies

(e.g. Bhattacharjee, 1955; Griliches, 1964; Salter, 1966; Krueger, 1968; Hayami and Ruttan,

1970).

To represent an empirical case, consider data set {(xit,yit)}it∈IT where subscript it denotes

an index of observations it ∈ IT = {11, ..1T, .., IT} for producer i ∈ I = {1, .., I} and time

t ∈ T = {1, .., T}. Observations partitioned by time periods are referred to by time-specific

subsample index IT(k) = {it| t = k} that contains the observations in period k. The number of

observations in IT(k) is denoted by Nk, which sums to the original N observations across time

periods (i.e.
∑

kNk = N). Then, the time-specific technology Fk of time k is constructed from

a subsample of observations it ∈ IT(k). For example, given assumptions (a)-(c) on technologies

Ft, ∀t, the DEA approximation to technology Ft under non-increasing returns to scale (NIRS)

is the following free-disposable convex hull, including the origin;11

∀k, F̂k ={(x′,y′) ∈ RL
+ ×RM

+ :
∑

j∈IT(k)

λj ≤ 1,

∑
j∈IT(k)

λjxj ≤ x′,
∑

j∈IT(k)

λjyj ≥ y′, λ ∈ R
Nk
+ }, (1)

11In the absence of assumption (a), variable returns to scale (VRS) is commonly used under λj = 1. However, NIRS
is desirable here for assessing output-oriented technical inefficiencies to avoid undefined technical inefficiency measures
under hypothetical production contexts (for example, see figure 3). Alternatively, constant returns to scale (CRS) may
be used by setting

∑
λj ∈ R.
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for which the approximation to meta-technology F is given by;

F̂ ={(x′,y′) ∈ RL
+ ×RM

+ : ∀k = 1, .., T,
∑

j∈IT(k)

λj ≤ 1,

∑
j∈IT(k)

λjxj ≤ x′,
∑

j∈IT(k)

λjyj ≥ y′, λ ∈ RN
+}. (2)

Technology approximations F̂k, F̂ are obtained from a subsample of Nk observations and the

whole sample of N observations respectively.12

For a given input-output combination (x0,y0), the output-oriented radial efficiencies against

time-specific technology Ft and against meta-technology F are defined by the distance functions

of Farrell (1957);13

φ(x0,y0; t) = inf{φ : (x0,y0/φ) ∈ Ft},

φ(x0,y0;T) = inf{φ : (x0,y0/φ) ∈ F} (3)

where technical efficiency (TE) score φ represents the maximal expansion of outputs within the

technical feasibility; the higher a TE score is, the higher the evaluation for the observed output

level is relative to what is technically feasible. Technical efficiency φ takes a value in (0, 1] if

(x0,y0) is technically feasible, with φ = 1 being fully technically-efficient. Formally, the efficiency

φ should be set at −∞ if (x0,y0) is infeasible, yet the current study allows for φ to be greater

than one in the efficiency assessments under hypothetical production contexts; for example,

production decisions observed in later time periods can outperform what is technically feasible

at that time.14 Such treatment is used in calculating the standard Malmquist productivity index

(MPI) (see below), in which the production decisions of one period are evaluated against the

time-specific frontier of another period. Substituting technologies Ft, F with their estimates F̂t,

F̂ like those in (1), (2) yields empirical TE measures φ̂(x0,y0; t), φ̂(x0,y0). Note that the time-

specific and meta- technologies estimated by equations (1), (2) imply the empirical relationship

φ̂(xi,yi;T) = inft{φ̂(xi,yi; t)}.15

12Under the constant returns to scale (CRS) assumption, meta-technology F̂ is simply the standard free-disposable
convex cone applied to pooled observations. Under CRS, the sum of weights (e.g.

∑
j λj) is unrestricted; Fk = {∀(x′,y′) :∑

j∈{IT}(k) λjxj ≤ x′,
∑

j∈{IT}(k) λjyj ≥ y′, λ ∈ R
Nk
+ }, F = {∀(x′,y′) :

∑
j∈{IT} λjxj ≤ x′,

∑
j∈{IT} λjyj ≥ y′, λ ∈

R
N
+}.
13Farrell’s measure is a special case of the directional distance function (Luenberger, 1992; Chambers, Chung, and Fare,

1996) where technical efficiency relates to observed input-output decision multiplicatively, and its direction and unit is
taken to be proportional to the observed output vector. The radial distance measure is well-suited for capturing the most
common notion of technical change, or proportional output growth.

14The exception is that in the case of output-oriented efficiency, no efficiency evaluation is available (e.g. φ = −∞) if
the input level takes an extreme value and lies outside of the specified technology.

15Substituting F̂ = ∪tF̂t implies φ̂(x0,y0;T) = inf{φ : (x0,y0/φ) ∈ ∪tF̂t} = inft{inf{φ : (x0,y0/φ) ∈ F̂t}} =

8



The ratio of the two efficiency measurements in (3) defines a technology gap ratio (TGR) that

measures the difference in technical feasibilities between the meta-frontier and the subsample-

specific frontier(s) (Battese, 2002; Battese, Rao, and ODonnell, 2004).16 The local measure of

TGR for time t at point (x0,y0) is given by;

TGR(x0,y0; t) = φ(x0,y0;T)/φ(x0,y0; t), (4)

which represents the pseudo-technical efficiency of subsample-specific frontier Ft relative to meta-

frontier F along the ray (x0, λy0), λ ∈ R. Figure 2 depicts how point A at (x0,y0) is projected

to meta- and time-specific technologies F̂ , F̂t, where the projected points are labeled as B,

C respectively. The similar projection to the X-axis is labeled as point Q. Given the radial

efficiency measures in (3), TE is estimated by φ̂(x0,y0; t) = AQ/CQ relative to F̂t, and F̂t is

evaluated by T̂GR(x0,y0; t) = CQ/BQ relative to F̂ .

The central idea in this study is to exploit the conceptual similarities between TGR and tech-

nical change (TC) as measurements of between-frontier distances. Pseudo-technical efficiency

φ(.;T) measured against the meta-frontier can be viewed as a productivity measure that is

commonly applicable to the observations of different time periods. Comparing the time-specific

means of this productivity is analogous to calculating the Malmquist productivity index (MPI).

Then, analogously to the MPI decomposition into technical efficiency change (TEC) and TC,

in below productivity measure φ(.;T) are decomposed into within-time efficiency φ(.; t), or the

distance between the observed decision and time-specific frontier, and between-time frontier gap

φ(.;T)/φ(.; t), or the distance between the time-specific and meta- frontiers. Then, comparing

the time-specific means of efficiencies φ(.; t) and frontier gaps φ(.;T)/φ(.; t) across time periods

yields alternative measures of TEC and TC respectively. These comparisons of means are car-

ried out in a second-stage regression framework on the estimated pseudo-technical and technical

efficiency scores, in which the researcher can control for potentially confounding non-production

factors. The proposed model is formally introduced in the next section after a belief description

of the standard MPI calculation and its decomposition.

inft{φ̂(x0,y0; t)}.
16Recent applications of TGR in empirical contexts include the productivity comparisons of aggregate agricultural

outputs across 97 countries (ODonnell, Rao, and Battese, 2008), banking industries in China and Taiwan during 1993-
2007 (CHEN and SONG, 2008), and farm-level dairy production in Argentina, Chile, and Uruguay (Moreira and Bravo-
Ureta, 2010). While most of these applications use SFA, ODonnell, Rao, and Battese (2008) formalize the concept of
meta-technology with distance function and apply it with both DEA and SFA.

9



3.2 Regression-Based Productivity Index and Technical Change

One common measure of productivity growth is Malmquist productivity index (MPI) by

Caves, Christensen, and Diewert (1982a,b), which compares the efficiency measurements of

observations from two different time periods, say {t0, t1}, using the frontier of either period as a

base time period. The calculation involves efficiency assessments under hypothetical production

contexts in the sense that observation (xt1,yt1) in period t1 is evaluated against the technology

of period t0 and vice versa. The MPI measures of productivity growth with base time period

t ∈ {t0, t1} are defined as;

MPIt0(xt0,yt0,xt1,yt1) = φ(xt1,yt1; t0)/φ(xt0,yt0; t0)

MPIt1(xt0,yt0,xt1,yt1) = φ(xt1,yt1; t1)/φ(xt0,yt0; t1). (5)

In place of an arbitrary choice between MPIt0 and MPIt1, researchers often use the geometric

mean of the two as suggested by Fare et al. (1994);

MPIt0,t1(xt0,yt0,xt1,yt1) = [MPIt0(xt0,yt0,xt1,yt1) ·MPIt1(xt0,yt0,xt1,yt1)]
1/2 . (6)

A common use of MPI is to consider a decomposition into technical efficiency change (TEC)

and technical change (TC).17 The standard MPI decomposition into TEC and TC are given by;

MPIt0,t1(xt0,yt0,xt1,yt1) = TECt0,t1(xt0,yt0,xt1,yt1) · TCt0,t1(xt0,yt0,xt1,yt1)

TECt0,t1(xt0,yt0,xt1,yt1) = φ(xt1,yt1; t1)/φ(xt0,yt0; t0)

TCt0,t1(xt0,yt0,xt1,yt1) =

(
φ(xt0,yt0; t0)

φ(xt1,yt1; t1)

φ(xt1,yt1; t0)

φ(xt0,yt0; t1)

)1/2

. (7)

TEC is the ratio of technical efficiency measurements for two observed decisions in the two

time periods, where each decision is evaluated against the corresponding time-specific frontier.

TC is (the geometric mean of) the relative distance between the two frontiers along two rays

(xt0, λ0yt0), (xt1, λ1yt1), ∀λ0, λ1 ∈ R+.

Figure 3 illustrates these measurements. Observations A : (xt0,yt0), A
′ : (xt1,yt1) from

two time periods t0, t1 are projected to two time-specific frontiers F̂t0, F̂t1, where the projected

points are labeled as B, C for point A and B′, C ′ for point A′ respectively. Then, the measures

17MPI decomposition may include scale efficiency change (SEC), which is discussed in the following section.
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of MPI, TEC, and TC for points A, A′ are;

M̂PI t0,t1 =

[
A′Q′/C ′Q′

AQ/CQ

A′Q′/B′Q′

AQ/BQ

]1/2
, T̂ECt0,t1 =

A′Q′/B′Q′

AQ/CQ
, T̂Ct0,t1 =

[
BQ

CQ

B′Q′

C ′Q′

]1/2
.

(8)

The calculations help visualize that TEC and TC are the intertemporal differences in technical

efficiencies and technological frontiers respectively.

At sample level, MPI, TC, and TEC are commonly summarized as the means of producer-level

estimates. For example, given a balanced panel data set with producer index j = 1, .., J for J

producers, the sample-mean technical change from time t0 to time t1 is defined as; E[TCt0,t1] =

1
J

∑
j TCt0,t1(xj,t0,yj,t0,xj,t1,yj,t1). Note that such estimates require balanced panel data to

initially calculate producer-level estimates for two time periods {t0, t1}.

Alternatively, sample-level estimates can be obtained in a second-stage statistical analysis on

estimated technical efficiencies. For instance, consider regression-average MPI decompositions

using the pseudo-technical efficiencies measured against a meta-frontier and technical efficiencies

measured against time-specific frontiers. The case under two time periods t ∈ {t0, t1} can

be estimated in the following specifications for technical efficiency measurements φ̂(xit,yit;T),

φ̂(xit,yit; t), and TGR φ̂(xit,yit;T)/φ̂(xit,yit; t) without constant terms;

ln φ̂(xit,yit;T) = τMt + εMit ,

ln φ̂(xit,yit; t) = τ st + εsit, and mechanically

ln(φ̂(xit,yit;T)/φ̂(xit,yit; t)) = τM−st + εM−sit

with τM−st =τMt − τ st , εM−sit = εMit − εsit (9)

where time-fixed effects τMt , t ∈ {t0, t1} are implicit coefficients for time period indicators 1t(t =

s) that take the value of one if t = s and zero otherwise (i.e. τMt ≡ τMt0 1t(t = t0)+τMt1 1t(t = t1)).

Superscripts M , s denote “meta” and “subsample” equations respectively, yielding M − s equa-

tion as their difference. Note that estimating above equations involving only indicator variables

are equivalent to estimating group-specific means under the analysis of variance (ANOVA). Spe-

cific assumptions on the error terms and method of statistical inferences are discussed later in

the section. For each period t ∈ {t0, t1}, parameter τ st represents the time-t mean technical

efficiency measured against the corresponding time-specific frontier, and similarly parameter

τM−st represents the time-t mean TRG measured against the meta-frontier. Due to the natural

logarithm transformation on the dependent variables, parameters τ st , τMt predict a proportional
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marginal effect for a given output yit, and parameter τM−st similarly predicts a proportional

effect for a given projected frontier-output yit/φ̂(xit,yit; t)).

Then, the simple differences in these regression-means of technical efficiency measurements

yield regression-based MPI and its components;

lnE[MPIt0,t1] ≡ τMt1 − τMt0

lnE[TECt0,t1] ≡ τ st1 − τ st0

lnE[TCt0,t1] ≡ τM−st1 − τM−st0 (10)

where E[.] is the expectation operator over relevant observations. Thus, the difference in

the mean pseudo-technical efficiencies between two periods is interpreted as a regression-based

MPI; the difference in the mean technical efficiencies between two periods yields a regression-

based TEC; and the difference in the mean frontier gaps between two periods corresponds to a

regression-based TC. These alternative estimates for mean MPI, TEC, and TC correspond to

the ratio of means whereas the standard, sample-averages of producer-level estimates are based-

on the means of ratios.18 The two sets of sample-level estimates measure the same distance

concepts in the same units among production decisions and frontiers and differ in the method of

aggregation to sample-level estimates. As previously noted, one advantage over the conventional

mean-of-ratios-estimators is that the ratio-of-means-estimators in equations (10) do not require

balanced panel data since the time-specific means can be calculated without referencing to a

particular producer.

More generally, second-stage analysis (9) can be specified for multiple time periods t ∈

{1, .., T} with controlling for producer/observation-specific factors zit;
19

ln φ̂(xit,yit;T) = τMt + zit α
M + εMit ,

ln φ̂(xit,yit; t) = τ st + zit α
s + εsit, and mechanically

ln(φ̂(xit,yit;T)/φ̂(xit,yit; t)) = τM−st + zit α
M−s + εM−sit ,

with τM−s = τM − τ s, αM−s = αM −αs, εM−sit = εMit − εsit, (11)

for which MPI decomposition for any two periods is similarly defined as in equations (10). In

this way, compared to the standard MPI decomposition in (7), the regression-based approach

18If the true values of MPI, TEC, and TC are uniform across different segments of the frontiers, the two approaches
to the sample-level estimators are both consistent, and their estimators approach to the same true values.

19 The influences of time-specific factors W t varying with time t cannot be distinctly identified from those of time-fixed
effects τt in these regressions. Their influences on TC measurements are treated in a subsequent analysis (see below).
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allows the researcher to control for producer characteristics like age, education, and other fac-

tors that may vary at observation level. The equation s in (11) represents a version of the

commonly-used two-stage DEA procedure where estimated technical efficiency is regressed on

so-called environmental factors zit. In such an analysis, coefficients αs are interpreted as the

determinants of technical efficiency. Analogous interpretations for coefficients αM , αM−s would

be the determinants of productivity (i.e. pseudo-technical efficiency measure) and time-specific

frontiers respectively.

The estimation in (11), like any other two-stage DEA procedures, is built on a so-called

separability assumption, or the separability of “environmental” factors zit from the production

possibility Ft. To put it in econometrics terms, variables zit are assumed to shift the underlying

distribution of technical efficiency φ(x,y; t) without influencing time-specific technical feasibility

Ft. An ideal specification is to use all variables (x,y, z) simultaneously in a joint estimation

of a technological frontier and technical efficiency. However, such a specification is difficult

to estimate as it nonlinearly combines a non/semi-parametric piecewise-linear DEA frontier

estimation with a parametric technical efficiency specification (see Appendix A20). Instead, the

current two-stage procedure sequentially estimates the frontier Ft for input-output bundle (x,y)

and then a structure of the estimated technical efficiency φ̂(x,y; t) with respect to variables z.

For the two stages of estimations to be coherent with the underlying data generating process

(DGP) for variables (x,y, z) and for the whole model to be statistically consistent, (1) the

first-stage estimate of frontier Ft needs to remain consistent without using variables zit, and (2)

the second-stage model of technical efficiency must conform with item (1) in an implicit joint

model of variables (x,y, z). The separability assumption could be reasonable only when these

conditions are met.

To maintain item (1), it merits to clarify the variables that can be appropriately admitted

as “environmental” factors z in the current two-stage DEA procedure. The term “production

environment” often represents a catch-all for anything that may affect production decisions (and

production possibilities) but are not under direct control of the producer in the way traditional

production inputs are. It is safe to assume that some variables like producer age or education can

affect production decisions but cannot affect production possibilities that are usually assumed

to be given at industry level. Variables that may shift production possibilities like weather

conditions in agriculture are ideally incorporated as a part of technology specification (e.g. non-

discretionary inputs), but it is not always possible. This happens precisely in situations where

20In fact, combining the two components entirely in a linear fashion allows a feasible joint estimation by quadratic
programming.
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those variables do not vary across producers in a given context (like a given time period or

given phase of a policy). In essence, the current methodology is a way to overcome this lack

of producer/observation-level variation in non-production factors (to be directly incorporated

in a technology specification); instead, some of those variables can be used to define distinct

contextual environments for production decisions, and others can be used to characterize them.

That is, the current estimation strategy is to identify context-specific frontiers and characterize

their relative performances, as opposed to imposing a priori functional relationships between a

technological frontier and contextual environmental variables. In the case of technical change,

it estimates time-specific frontiers and efficiencies and then studies the effects of time-specific

variables (e.g. weather outcomes varying across time periods but not across producers) by

regressing the estimated time specific-means τ qt ’s in (11) on those variables (e.g. see below).

Item (2) calls for the coherent, underlying relationships among all variables (x,y, z) in the

model. In the first stage, variables z are assumed to potentially influence production decisions

(x,y) through technical efficiency φ(.; t) but not technical feasibility Ft, implying that time-

specific frontier Ft is considered independent of variables z. Then, one way to ensure a coherent

estimation in the second stage to require the functional relationship between estimated technical

efficiency φ̂(.; t) and variables z to diminish at the estimated frontier. This happens at the full

technical efficiency, or φ̂(.; t) = 1. The current specification in (11) conforms with such a

functional relationship by employing the proportional marginal effects of environmental factors

z on technical efficiency where all the marginal effects are identically zero locally at φ̂(.; t) = 1.21

Now, some time-specific factors, which cannot be directly incorporated in a technology es-

timation, can be indirectly used to refine the estimates of mean MPI, TEC, and TC. That is,

in order to better interpret the intertemporal differences in equations (10) as mean MPI, TEC,

and TC, it is desirable to purge these estimates from time-specific shocks in weather, markets,

and regulatory environments that might have influenced the estimated time-specific frontiers

and efficiencies. With a modest number of time periods, one can adjust estimates τM , τ s, and

τM−s for the mean-level shocks associated with time-specific factors W t. For example, adjusted

estimates τ̃Mt , τ̃ st , and τ̃M−st are obtained as the residuals in the following linear regressions;

q ∈ {M, s,M − s}, τ qt = W tγ
q + τ̃ qt

∀t, γM−s = γM − γs, τ̃M−st = τ̃Mt − τ̃ st (12)

21Another approach is to introduce adjustment/shift to the estimated frontier(s) by using the second-stage estimates
(and use a truncated regression for the second-stage estimation). In this way, Simar and Wilson (2007) provide a statistical
model for the two-stage DEA procedure. See Appendix A for some discussion on the method.
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where τMt , τ st , and τM−st are the estimates from the second-stage analysis in equations (11).

Purged parameters τ̃Mt , τ̃ st , and τ̃M−st define new estimates of MPI, TEC, and TC in (10),

conditionally on both producer-specific factors zit and time-specific factors W t.

Statistical inferences for parameters θ̂ ≡ [τ̂ α̂ γ̂] in (11), (12) are made, for example,

by bootstrap estimates of their confidence intervals. Each cycle of bootstrapping begins with

drawing (with replacement) {ε∗qit } for equations q ∈ {M, s,M − s} from empirical distributions

of the error terms and adding them to the predicted technical efficiencies. Parameter estimates

θ̂
∗b

are calculated for bootstrapping samples b = 1, ..., B. For each parameter θ̂j ∈ θ̂, let θ̂∗j,x

denote the x-percentile value in each bootstrap distribution {θ̂∗bj }Bb=1. Then, the 1−a confidence

interval for θ̂j is estimated by [θ̂∗j,a/2, θ̂∗j,1−a/2], assuming that 1 − a = Prob[θ̂∗j,a/2 ≤ θ̂j − θj ≤

θ̂∗j,1−a/2] ≈ Prob[θ̂∗j,a/2 ≤ θ̂∗bj − θ̂j ≤ θ̂∗j,1−a/2]. The bootstrap distributions of γ̂∗b can be obtained

using the bootstrap estimates τ̂ ∗b as dependent variables.

In the current application, the following assumptions are made for the distributions of the

error terms εqit, q ∈ {M, s,M−s}, all assumed to be distributed with zero-mean and time-specific

standard deviation σqt . For each equation εqit, q ∈ {M, s,M − s}, time-specific variances σqt are

estimated by σ̂qk =
∑

it∈IT(k)(ε
q
it)

2/(Nk − 1), ∀k ∈ T and implemented by randomly sampling

from the error distributions {εqit}it∈IT(k), ∀k ∈ T with replacement.The procedure accounts

for the heteroskedasticity across time periods, which are introduced in equations M , M − s

by the interdependent error structures with equation s. While the current study makes rather

conservative statistical inferences, it is also possible to mechanically utilize such interdependence

to further account for inter-equation correlations.22

3.3 Frontier-Based TC Measurements

At the basis of TC measurement, defining a distance between two frontiers involves select-

ing the points, between which the distance is measured. These points are usually chosen at

places where an observed input-output decision is projected to the frontiers. In the equation

M−s of (11), each data point (xit,yit) is projected to meta-frontier F̂ and time-specific frontier

F̂t, yielding the relative between-frontier distance measure φ̂(xit,yit;T)/φ̂(xit,yit; t). However,

it turns out that it is reasonable to expand each data point into multiple “observations” of

22For example, the three bootstrap error terms are sequentially constructed based on the bootstrapping error for
equation s. First, error term ε∗sit for producer i, period t is randomly drawn from empirical distribution {εsit}in∈IT(t)

with replacement. Second, error term ε∗Mit is defined given the bootstrapped efficiency error terms ε∗sit , ∀t ∈ T; by the
relationship φ(.;T) = mink{φ(.; k)}, we have ε∗Mit = mink{τ̂sk + ε∗sik} − τMt . Third, the difference between the two defines
the last error term; ε∗M−s

it = ε∗Mit − ε∗sit . This bootstrapping procedure accounts for the interdependence in the error
terms between equation s and equation M (and M − s). It implements implicit statistical inferences for error terms
εqit ∼ (0, σq

t ), ∀t ∈ T, q ∈ {M, s,M − s} without directly estimating standard deviations σq
t ’s.
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distance measurements φ̂(xit,yit;T)/φ̂(xit,yit; k) for k = 1, .., T corresponding to the hypo-

thetical, pseudo-technical efficiency assessments φ̂(xit,yit; k) at each time-specific technology

F̂k, k = 1, .., T .

To see why such an operation is sensible, it is useful to recall the radial distances of MPI,

TC, and TEC in equations (7). These are all point-based distance measurements, taken at

discrete data points/rays, rather than the integrals of the differences along those curves. The

MPI calculation uses technical and pseudo-technical efficiencies measured from each production

decision (xt,yt), t ∈ {t0, t1} (for a given producer) to each time-specific technology F̂t, t ∈

{t0, t1}, regardless whether it corresponds to actual production time period. In effect, such

an operation creates hypothetical “observations” where decisions in certain time periods are

compared to the time-specific frontiers of different periods.

To illustrate the concept of these hypothetical observations, let us consider TGR calculations

at three points {A,A′, A′′} respectively observed in time t ∈ {t0, t1, t2}. In figure 4, their output-

oriented projections to the frontiers of three technologies F̂t, t ∈ {t0, t1, t2} are depicted with the

corresponding projections labeled as {D,C,B} for point A, {D′, C ′, B′} for A′, and {D′′, C ′′, B′′}

for A′′. In this example, meta-frontier is given by F̂ = ∪tF̂t = F̂t2, to which TGR for each time-

specific frontier can be calculated. The set of TGRs defined between these points and the

technologies of the corresponding time periods is {DQ/BQ,C ′Q′/B′Q′, B′′Q′′/B′′Q′′}, which

consists of single distance measurements along a ray from each point in {A,A′, A′′}. Frontier gaps

between two periods are T̂GRt0 = DQ/BQ, T̂GRt1 = C ′Q′/B′Q′, and T̂GRt2 = B′′Q′′/B′′Q′′(=

0) with implied technical change T̂Ct0,t1 = T̂GRt0−T̂GRt1 and T̂Ct1,t2 = T̂GRt1−T̂GRt2. These

TC measures correspond to those described in the previous subsection and are now referred

to as efficiency-based TC (E.TC) measures. In contrast, the set of TGRs defined between

the three points and all technologies at time periods t =∈ {t0, t1, t2} is {BQ/BQ, CQ/BQ,

DQ/BQ, B′Q′/B′Q′, C ′Q′/B′Q′, D′Q′/B′Q′, B′′Q′′/B′′Q′′, C ′′Q′′/B′′Q′′, D′′Q′′/B′′Q′′}, which

consists of three distance measurements along a ray from each point in {A,A′, A′′}. In this

case, mean frontier gaps are, for example, the geometric means of these distances; T̂GRt0 =

(DQ/BQ·D′Q′/B′Q′·D′′Q′′/B′′Q′′)∧(1/3), T̂GRt1 = (CQ/BQ·C ′Q′/B′Q′·C ′′Q′′/B′′Q′′)∧(1/3),

and T̂GRt2 = (BQ/BQ · B′Q′/B′Q′ · B′′Q′′/B′′Q′′) ∧ (1/3) = 1 with implied technical change

T̂Ct0,t1 = T̂GRt0−T̂GRt1 and T̂Ct1,t2 = T̂GRt1−T̂GRt2. The latter distance measures represent

the point-based distances among the frontiers more comprehensively and are now referred to as

frontier-based TC (F.TC) measures.

The following example illustrates the important roles of sampling points in frontier compar-

isons. In figure 5, input decisions {A,B,C,D} are located in the two-input space x1-x2 for a
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given output level. Suppose that decisions {A,B} are observed in time t0, {A,C} in time t1, and

{A,D} in time t2, which correspondingly form time-specific frontiers Ft0, Ft1, and Ft2 such that

Ft0 ⊂ Ft1 ⊂ Ft2 = F (meta-frontier). In this example, mean technical efficiency measures for

time t ∈ {t0, t1, t2} are all at 1. Then, for the comparison between frontiers Ft0, Ft1, efficiency-

based technical change (E.TC) from period t0 to period t1 can be measured by comparing the

mean MPI’s of the two periods. Albeit the exact values of MPI’s depend on the directions and

units of technical efficiency measurements, by inspection it is very likely that the mean MPI for

period t0 (using points {A,B}) is higher than that of period t1 (using points {A,C}), implying

negative technological change (e.g. technological regress) from Ft0 to Ft1. Note that this is

not consistent with the true relationship Ft0 ⊂ Ft1. On the other hand, frontier-based techni-

cal change (F.TC) using the common set of sampling points {A,B,A,C} is surely to yield a

higher MPI for period t1 than period t0. As this example illustrates, for the purpose of frontier

comparisons, it is maintained that F.TC measures are preferred to E.TC measures.

Then, such F.TC measures improve the TGR equation M − s in the second-stage analysis

(11).23 TGR measurement φ̂(xit,yit;T)/φ̂(xit,yit; k) is defined for each production decision

{xit,yit}it∈∪kIT(k) for each time-specific frontier F̂k, k = 1, .., T . Variables zit are no longer

useful as these hypothetical observations are reduced to mere “sampling points” for between-

frontier distance measurements as opposed to the decisions made by individual producers with

associated characteristics zit (i.e. Assigning all indicator variables 1t(t = k) for time-specific

frontier k = 1, .., T to each observation it makes these indicator variables orthogonal to any

variables zit).

The mean TGR calculations under frontier-based measures are;

ln(φ̂(xit,yit;T)/φ̂(xit,yit; k)) = τM−sk + εM−sitk (13)

where subscript itk represents the unit of observation at the combination of each production de-

cision it (observed in time t) and assigned time-specific frontier Fk of time k. The corresponding

TC measures, or F.TC’s, are defined in equation (7) using either the coefficients τM−s in (13)

or the orthogonal projections τ̃M−s of time-specific characteristics W t in linear model (12). For

statistical inferences, bootstrap error term εM−s∗itk for each period k ∈ T can be defined by ran-

dom draws from {εM−sitk }IT(k) with replacement, assuming the time-specific (e.g. frontier-specific)

23Due to the current system of independent linear equations (11), the first and second equations for ln φ̂(xit,yit;T),

ln φ̂(xit,yit; t) can be omitted. The two equations do not add any new information since the first one is redundant under
the hypothetical observations, and the second one no longer bears the interpretation for the determinants of technical
efficiency.

17



distribution εM−sitk ∼ (0, σM−sk ),∀k ∈ T.

Thus, for non-Hicksian TC two versions of TC measures are obtained, depending on how

targeted distances are measures in the input-output space. The mean levels of time-specific

frontiers (e.g. mean output levels given inputs) can be measured across the directions of input-

output decisions in the corresponding time periods (i.e. E.TC measures) or the directions of

input-output decisions in all time periods (i.e. F.TC measures). The standard MPI decomposi-

tion belongs somewhere between the two TC measures24 but appears rather closer to the latter

F.TC measure in spirit. In comparison, there is no need to distinguish the two versions of TC

measures for Hicksian TC, including a typical joint estimation for the technological frontier and

its shift structure under SFA.

In summary, the common MPI measure of productivity changes and its decompositions can

be seen as the comparisons of various between- and within-subsample mean-efficiency measure-

ments. The existing approach of ratio-based measurements are capable for obtaining technical

change decompositions for individual producers. On the other hand, the regression approach

seems more versatile at sample level to conduct an analysis in the absence of balanced panel data

and control for confounding producer-specific and time-specific factors. By imitating how the

standard MPI calculation utilizes pseudo-technical efficiency assessments with hypothetical time

periods, a second stage DEA analysis on the sample of such pseudo-efficiency estimates yields

frontier-based TC measures that compares between-frontier distances more thoroughly than the

efficiency-based frontier comparisons. Given that the unit of observations in equations (11) is at

observed input-output decisions while the unit of observations in equation (13) is at the inter-

actions between those decisions and time periods, it seems that TEC, TC are better measured

respectively in the efficiency-based comparisons in (11) and the frontier-based comparisons in

(13).

4 Application

The proposed methodology is demonstrated with a brief analysis on Maryland dairy op-

erations. The dataset contains unbalanced panel data of revenues and expenses of 63 dairy

farms during 1995-2009. Readers interested in detailed data descriptions and simple statistical

analyses are directed to Hanson et al. (2013).25 There are two types of dairy systems in the

24Two given frontiers are compared in the directions of input-output decisions that always belong to either one of the
two time periods.

25The sample consists of typical dairies in the Northeast region for the herd size of 200 or less but does not contain
dairies of very large scale operations.
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data; traditional confinement operations and management-intensive (rotational) grazing dairies.

The intensive grazing system is characterized with smaller scales of operations relative to the

confinement system. The relative profitabilities of the two diary systems largely depend on the

factor prices in markets and the technical efficiencies of individual producers. While the two

systems are comparable for budget analyses, production inputs (e.g. breeds of cows) may not

be homogeneous enough for the purpose of production analyses. For this reason, each system is

independently analyzed for systematic differences across calender years.

Milk production is modeled with four inputs26: the number of cows, capital equivalent (i.e.

the total expense of production deflated by a farm production cost index), and crop and pasture

acreages.27 Statistical properties of these inputs and output are summarized in table 1, along

with their averages by dairy system and calender year in table 2. Given the relatively small

sample size, no technical regression (, or cumulative reference frontiers,) is imposed.28 This is

done by constructing reference technologies from observations of the concurrent and previous

time periods (i.e. Time-specific index set in the previous section is modified to IT(k) = {it|t ≤ k}

for time t ≤ k.)

In table 1, one can discern major trends in production decisions for the two dairy systems.

In terms of milk output, average confinement dairy has nearly doubled its output from 15,338

(cwt) in 1995 to 30,399 (cwt) in 2009, for which the increase mostly comes from the increased

scale of operation (e.g. number of cows) with a slight increase in milk output per cow from 183

(cwt/cow) to 199 (cwt/cow). The increase in production has been accompanied by a similar

increase in capital equivalent input without much changes in land acreage. In contrast, during

the same period, the milk output for an average grazing operation has remained at around

13,000 (cwt). While the average grazing operation has become slightly larger in terms of herd

size, its milk output per cow has declined from 183 (cwt/cow) to 124 (cwt/cow) along with some

reductions in land acreage. Note that the changes in production decisions over time may neither

take the form of equiproportional expansions of feasible production set nor proceed gradually at

a constant rate as commonly assumed in empirical specifications. Using the method proposed

in the previous section, the current application examines technical efficiency of the production

decisions and relative performances of year-specific frontiers, controlling for producer-specific

characteristics such as indicators for farm ownership and the presence of off-farm income and

time-specific variables like seasonal-average precipitations and temperatures.

26See Appendix for the results under alternative input-output specifications.
27 Milk revenues account for more than 85% of income shares in the sample. The analyses for the total revenue from

milk, cattle, and crop sales yield qualitatively similar results.
28See appendix C for the results under the standard specification that allows the possibility of technological regression.
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Table 3 shows the summary of DEA results for efficiency scores measured against year-specific

frontiers, pseudo-efficiency scores against enveloping meta-frontiers, and TGR’s as their ratios.29

These efficiency scores are calculated separately for confinement and grazing operations under

non-increasing returns to scale (NIRS). Throughout the empirical analyses, parallel specifications

under constant returns to scale (CRS) obtain qualitatively very similar results. Under NIRS, the

median technical efficiency is found at about 0.90 for confinement and 0.85 for grazers, indicating

that for given inputs, respectively the 90% and 85% of the maximum output levels relative to

year-specific frontiers are achieved by the producers of the median efficiency levels. Similarly,

the median TGR’s for the time-specific frontiers of confinement and grazers are 0.95 and 1.00

respectively, implying that for given inputs, the 95% and 100% of the maximum output levels

relative to the meta-frontiers are feasible at the medians of the frontier gaps across sampling

points.

The second stage analysis examines the within-subsample differentials in technical efficiencies

and the between-subsample frontier gaps among time-specific frontiers. The current application

focuses on the intertemporal differentials in productivity changes, frontier shifts, and efficiency

improvements. As noted previously, these estimates are summarized through the regression-

based Malmquist productivity index (MPI), technical change (TC), and technical efficiency

change (TEC). For the regression-based MPI decomposition in (10) using regressions (11), ta-

ble 4 shows the estimated coefficients taking year 1995 as the base level (i.e. at 1.000) under

the main model that controls for producer-specific factors.30 31 The regression coefficients are

treated as point estimates, and bootstrapping from the empirical distribution of the error term

is used for statistical inferences. For confinement operations, the results overall indicate posi-

tive productivity changes (i.e. MPI) that can be decomposed into negative technical efficiency

changes (TEC) and positive technical changes (TC). For example, in 2009 mean productivity was

13.3% higehr, mean technical efficiency 7.4% lower, and technological possibilities frontier 20.3%

higher respectively relative to their 1995 levels. While the overall trends are clear, the year-to-

year estimates for MPI, TEC, and TC are somewhat imprecise due to the relatively small sample

size in a given year. For grazers, the model shows some negative productivity changes, which

decomposes into negative TEC’s and positive TC’s; in 2009 mean productivity was 13.3% lower

29 For those observations with zero crop acreage, pseudo-technical efficiency measurement under year-specific frontiers
can be infeasible if those frontiers cannot be defined at the crop acreage of zero. Such infeasible scores are imputed at full
efficiency values. For the most part, these imputed values become irrelevant when taking the minimum efficiency scores
across year-specific frontiers for the purpose of meta-level efficiency calculations.

30 Exponentials of regressions coefficients (and their differences from 1995 level coefficient) give MPI, TEC, and TC in
their usual ratio-based unit with the reference to base-year at 1.000.

31Under the cumulative reference frontiers, the effects of time-specific factors may not be accurately estimated in (12)
and need further considerations; some results from the specifications that use these variables are presented in tables but
not interpreted in the current version of the draft.
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(statistically insignificant), mean technical efficiency 18.9% lower, and technological possibilities

frontier 6.8% higher respectively relative to their 1995 levels.

Table 5 shows TC estimates from models under frontier-based TC (F.TC) measurements in

(13) along with the variant of the previous model in table 4 (, which uses efficiency-based TC

(E.TC) measurements in (11)). As noted previously, F.TC measures represent more comprehen-

sive frontier comparisons. The estimated F.TC indicate consistently higher technical changes,

compared to the previous E.TC estimates in table 4. The specifications without controlling for

time-specific characteristics (in the middle column) indicate that the frontiers for confinement

and grazing dairies are 39.3% and 41.0% more efficient in 2009 respectively, compared to their

1995 counterparts.32 Since technical changes have taken place non-proportionally (i.e. non-

Hicksian TC) with respect to the earlier-year input-output mixes, frontier comparisons can be

substantially different, depending on whether the distances of year-specific frontiers from the

meta-frontiers are measured for a set of year-specific points/rays (i.e. E.TC measures) or a set

of all observed data points (i.e. F.TC measures). While technical efficiency here is measured in

the direction of a single output,33 non-proportional shifts of a technological frontier still arise

from the non-proportional changes in the best input mixes or the best input-output mixes of

the time. If all technical changes consist of parallel/proportional shifts of a frontier, the E.TC

and F.TC measures share the same expected values. The large discrepancy between the two in

the current application seems to suggest the importance of non-Hicksian TC measurements in a

dynamic industry experience structural changes with many entries and exits.

Combining the preferred estimates for efficiency-based TEC and frontier-based TC estimates,

table 6 summarizes the current empirical application. The first and last 5-year-averages of the

estimated coefficients during 1995-2009, averaging out the year-to-year fluctuations in efficiency

and frontier levels, are reported as the preferred summary measures, between which the differ-

ences provide average TEC and TC estimates. Under NIRS, confinement and grazing systems

have experienced 26.4%/decade and 19.2%/decade positive TC’s along with 6.3%/decade and

14.4%/decade negative TEC’s respectively. The widening efficiency differences and positive

technical changes in both systems suggest that some producers have successfully adopted new

technologies and improved their management compared to the 1995-level while others have been

struggling to keep up with these changes. The difference between the two systems, however, is

that overall productivity gain seems to have accrued to the majority of confinement operations

32Note that the possibility of technological regression is eliminated in the F.TC measures without time-specific factors
(in the middle column in table 5).

33 Note that the direction of efficiency measure can be chosen independently from estimating a piecewise-linear DEA
frontier.
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but only to a minority of grazing counterparts. This is consistent with the view that confine-

ment dairy operations are more likely to follow fairly standardized production techniques of the

industry while intensive grazing involves very localized production practices, depending on local

soil and micro-climate conditions that require some experimentations by individual producers.

The estimated marginal effects for producer-specific and time-specific variables are reported

in tables 7, 8 respectively. The producer-specific characteristics include two indicator variables

for the farmland ownership for dairy operation and the presence of off-farm income. Addi-

tionally, the base model accounts for seasonal-average rainfalls and temperatures for four sea-

sons. The coefficient estimates for equation “M,” “s,” and “M-s” that correspond to those in

equations (11) represent the systematic correlations with pseudo-technical efficiencies against

meta-frontiers (i.e. productivities), technical efficiencies against year-specific frontiers, and tech-

nological gaps between those frontiers (i.e. TGR’s) respectively. Focusing on equation “s” where

the coefficients are most naturally interpreted as the determinants of technical efficiencies, among

the confinement dairies farm ownership and off-farm income are associated with 4.48 percent-

age points higher and 5.78 percentage points lower technical efficiencies respectively relative

to time-specific frontiers. Among grazers, the corresponding marginal effects are positive 10.13

percentage points and negative (and insignificant) 5.59 percentage points. The results are in line

with certain economic theory; potential principal-agent problems may reduce technical efficiency

if a farmer does not own the farm property he manages, and a higher opportunity cost of the

producer, indicated by the presence of off-farm income, would also reduce his commitment to

dairy operation.

Table 8 reports coefficient estimates for time-specific factors for the same equations “M,”

“s,” and “M-s” in equations (11) and for the equation “M-s” from frontier-based TC measure

in (13). The weather variables are found to shift time-specific frontiers without much influences

on the mean levels of technical efficiencies (e.g. mostly insignificant coefficient estimates for

equation “s”). For confinement operations, seasonal rainfalls and temperatures, except for the

summer temperature, are positively correlated with TGR’s of time-specific frontiers relative to

the meta-frontier. These relationships between the weather variables and time-specific frontiers

are likely better captured in the coefficient estimates from the frontier-based TC model. These

estimates show stronger relationships for confinement and find similar relationships for grazers;

the changes in winter rainfall, summer rainfall, winter temperature, and summer temperature

by one standard deviation are associated with -3.78, 2.57, 3.24, and -6.91 percentage point

changes in the frontier output level among confinement operations and correspondingly -3.35,

-0.08(insignificant), 2.03, and -8.44 percentage changes among grazers.
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Lastly, the results from the common two-stage DEA estimation are presented in table 9. The

estimations follow the algorithm in Simar and Wilson (2007), which is based on the truncated

normal regression on estimated technical inefficiency scores and uses a certain bias-correction

technique (using the initial/tentative second-stage coefficient estimates) to account for the down-

ward bias in the first-stage technical inefficiency estimates. In the current application, observa-

tions are pooled across years with controlling for a quadratic time trend.34 Results show positive

correlations between farm ownership and technical efficiency while the coefficient estimates (,

reported for the coefficient estimates on technical efficiency,) are rather imprecise compared to

the estimates for equation “s” in tables 7, 8. Most of the marginal effects are relatively small

and insignificant, compared to the year-to-year fluctuations in technical efficiency levels.

It should be noted that above empirical exercises are conducted with a relatively small

sample of unbalanced panel data. Admittedly, the crude input-output specification particularly

for grazers (e.g. not accounting for changes in the land use, pasture quality, or herd composition

etc.) might have led to model misspecification. The results are preliminary at best and need to

be interpreted with cautions. A more rigorous analysis using a much larger dataset is desired.

5 Comparisons of Frontiers & Mean Efficiency Levels

The section discusses the use of contextual variables for frontier and efficiency comparisons

in DEA and elaborates the broader applicability of the proposed method beyond an application

to technical change.

The relationships between production and its contexts are typically treated in one of the

two major frameworks, based on the two channels, or technical feasibility and technical effi-

ciency, through which those factors may influence production decisions.35 Through the first

channel, technical feasibility can vary with time, regional specificity, or disruptions to produc-

tion at industry level theoretically by shifting the technical possibilities frontier. Also, policies

in agriculture and natural environment or atypical market conditions can alter the technical

feasibility observationally by shifting optimal production decisions in the input-output space.

More generally, heterogeneity in production decisions can be analyzed for collective differences in

technically-efficient production decisions by production contexts. Like the measure of mean tech-

34Alternatively, with further assumptions, one could construct more complex models to account for different error
structures across years. Also, if more observations were available, observations in each year could have been separately
analyzed.

35Besides what is mentioned, another use of contextual/environmental variables is to account for different production
environments in the direction of efficiency measurement. For example, with the techniques of Banker and Morey (1986)
or Reinhard, Knox Lovell, and Thijssen (2000), environmental factors can serve as non-discretionary inputs or outputs
that are used in defining production feasibility yet excluded from the radial efficiency assessment.
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nical change using time-specific frontiers, comparisons of context-specific frontiers yield mean

context-induced frontier shifts that are distinguished from the changes in mean efficiency levels.

Through the second channel, non-production variables can be systematically correlated to

the prevalence of technical inefficiencies. Numerous applications in the literature have sought to

relate estimated inefficiencies to so-called environmental factors, including the form of business

ownership, labor union status, geographical locations, government regulations, and just about

anything outside the producers’s control.36

The proposed method for measuring technical change in the previous sections can serve as a

template for a general empirical framework for assessing the influences of production contexts

through the two distinctive channels. Contextual information can be used to partition a sample

and construct subsample-specific technologies in light of the first channel. Using a meta-frontier

as a common basis for normalization, the between-frontier differences and the within-frontier

differences in production decisions can be seen as between- and within-subsample inefficiencies

(or heterogeneity) respectively. Those efficiency measurements can be statistically analyzed for

the systematic relationships with the contextual factors in light of the second channel. Thus, by

actively integrating the two channels of relationships to production heterogeneity into a research

design, one can study the mean influences of production contexts on production decisions as

well-defined distance concepts in input-output decisions. In particular, the impacts of policies

and regulations can be studied through the average shifts in frontiers and the changes in the

prevalence of technical inefficiency. For a policy evaluation, secondary analysis may be imple-

mented in conjunction with other econometric techniques such as instrumental variable (IV)

to deal with endogenously determined policy participation or difference-in-differences (DID) to

remove confounding time trends.

In dairy production, for example, consider marketing orders, which regulate uniform mini-

mum milk prices for dairy farmers, set minimum product-specific milk prices for processing plants

(to purchase milk from dairies), and rectifies the resulting disparities in milk prices among var-

ious processing plants for different milk usage. The policy effectively sets price floors for dairies

and barriers to vertical integrations that could have discouraged exits of uneconomically small

dairies and prevented large dairies from integrating into processing plants respectively. Then,

the policy might have contributed to the increased prevalence and extent of inefficiencies and

slowed technical change toward more intensive use of the inputs that are characterized by high

availability and small diminishing returns – like high-protein feeds and artificial growth hormone

that make high-volume milk production possible. On the other hand, if inefficient dairies were

36See some discussion in Coelli (2005), for example.
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more likely to exit and free up their land, intensive grazing might have attracted more entries and

increased the chances of innovations to more efficiently manage small-to-medium scale dairies.

While such an analysis may not be feasible under the existing level of variations in marketing

order policies across time and regions, in theory policy influences could be analyzed for ob-

served frontier shifts and changes in efficiency level, for which different policy responses could

be prescribed depending on the trade-offs between policy objectives and market distortions.

In another example, regulating water pollutants may require, in the future, dairy operations

to implement a cleaner manure handling procedure. To comply, producers will need to allocate

more resources to the task, which can lead to a contraction of technical feasibility.37 Such a

policy can also reduce the extent of inefficiencies if more efficient producers, who tend to operate

larger and more highly-confined dairies, are more severely affected by the regulation compared

to their peers; the policy may reduce production heterogeneity by the narrowed production gaps

between the technically-efficient and the less technically-efficient.

In some cases, research interests may lie in the influences of time-specific factors on production

decisions. For example, the proposed methodology can be used to study region-specific impacts

of climate change in agricultural production. Region-specific impacts may differ from the inter-

regional average effects found in a national level study that exploits variations in weather and

production outcomes across time, regions, and producers. Analysis with some panel or repeated

cross sections data on production may find the region-specific linkages between weather outcomes

and production outcomes. With little variation in weather outcomes across producers in a

relatively small geographic, however, it is often difficult to econometrically identify the influences

of weather conditions on a technological frontier and technical efficiency level while controlling

for their intertemporal trends. Given that the unknown functional forms for technical change and

the interactions between the production frontier and weather variables, specifications like Hicks-

neutral frontier shifts and similarly parsimonious functional relationships for those interactions

would significantly increase the risk of model misspecification. In such a circumstance, the

proposed methodology offers a conservative approach that non/semi-parametrically estimates

these unknown functional relationships in the first-stage DEA and parametrically summarizes

their mean relationships in the second-stage regressions.

In addition, distance measures in the input-output space may be refined by the use of direc-

37Strictly speaking, it depends on the way technology is defined. If the negative externality from manure is a part
of output specification, the policy would simply induce shifts of production decisions within the constant, underlying
technical feasibility. In fact, the true feasibility would be rarely affected by policies and regulations when the input-output
space is finely defined. On the other hand, if the input-output space contains monetary components like revenues and
expenses rather than physical quantities of inputs and outputs, policies can easily alter the technical feasibility through
the changes in effective prices for the factors of production.
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tional distance measurement. Namely, consider the directional distance function of Chambers,

Chung, and Fare (1996) and Luenberger (1994);

D(x,y;dx,dy) = max{a : (x− adx,y + ady) ∈ F}, (14)

which measures the maximal distance from point (x,y) to the frontier of technology F in direc-

tion (−dx,dy). By choosing a specific direction in which an input-output decision is projected

to frontiers and frontier differences are compared, relative importance of inputs and outputs

may be specified for the particular technical inefficiency measurement. For example, one can

focus on measuring frontier shifts in the direction of a particular input. Moreover, one can easily

transform the additive measure to a multiplicative inefficiency measure (i.e. the proportional

unit). For instance, once directional inefficiency is additively measured in the direction of l-th

input (−dx,dy) = ([0 −xl 0],0), one can convert it to multiplicative technical efficiency measure

under transformation 1/(1 +D(x,y; [0 − xl 0],0)), which can be used as a dependent variable

in above second-stage regression analysis.

Lastly, the current approach may be compared to a relatively new, probabilistic approach to

efficiency measurement that shares some non-parametric treatment for the influences of environ-

mental factors. Conditional free disposal hull (CFDH) estimators proposed by Daraio and Simar

(2005, 2007) use similarities in production ensvironments to select a relevant subsample in which

efficiency is measured.38 Building on the distributional description of input-output bundles of

Cazals, Florens, and Simar (2002), its efficiency concept is based on the expected probability

of non-dominance in a randomly-selected sample from the observed production decisions (e.g.

order-m efficiency is computed from an order-m frontier based on m randomly drawn observa-

tions.). CFDH takes a step further to account for the differences in production environments

by taking a subsample conditionally on environmental factors; consequently, it jointly utilizes

the survival distribution for free disposal hull (FDH) technologies and the non-parametric distri-

butions of environmental factors, which together determine a relevant subsample for efficiency

measurement.39 Note that in this probabilistic-efficiency approach, environmental factors are

assumed to influence both technical feasibility and efficiency without clear distinction. In con-

trast, the focus of the current approach is precisely on such distinctions to classify and compare

the influences of contextual environmental factors on production decisions.

38Strictly speaking, environmental factors are used to give weights across observations depending on similarities. But,
under fairly general conditions, it reduces to the dichotomous weight of including in or excluding from a subsample.

39The basic idea is to obtain a subsample to which the observation (x0,y0) is compared in a FDH technology, con-
ditionally on that production environments are sufficiently close to z0 for some bandwidth h; e.g. peer observation j is
included in the subsample if ||zj − z0|| ≤ h. Asymptotic properties for this estimator are established in Jeong, Park, and
Simar (2008), and some refinement for optimal band width is proposed in Badin, Daraio, and Simar (2010).
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6 Conclusions

The study proposes a systematic treatment of contextual variables in comparing technical

efficiencies and technological frontiers. Focusing on the measurement of technical change, it

shows that regression-average Malmquist productivity index and its decompositions can be ob-

tained from a second-stage analysis on estimated efficiency scores. Unlike the standard MPI

decomposition technique, the proposed method can be applied to repeated cross sections data

and allows the model to account for additional covariates. The regression-based method summa-

rizes production heterogeneity by production contexts in the form of mean relationships between

context-specific frontiers and associated efficiency levels.

Study of production heterogeneity is no simple matter. Empirical production analysis typ-

ically examines observed input-output decisions through the lens of a technological frontier

and technical inefficiencies. Incorporating non-production factors or information on produc-

tion contexts in such an estimation model introduces tremendous amount of complications in

econometric specifications. Consequently, researchers often rely on strong, simplifying assump-

tions to confine their analyses to specific functional relationships among frontiers, inefficiencies,

and non-production factors under presumed distributional properties. The current study shows

that it is possible to avoid many of such arbitrary assumptions. Despite the complexity of

the problem, the proposed methodology employs simple estimation techniques based on fairly

conservative assumptions. In turn, it requires careful considerations for the specifications of

production variables and clear concepts of distance measurements in the input-output space in

order to draw precise implications of the study. That is, it forces the researcher to be conscious

about the input-output space under study and explicit about which production heterogeneity is

in focus and how it is measured. Only then can the relationships between the heterogeneity and

non-production factors, including information on contextual environments, be fully investigated.
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Table 1: Summary Statistics

Variable Mean S.D. Min Max

Confinement (Obs. 314)
Output Equiv. 369,033 289,506 56,331 1,917,846
Milk (cwt) 24,145 17,577 3,761 110,668
Cow 122 76 22 468
Capital Equiv. 416,037 308,346 70,637 1,780,881
Total Acre 338 160 90 845
Crop Acre 289 155 60 704
Pasture Acre 338 160 90 845

Grazers (Obs. 161)
Output Equiv. 199,108 85,553 59,487 696,891
Milk (cwt) 12,442 5,573 2,670 42,955
Cow 87 29 37 195
Capital Equiv. 204,625 91,698 58,246 645,498
Total Acre 283 134 115 700
Crop Acre 132 108 0 600
Pasture Acre 283 134 115 700

1. Output equivalent is the gross income deflated by the price in-
dices weighted for its components at the observation level. Capital
equivalent is the total expense of production, deflated by a farm
production cost index.

2. Total land (acres) add up to land used for crop production and
land used for pasture at observation level.
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Table 2: Average Production Decisions By Dairy System and Year

Sample Means

Year N.Obs Output Equiv. Milk (cwt) Cow Capital Equiv. Tot.Acre Cro.Acre Pas.Acre

Confinement
1995 21 222173 15,338 85 255,522 328 273 55
1996 22 213511 16,249 90 272,876 332 277 55
1997 20 248605 18,389 97 306,554 302 254 48
1998 22 276714 21,729 112 384,388 314 272 42
1999 22 321742 22,711 115 402,671 314 272 42
2000 21 358828 24,649 121 403,807 340 292 48
2001 22 341851 23,730 117 415,356 328 282 47
2002 22 395945 24,782 122 418,442 328 282 47
2003 22 366650 24,958 128 419,106 358 309 49
2004 22 349620 25,282 129 448,014 358 307 51
2005 22 397284 27,628 137 498,483 348 297 51
2006 18 460286 29,202 144 505,202 356 304 52
2007 19 420043 29,734 146 534,688 351 300 51
2008 20 439283 29,518 144 505,584 356 302 53
2009 19 534353 30,399 150 504,675 369 316 53

Grazers
1995 4 183251 13,534 75 207,129 368 195 173
1996 7 185215 13,584 79 207,818 298 133 165
1997 8 200431 13,115 79 210,913 331 151 180
1998 9 180634 13,214 80 211,340 326 153 174
1999 9 196184 13,069 85 224,744 326 153 174
2000 11 225735 13,270 85 215,347 295 130 164
2001 11 191660 12,536 85 204,831 295 130 164
2002 11 197800 12,058 86 212,984 295 130 164
2003 12 179603 11,536 87 191,500 285 126 159
2004 12 183328 12,375 90 193,782 288 130 159
2005 12 181581 11,076 84 181,681 254 109 144
2006 14 204991 12,021 86 194,577 244 118 126
2007 15 190465 11,899 88 213,488 235 110 125
2008 14 196874 12,232 92 201,761 260 133 127
2009 12 244684 13,168 101 210,822 273 138 135
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Table 3: Summary of DEA Efficiency and TGR Scores

Sampling Dairy Summary Statistics

RTS Type Min 25th Median Mean 75th Max

Efficiency-Based Estimates
A. Efficiency at year-specific frontiers
(1) NIRS Confinement 0.465 0.807 0.899 0.884 0.978 1.000
(2) NIRS Grazers 0.362 0.715 0.852 0.822 0.951 1.000
(3) CRS Confinement 0.465 0.799 0.887 0.876 0.967 1.000
(4) CRS Grazers 0.362 0.695 0.801 0.802 0.933 1.000

B. Efficiency at meta-frontiers
(5) NIRS Confinement 0.408 0.764 0.820 0.827 0.902 1.000
(6) NIRS Grazers 0.362 0.698 0.797 0.796 0.927 1.000
(7) CRS Confinement 0.408 0.749 0.808 0.815 0.891 1.000
(8) CRS Grazers 0.362 0.686 0.777 0.789 0.919 1.000

C. TGR using meta-frontiers
(9) NIRS Confinement 0.704 0.903 0.954 0.937 0.988 1.000
(10) NIRS Grazers 0.723 0.959 1.000 0.971 1.000 1.000
(11) CRS Confinement 0.678 0.899 0.935 0.931 0.987 1.000
(12) CRS Grazers 0.723 1.000 1.000 0.986 1.000 1.000

Frontier-Based Estimates
D. Efficiency at year-specific frontiers
(1) NIRS Confinement 0.408 0.764 0.820 0.827 0.902 1.000
(2) NIRS Grazers 0.362 0.698 0.797 0.796 0.927 1.000
(3) CRS Confinement 0.408 0.749 0.808 0.815 0.892 1.000
(4) CRS Grazers 0.362 0.686 0.777 0.789 0.919 1.000

E. TGR using meta-frontiers
(5) NIRS Confinement 0.117 0.884 0.950 0.918 0.991 1.000
(6) NIRS Grazers 0.213 0.922 0.993 0.935 1.000 1.000
(7) CRS Confinement 0.310 0.886 0.934 0.918 0.989 1.000
(8) CRS Grazers 0.213 0.945 1.000 0.948 1.000 1.000

1. Technical efficiencies are measured against year-specific frontiers as well as against a meta-
frontier. Technology gap ratio (TGR) is the ratio of those efficiency measurements at the
observation level.

2. Frontier-based measures include the pseudo-technical efficiency scores that evaluate observed
decisions against frontiers of different time periods.
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Table 6: Summaries of TEC, TC Estimates

Confinement Grazers

RTS Specification Efficiency Frontier Efficiency Frontier

A. Without Controlling for Time-specific Variables
NIRS Frontiers

1995-1999 0.970 1.115 0.964 1.195
2005-2009 0.907 1.379 0.820 1.387
Difference: TEC, TC -0.063 0.264 -0.144 0.192

CRS Frontiers
1995-1999 0.967 1.079 0.957 1.210
2005-2009 0.905 1.282 0.823 1.379
Difference: TEC, TC -0.062 0.203 -0.134 0.169

B. With Controlling for Time-specific Variables
NIRS Frontiers

1995-1999 0.960 1.115 0.938 1.109
2005-2009 0.927 1.260 0.856 1.235
Difference: TEC, TC -0.033 0.145 -0.082 0.126

CRS Frontiers
1995-1999 0.962 1.139 0.940 1.110
2005-2009 0.927 1.351 0.869 1.285
Difference: TEC, TC -0.035 0.212 -0.071 0.175

1. The first and last 5-year averages of estimated coefficients are reported as summary
measures of TEC and TC during 1995-2009. Efficiency-based technical efficiency
change (E.TEC) and frontier-based technical change (F.TC) calculations are used.
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Table 7: Marginal Effects of Producer-Specific Characteristics

Confinement Grazers

M.E. (Percentage Points) M.E. (Percentage Points)
Variables Point Est. 95% CI S.Sig. Point Est. 95% CI S.Sig.

Equation M
1(Farm ownership) 5.66 (2.33, 8.66) *** 10.17 (4.80, 16.63) ***
1(Off-farm income) -5.73 (-10.36, -0.19) ** -6.30 (-12.18, 0.20) *

Equation s
1(Farm ownership) 4.48 (1.06, 8.03) *** 10.13 (4.28, 16.31) ***
1(Off-farm income) -5.78 (-10.61, -0.19) ** -5.59 (-12.54, 0.88)

Equation M-s
1( Farm ownership) 1.18 (0.39, 1.97) *** 0.04 (-1.84, 1.73)
1(Off-farm income) 0.05 (-1.20, 1.46) -0.71 (-2.48, 1.23)

1. Statistical significance, based on 400 bootstraps applied to the empirical distribution of the year-specific error
term in the second-stage regression: *** α = 0.01, ** α = 0.05, * α = 0.1.

2. The specification under CRS obtains qualitatively the same results.

3. Producer-specific indicators for farm ownership and off-farm income have the means of 0.77 and 0.07 respectively
among confinement and 0.71 and 0.21 among grazers.
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Table 8: Marginal Effects of Time-Specific Characteristics

Confinement Grazers

S.D.*M.E. (Percentage Points) S.D.*M.E. (Percentage Points)
Variables Point Est. 95% CI S.Sig. Point Est. 95% CI S.Sig.

Equation M
Rainfall winter -1.79 (-3.46, 0.17) * 1.02 (-0.42, 2.30)
Rainfall spring 1.31 (-1.02, 3.47) -0.67 (-1.93, 0.74)
Rainfall summer 0.16 (-2.75, 3.02) 1.42 (-0.51, 3.14)
Rainfall autumn 1.25 (-0.50, 2.72) -1.02 (-1.86, -0.18) ***
Temp. winter 1.00 (-1.56, 3.71) 0.67 (-1.86, 3.44)
Temp. spring 0.24 (-1.37, 2.14) 0.81 (-1.19, 2.86)
Temp. summer -1.73 (-4.68, 1.53) 1.86 (-2.49, 6.56)
Temp. autumn 1.06 (-0.72, 2.72) -2.13 (-5.00, 0.74)

Equation s
Rainfall winter 0.78 (-0.87, 2.73) 1.47 (0.06, 2.86) **
Rainfall spring 0.11 (-2.37, 2.32) -1.04 (-2.40, 0.39)
Rainfall summer -0.89 (-3.66, 2.21) 1.84 (-0.10, 3.60) *
Rainfall autumn -0.65 (-2.46, 0.91) -1.14 (-2.02, -0.33) ***
Temp. winter -0.05 (-2.85, 2.63) 1.34 (-1.22, 4.01)
Temp. spring -0.93 (-2.65, 1.07) 0.72 (-1.36, 2.87)
Temp. summer 1.64 (-1.20, 5.06) 1.76 (-2.48, 6.62)
Temp. autumn -2.44 (-4.23, -0.67) *** -2.55 (-5.67, 0.46) *

Equation M-s
Rainfall winter -2.57 (-3.08, -2.17) *** -0.45 (-0.82, -0.10) **
Rainfall spring 1.20 (0.57, 1.77) *** 0.37 (0.01, 0.81) **
Rainfall summer 1.04 (0.25, 1.76) *** -0.42 (-0.88, 0.10)
Rainfall autumn 1.90 (1.52, 2.36) *** 0.13 (-0.13, 0.35)
Temp. winter 1.05 (0.31, 1.93) *** -0.66 (-1.37, 0.02) *
Temp. spring 1.17 (0.70, 1.61) *** 0.09 (-0.54, 0.66)
Temp. summer -3.37 (-4.16, -2.66) *** 0.10 (-1.06, 1.58)
Temp. autumn 3.51 (3.09, 3.94) *** 0.42 (-0.48, 1.25)

Equation M- s (Frontier-based)
Rainfall winter -3.78 (-4.34, -3.13) *** -3.35 (-4.21, -2.56) ***
Rainfall spring 1.41 (0.53, 2.43) *** 0.55 (-0.55, 1.60)
Rainfall summer 2.57 (1.53, 3.67) *** -0.08 (-1.53, 1.26)
Rainfall autumn 3.21 (2.60, 3.84) *** 2.93 (2.13, 3.67) ***
Temp. winter 3.24 (2.26, 4.33) *** 2.03 (0.89, 3.32) ***
Temp. spring 2.12 (1.44, 2.75) *** -0.29 (-1.12, 0.55)
Temp. summer -6.91 (-8.06, -5.73) *** -8.44 (-9.78, -7.00) ***
Temp. autumn 6.81 (6.11, 7.41) *** 4.41 (3.54, 5.18) ***

1. Statistical significance, based on 400 bootstraps applied to the empirical distribution of the year-specific error
term in the second-stage regression: *** α = 0.01, ** α = 0.05, * α = 0.1.

2. Marginal effects are shown for the unit change of each variable by one standard deviation. Estimates for the
constant term are omitted from this table.

3. Time-specific weather variables of seasonal rainfall (inches) and temperatures (Degrees Fahrenheit) for winter,
spring, summer, and autumn have the means (s.d.) of 44.3 (8.8), 36.3 (2.6), 54.0 (1.7), 75.2 (1.6), and 57.3 (1.4)
during 1995-2009 respectively. Marginal effects are calculated with the corresponding statistics during 1981-2010,
which are 9.3 (2.9), 11.1 (3.5), 10.8 (3.3), and 10.7 (3.9) for rainfalls and 35.1 (2.4), 53.4 (1.9), 74.9 (1.7), 56.8
(1.4).
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Table 9: Determinants of Technical Efficiency (Truncated Regressions)

Confinement Grazers

Estimated Coefficients Estimated Coefficients
Variables Point Est. 95% CI S.Sig. Point Est. 95% CI S.Sig.

Intercept -0.919 (-3.840, 2.220) -8.388 (-22.240, 9.990)
1(Farm ownership) 0.090 (0.030, 0.150) *** 0.333 (0.100, 0.590) **
1(Off-farm income) -0.070 (-0.170, 0.030) -0.124 (-0.360, 0.070)
Year 0.017 (-0.020, 0.050) -0.095 (-0.260, 0.110)
Year Squared 0.000 (0.000, 0.000) 0.003 (-0.010, 0.010)
Rainfall winter -0.004 (-0.020, 0.010) 0.016 (-0.030, 0.070)
Rainfall spring 0.002 (-0.020, 0.020) -0.008 (-0.080, 0.050)
Rainfall summer 0.001 (-0.020, 0.020) 0.070 (-0.010, 0.150) *
Rainfall autumn -0.002 (-0.010, 0.010) -0.019 (-0.060, 0.020)
Temp. winter 0.005 (-0.020, 0.030) 0.037 (-0.060, 0.140)
Temp. spring -0.001 (-0.020, 0.020) 0.063 (-0.050, 0.150)
Temp. summer 0.001 (-0.040, 0.040) 0.017 (-0.170, 0.190)
Temp. autumn -0.012 (-0.040, 0.020) 0.019 (-0.100, 0.120)

1. Statistical significance, based on 400 bootstraps applied to the assumed truncated normal distribution in the
second-stage regression: *** α = 0.01, ** α = 0.05, * α = 0.1.

2. It follows Simar and Wilson (2007)’s truncated normal regression on technical inefficiency (without log-
transformation) with bias-corrections.
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Figure 1: Technical Change and Hicks-Neutrality

Figure 2: Technological Gap Ratio
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Figure 3: MPI Decomposition

Figure 4: Multiple Between-Frontier Distances
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Figure 5: Role of Sampling Points in Frontier Comparisons
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A Discussions on Single-Stage SFA and Two-Stage DEA Models

Focusing on the output-oriented technical inefficiency for single-output case, this section

discusses (1) two competing approaches to technological frontier estimation, or DEA and SFA,

(2) their extensions to estimating technical inefficiency as a function of so-called environmental

factors, and (3) the measurement of technical change as an intertemporal shift of a technological

frontier.

A.1 Deterministic and Stochastic Approaches to Estimating Production Frontiers

Economic theory of production is built on the transformation function that describes the

technically feasible choice of input-output combinations. For given transformation function

g(x,y), input-output bundle (x,y) ∈ RL
+× ∈ RM

+ is technically feasible if and only if

g(x,y) ≤ 0, (A.1)

for which the equality holds at the boundary of transformation function g(x,y), or the techno-

logical frontier. Typical axiomatic properties for a technology include (a) feasibility of inaction

g(0,0) ≤ 0, (b) monotonicity/free-disposability (g(x,y) ≤ 0, (−x,y) ≥ (−x′,y′)⇒ g(x′,y′) ≤

0), and (c) convexity (g(λx+(1−λ)x′, λy+(1−λ)y′) ≤ λg(x,y)+(1−λ)g(x,y) for λ ∈ [0, 1]).

The distance from technically feasible decision (xi,yi) to frontier g(x̃i, ỹi) = 0 is referred to

technical inefficiency, or a relative production performance measure compared to some projected

point (x̃i, ỹi) on the frontier. Output-oriented technical inefficiency measures how far observed

outputs yi can be expanded to reach the frontier, keeping inputs xi fixed (i.e. x̃i = xi, ỹi ≥ yi).

Two important distance measures are the multiplicative, radially-proportional distance θMi of

Farrell (1957)40 and the additive, radially-constant distance θAi of Chambers, Chung, and Fare

(1996) respectively defined as;

θMi = max{θ : g(xi, θyi) = 0} ∈ [1,∞)

θAi = max{θ : g(xi,yi + θdy) = 0} ∈ [0,∞) (A.2)

where θMi measures the maximal radial output expansion in direction yi while θAi measures the

maximal constant output expansion of outputs in given direction dy.
41 Technical inefficiency

40The counterpart for input-oriented, radial maximal contraction of inputs is known as Shephard (1970)’s input distance
function.

41In the general case, the directional distance function of Chambers, Chung, and Fare (1996) (based on Luenberger
(1994)) is

D(x,y;dx,dy) = max{a : (x− adx,y + ady) ∈ F}

which measures the maximal distance from point (x,y) to the frontier of technology F in direction (−dx,dy).
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achieves the lower bound at θMi = 1, θAi = 0 if and only if decision (xi,yi) is technically efficient.

In single-output case where there is only one direction of output expansion to be considered,

the two measurements are identical in the sense that θMi = 1 + θAi /yi. The discussions below

focus on this single-output case, in which the functional relationships between a technological

frontier and technical inefficiency can be compared under the equivalent concepts of technical

inefficiency.

The single-output case also offers an econometrically tractable platform for a frontier spec-

ification. In particular, the equations in (A.2) can be rewritten as the model for output yi in

terms of frontier function f(xi) and its residual ui ∈ {uAi , uMi } that is interpreted as technical

inefficiency;

yi = f(xi)− uAi , yi = f(xi) exp(−uMi ), uAi , u
M
i ∈ [0,∞) (A.3)

where multiplicative and additive inefficiencies uAi , u
M
i are related to each other by yi/exp(−uMi ) =

yi+uAi , referring to the identical frontier projection. Decision (x, y) is technically feasible if and

only if f(x) ≥ y.

Historically, the pioneering work of Farrell (1957) first introduced the concept of industry

production frontier in empirical contexts. Let his parametric programming (PP) approach to

frontier specification (A.3) be denoted by;

yi = fPP (xi;β)− uAi , yi = fPP (xi;β) exp(−uMi ), uAi , u
M
i ∈ [0,∞) (A.4)

where fPP (xi,yi;β) takes some presumed parametric functional structure like a Cobb-Douglas

production function with parameters β. One-sided (i.e. sign-constrained) residual ui ≥ 0

marked an important departure from the average response function characterized by the then-

conventional two-sided (i.e. sign-unconstrained) residual. Early studies in deterministic PP

frontier models include Aigner and Chu (1968), Timmer (1971), Afriat (1972), and Richmond

(1974). The deterministic modeling meant that the deviation from the estimated parametric

structure were attributable to technical inefficiency while the average response modeling regarded

the deviation a stochastic noise arising from unobserved factors in the production process or

parametric misspecification. In some cases, probabilistic modeling of the constraint (A.4) (e.g.

Pr[yi = fPP (xi;β) − uAi ] ≤ π or Pr[yi = fPP (xi;β) exp(−uMi ) = 0] ≤ π for some externally

fixed probability π) was suggested as a complementary tool to mitigate the influences of outliers,

which also helped to bridge the gaps in the early empirical studies where the dramatic shift in

the interpretation of the model residual took place.

These models were, however, criticized for being algebraic rather than being statistical. For
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example, Schmidt (1976) pointed out that the estimation based on least squares was appropriate

to test the hypothesis regarding parameters β but not the hypothesis of the frontier itself.

The author instead hinted that under a particular distributional assumption on the error term,

maximum likelihood estimation (MLE) would provide a more coherent, statistical approach to

modeling production frontiers.42

Shortly, Aigner, Lovell, and Schmidt (1977) and Meeusen and Broeck (1977) have indepen-

dently proposed what came to known as stochastic frontier approach (SFA). SFA views constraint

(A.3) to hold in a probabilistic sense through the estimated “noise-to-signal” (i.e. randomness-

to-inefficiency) ratio. With the composite error term of one-sided technical inefficiency ui ∈ R+

and two-sided statistical noise vi ∈ R, let the SFA frontier approach be denoted by; 43

yi = fSFA(xi;β)− uAi + vAi , yi = fSFA(xi;β) exp(−uMi + vMi ), uAi , u
M
i ∈ [0,∞) (A.5)

which corresponds to the model of likelihood Pr[yi = fSFA(xi;β)] for a presumed joint distribu-

tion of the two random variables ui, vi. SFA cannot separate out technical inefficiency ui from

noise component vi for each observation i but instead intends to identify their joint distribution

based on the the skewness of one-sided distribution of inefficiency ui in relation to the symmetric

distribution of stochastic noise vi. Under MLE, equation (A.5) can be interpreted as the most-

likely statistical model for the data generating process (DGP), or the underlying input-output

probability density function, say h(x, y). The stochastic representation implies that a part of

observed decisions lie beyond the technical feasibility (A.3) due to unobserved random factor vi.

On the other hand, building on the traditional, deterministic frontier representation, data en-

velopment analysis (DEA) (Charnes, Cooper, and Rhodes, 1978; Banker, Charnes, and Cooper,

1984) and its variants have established the non-parametric approach to the production feasibility

(A.3). Let the deterministic, non/semi-parametric DEA approach be denoted by;

yi = fDEA(xi)− uAi + ξAi , yi = fDEA(xi) exp(−uMi + ξMi ), uAi , u
M
i , ξ

A
i , ξ

M
i ∈ [0,∞) (A.6)

where fDEA represents a non/semi-parametric DEA frontier and uAi , uMi additive and multiplica-

tive technical inefficiencies and ξAi ≡ fDEA(xi,yi)−f(xi,yi) ≥ 0, exp(ξMi ) ≡ f(xi)/f
DEA(xi) ≥

1 are the corresponding one-sided bias terms. Bias ξi arises when a piecewise-linear DEA frontier

is constructed by connecting non-dominated decisions since the most productive decisions in the

universe, locating at the boundary of true technological feasibility, are likely left unobserved in

42In the case of deterministic frontier modeling, ML interpretation is inappropriate since the range of a random
variable such as an output depends on the model parameters (e.g. The range of an output is bounded from above by the
parametrized frontier). By using the composite error, SFA avoids this problem.

43Under certain assumptions, SFA model can be constructed for the more general case of multiple-output, multiple-
input.
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a finite sample. Under certain distributional assumptions, one may try to mitigate this bias by

estimating ξAi or ξMi through the bootstrapping method suggested in Simar and Wilson (2000)

or Simar and Wilson (2007);

fCDEA(x) = fDEA(x) + ξ̂A, fCDEA(x) = fDEA(x) exp(ξ̂M), ξ̂A, ˆξMi ≥ 0 (A.7)

where fCDEA denotes a bias-corrected DEA frontier.44 Note that regardless of such bias mitiga-

tion, the interpretation of model (A.6) fundamentally remains algebraic rather than statistical

since the underlying frontier relation is still viewed deterministic, and so is technical inefficiency

obtained as a residual.45

In most DEA applications, researchers leave the bias term ξi untreated on the ground that

ξi → 0 as the number of observations tends to infinity (e.g. Banker and Maindiratta, 1992)

and maintain that model (A.6) provides consistent estimates for frontier f and the technical

inefficiency ui. The implicit presence of bias ξi can be denoted by rewriting DEA approximation

(A.6) as

yi = fDEA(xi)− u∗Ai , yi = fDEA(xi) exp(−u∗Mi ), u∗Ai , u∗Mi ∈ [0,∞) (A.8)

where u∗Ai = uAi − ξAi , u∗Mi = uMi − ξMi are measured relative to estimable DEA frontier

fDEA(xi) ≥ yi, or an empirically-relevant subset of the true technical feasibility that suffices

to represent production feasibility and patterns of input substitutability to draw policy impli-

cations. The unobserved gap between the true and estimable technologies are feasible but are

likely characterized with relatively low probability densities.

In short, the two dividing approaches, represented by SFA and DEA, to the empirical model

of production frontiers have evolved under the two different interpretations of technical feasibil-

ity (A.3). In the stochastic modeling, technological frontier envelopes only a part of observed

data points and regards the deviation from the frontier as a mixture of random noise and tech-

nical inefficiency. It is assumed that the boundary relation (A.3) to lie somewhere between the

observed data points. Its statistical inferences are based on a statistical model of the sampling

process under certain distributional assumptions. On the other hand, in the deterministic mod-

eling, it is assumed that the boundary relation (A.3) lies at the (most-outward) non-dominated

data points, which falls short to trace the true boundary but may be assumed to provide an

empirically-relevant representation of the true frontier. Its statistical inferences are based on the

44Similarly, by accounting for this bias, statistical inference on individual, technical inefficiency estimate ui is suggested
in Kneip, Simar, and Wilson (2008); Simar and Wilson (2011b); Simar and Vanhems (2012); Simar, Vanhems, and Wilson
(2012) where the distribution of ui is locally approximated to the asymptotic distribution for data point (xi,yi). Simar
and Wilson (2010) also suggests a similar statistical inference for the technical inefficiency estimate in SFA.

45Note that the deterministic interpretation of technical inefficiency ui means that ui is assumed identified in contrast
to the stochastic interpretation like SFA where ui is only jointly identified with stochastic error as ui − vi.
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goodness of fit and are free of distributional assumptions.

In the absence of clear theoretical guidance, the decisions to model a technological frontier

and its deviation are generally up to the researcher. Typical decisions include;

� Deterministic or stochastic interpretation of transformation function g(x,y) ≤ 0

� Frontier structure in a certain parametric or non-parametric functional form

� Objects of interests or hypotheses

As seen in above discussions, historically the decisions on the first two accounts are often bundled

together. However, the long division between the SFA and DEA approaches is increasingly

blurred by recent developments in the non/semi-parametric frontier modeling combined with a

SFA-like composite error structure (e.g. Fan, Li, and Weersink, 1996; Park, Sickles, and Simar,

1998, 2003; Park, Simar, and Zelenyuk, 2008; Kumbhakar et al., 2007; Simar and Zelenyuk,

2011; Kuosmanen and Kortelainen, 2012). The closer relationships between the two approaches

suggest that the first two choices may serve as an integral part of the third item, or hypothesis

testing. That is, the most appropriate specification and associated statistical concepts, now seem

to depend on the applicability and credibility of the hypothesis testing regarding the specific

aspects of a production process in focus.

A.2 Joint Model of Technological Frontier and Technical Inefficiency

One of the most popular hypotheses in frontier analysis is regarding the structure of tech-

nical inefficiency ui. In particular, the researcher is often interested in how non-production

factors, or so-called environmental variables zi ∈ RR, may have influenced production outcomes

through technical inefficiency. In the literature, the relationships with environmental factors are

interpreted as the determinants of technical inefficiency that shift the distribution of technical

inefficiency without affecting the technical feasibility. One of the earliest examples is Timmer

(1971), who investigated the correlations between the estimated technical inefficiency and vari-

ables like geographical region, agricultural policy, and producer characteristics. As the author

has noted, such correlations require careful interpretations, for these relationships might have

been driven by the underlying measurement errors in inputs and outputs rather than idiosyn-

cratic constraints or distortions in the production process.

By adding some parametric model of technical inefficiency u(zi;α), stochastic frontier equa-

tion (A.5) can be rewritten as;

yi = fSFA(xi;β)− uAi + vAi = 0, uAi = uA(zi;α) + ηAi ≥ 0,

yi = fSFA(xi;β) exp(−uMi + vMi ) = 0, uMi = uM(zi;α) + ηMi ≥ 0, (A.9)
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for which the joint distribution of technical inefficiency and stochastic noise can be estimated

by maximum likelihood (e.g. Battese and Coelli, 1992, 1995).46 Added component u(zi;α) may

help maintain the assumption of homoskedasticity for the residual part of technical inefficiency

ηi and stochastic error component vi, for which the identification is sensitive to the violation of

distributional assumptions(e.g. Caudill and Ford, 1993; Florens and Simar, 2005).

Similarly, DEA equation (A.8) can be rewritten as;

yi = fDEA(xi;β)− u∗Ai = 0, u∗Ai = u∗A(zi;α) + ηAi ≥ 0

yi = fDEA(xi;β) exp(−u∗Mi ) = 0, u∗Mi = u∗M(zi;α) + ηMi ≥ 0, (A.10)

representing a simultaneous estimation of the technological frontier and the determinants of

technical inefficiency that accounts for the underlying joint distribution, say h(x, y,z). While

the standard DEA frontier fDEA is not compatible with such a model, it helps to view the

equations in (A.10) in the framework of convex nonparametric least squares (CNLS), or a close

variant of DEA frontiers.

As shown in Kuosmanen (2008), the DEA frontier (for the single-output case) can be seen

as a special case of the sign-constrained CNLS. The general CNLS problem is to find function

fCNLS from the family of continuous, monotonically increasing, and globally concave functions

f by minimizing the sum of square residuals;47

fCNLS = argmin
f
{
N∑
i=1

ε2i : ∀i, yi = f(xi) + εi, f ∈ f, ε ∈ RN}. (A.11)

The author shows that the piecewise linear production function under DEA can be interpreted

as a variant of the CNLS frontier using the system of Afriat inequalities (Afriat, 1967, 1972). Let

f
DEA denote the family of possible frontier functions under the variable returns to scale (VRS)

DEA technology48;

f
DEA = {f : ∀i, f(xi) = ci + xiβi : ∀i, j, ci + xiβi ≤ cj + xiβj, c ∈ RN , β ∈ RNL

+ }. (A.12)

In frontier family f
DEA, the contributions of inputs to output are assumed to be positive and

linear (i.e. β ≥ 0). In addition, the system of supporting hyperplanes defined by the Afriat

inequalities imposes the concavity of the function. Then, additive and multiplicative technical

inefficiency measures under DEA frontier fDEA ∈ f
DEA can be found in the solutions to the

46The pioneering work of Battese and Coelli (1992, 1995) has modeled technical efficiency as a function of observation-
specific characteristics (i.e. time period of production decision) under SFA.

47Frontier (A.11) is a infinite-dimensional problem, and as of today such a CNLS frontier can be solved only for the
single-output single-input case.

48For constant, increasing, and decreasing returns to scale (CRS, IRS, DRS), set c = 0, c ≤ 0, and c ≥ 0 respectively.
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following problem;

{u∗Ai }Ni=1 = argmin
u
{
N∑
i=1

u2i : ∀i, yi = f(xi)− ui, f ∈ fDEA, u ∈ RN
+}

=
N∑
i=1

argmin
ui

{ui : ∀i, yi = f(xi)− ui, f ∈ fDEA, u ∈ RN
+} (A.13)

{u∗Mi }Ni=1 = argmin
u
{
N∑
i=1

u2i : ∀i, yi = f(xi) exp(−ui), f ∈ fDEA, u ∈ RN
+}

=
N∑
i=1

argmin
ui

{ui : ∀i, yi = f(xi) exp(−ui), f ∈ fDEA, u ∈ RN
+}. (A.14)

The second line in (A.13) follows from the fact that each square residual u2i can be minimized by

independently minimizing ui in an independent linear programming problem. By the identity

f(xi) = yi + u∗Ai = yi/exp(−u∗Mi ), the parallel structure arguments holds for multiplicative

counterpart (A.14). Problem (A.13) for an additive inefficiency measure can be seen as a sign-

constraint variant of the standard CNLS problem (i.e. u ≥ 0) while problem (A.14) is the

counterpart for a multiplicative inefficiency measurement. The coefficients for fDEA, though

generally not uniquely solved in above problems, provide a local first-order Taylor series approx-

imation to unknown function f in the neighborhood of points {xi}Ni=1. In this light, Kuosmanen

and Johnson (2008) have noted that DEA frontier fDEA is a non-parametric generalization of

parametric programming frontier fPP of Aigner and Chu (1968) and Timmer (1971).

Adding a simple parametric model of technical inefficiency to (A.13), (A.14) and having the

objective minimize the least squares of residuals yields;

{u∗Ai }Ni=1 = argmin
u
{
N∑
i=1

η2i : ∀i, yi = f(xi)− ui,

∀i, ui = α0 + ziα+ ηi, f ∈ fDEA, u ∈ RN
+ , α0 ∈ R, α ∈ RR, η ∈ RN} (A.15)

{u∗Mi }Ni=1 = argmin
u
{
N∑
i=1

η2i : ∀i, yi = f(xi) exp(−ui),

∀i, ui = α0 + ziα+ ηi, f ∈ fDEA, u ∈ RN
+ , α0 ∈ R, α ∈ RR, η ∈ RN} (A.16)

where environmental factors zi are assumed to influence output yi through technical inefficiency

ui with constant effects in problem (A.15) and proportional effects in problem (A.16). The

solutions for technical inefficiencies {u∗Ai }Ni=1, {u∗Mi }Ni=1 in problems (A.15), (A.16), generally

differ from those in problems (A.13), (A.14).49

49While any common parametric structure shared across observations is dropped from Afriat inequalities, or the local
contribution of inputs defined relative to all the observed input-output bundles, the solution to non/semi-parametric
frontier f(xi) in (A.12) is altered by the additional, parametric structure α0 + ziα.
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When there is no factors zi but constant α0, problem (A.15) becomes a version of the

corrected convex non-parametric least squares (C2NLS) proposed by Kuosmanen and Johnson

(2008). C2NLS is obtained by estimating problem (A.13) without constraints u ≥ 0 and then

making post-estimation adjustments to both the frontier and technical inefficiency measurements

such that the minimum technical inefficiency is set at zero, or cC2NLS
i = ci + minj{uj} and

uC2NLS
i = ui − minj{uj} ≥ 0. Similarly, constant parameter α0 in problem (A.15) would

nullify the constraint u∗ ≥ 0.50 The use of the post-estimation transfer of some constant from

technical inefficiency to the frontier shows that problem (A.15) and C2NLS are nonparametric

counterparts to the corrected OLS (COLS) (Greene, 1980). Problem (A.15) can be solved by

quadratic programming.

On the other hand, estimating problem (A.16) would be challenging. The nonlinear condi-

tional mean, or Eη[yi|xi, zi] = f(xi) exp(−α0 − ziα) (where Ea[b|c] denotes the expected value

of b with respect to a conditionally on c), is by itself not a problem and can be accommodated

in the methods of moments or maximum likelihood estimation. But, the non-linearity cannot

be readily handled in the quadratic programming used for estimating non-parametric function

f ∈ fDEA. One feasible approach is to estimate problem (A.16) in two stages; technical ineffi-

ciency is obtained in DEA, and then the second stage estimation approximates its relationships

with environmental factors zi. This leads to the two-stage DEA procedure of the form;

{u∗Mi }Ni=1 = argmin
u
{
N∑
i=1

u2i : ∀i, yi = f(xi) exp(−ui), f ∈ fDEA, u ∈ RN
+}

E[u∗Mi |zi] = argmin
α0+ziα

{
N∑
i=1

η2i : ∀i, u∗Mi = α0 + ziα+ ηi, α0 ∈ R, α ∈ RR, η ∈ RN}. (A.17)

The first stage is simply the standard DEA estimation for technical inefficiency, which is legit-

imate even though the solution may slightly differ from the C2NLS-like estimation in problem

(A.16). The second stage is to parametrize the estimated inefficiency for its conditional mean

given environmental factors zi. To make statistical inferences for second-stage parameters α,

bootstrapping techniques can be employed instead of the standard inferences based on limiting

distributions.

On may substitute problem (A.16) with two-stage problem (A.17) under the so-called sepa-

rability assumption that environmental factors zi shift the distribution of technical inefficiency

50Consequently, constant terms {ci}Ni=1, α0 in (A.15) cannot be uniquely identified. Applying the same post-estimation
adjustments as C2NLS to problem (A.15) fixes the minimum level of inefficiency at zero and reduces to the C2NLS
estimator.
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u∗M without affecting frontier fDEA. Denote the separability condition as;

Eu∗M [fDEA|yi,xi] = Eu∗M [fDEA|yi,xi, zi]. (A.18)

At conceptual level, in many situations technological frontier f is not determined by the envi-

ronmental factors z of producer-specific characteristics like age, experience, and idiosyncratic

resource endowments or constraints. Thus, f(x) = f(x|z) even if the underlying DGP has a re-

lationship h(x, y) 6= h(x, y|z). Empirically, however, the assumption may appear contradictory

with the DGP; while observations {(xi, yi, zi)}Ni=1 as a whole are drawn from the conditional

density h(x, y|z), the subset supporting empirical frontier fDEA at the full technical efficiency

are assumed to be drawn independently from z, or h(x, y|z) = h(x, y). Hence, the separability

assumption can be sensible only under certain kinds of DGP.

One situation where a DGP supports separability is that the influence of environmental fac-

tors z in conditional density h(x, y|z) dissipates toward zero as output y approaches to frontier

f(x|z). In the multiplicative model with proportional effects of environmental factors z, or

yi = fDEA(xi) exp(−u∗Mi ), such influences, represented by the second-stage marginal effects of

z on exp(−u∗M), approach zero at frontier yi = fDEA(xi) (i.e. exp(−u∗Mi ) = 1), implying that

the model specification admits separability condition (A.18). Then, given DEA estimates for

multiplicative technical inefficiency θMi ≡ 1/exp(−u∗M) ≥ 1, regressing the log-transformed in-

efficiency estimate ln θMi (≡ u∗M) on z yields a separability-consistent two-stage DEA procedure.

Note that this is purely due to the assumption regarding the functional relationship between the

frontier and technical inefficiency and is not always the case for the two-stage DEA procedure

in general.

Alternatively, the two-stage DEA procedure may be rationalized by the statistical interpre-

tation proposed by Simar and Wilson (2007) and reiterated in Simar and Wilson (2011a). The

authors view the second stage estimation as a part of the underlying DGP for joint distribution

h(x, y,z) that is given as a series of conditional distributions; h(x, y,z) = h(x, y|u, z)h(u|z)h(z).

That is, in a DGP random variables are sequentially drawn; first, environmental factors z ac-

cording to distribution h(z), second, technical inefficiency u according to h(u|z), and finally

input-output decision (x, y) according to h(x, y|u, z).51 In this formulation, conditional distri-

bution h(u|z) corresponds to the second-stage analysis estimating the determinants of technical

inefficiencies.

Since their interpretation casts the two-stage DEA in the reverse order from the sequential

DGP, the authors suggest to correct for the sampling bias of the first-stage DEA estimates by

51Strictly speaking, the authors describe conditional distribution of input-output h(x, y|u,z) with y described by two
parts in polar coordinates. Also, their model is not restricted to the single-output case.
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using the information of the second-stage model. By modifying the notations in (A.7), the

bias-correction proposed in Simar and Wilson (2007) is denoted as;

fCDEA(xi|zi) = fDEA(xi) + ξ̂A(zi), ξ̂
A(zi) ≥ 0,

fCDEA(xi|zi) = fDEA(xi) exp(ξ̂
M(zi)),

ˆξMi (zi) ≥ 0. (A.19)

fCDEA is obtained using bootstrapping from the tentative second-stage model of DEA technical

inefficiency u∗i that accounts for the influences of environmental factors zi.
52 Once adjustments

for the influences of z are made, bias-corrected technology fCDEA deterministically approximates

the true technology f , and re-estimating the second-stage model approximates density h(u|z).

Simar and Wilson (2011b) reiterate the following points53: (a) the conditional distribution

h(u|z) must be modeled by a truncated regression, truncated at the full technical efficiency

level (which excludes fully efficient observations from the second stage analysis), (b) statistical

inferences in the second-stage estimation are made by a certain bootstrapping procedure(s), and

(c) the separability assumption should be tested for its validity (e.g. as described in (Daraio,

Simar, and Wilson, 2010)).

To this date, the statistical interpretation of Simar and Wilson (2007) represents the most

coherent view on the two-stage DEA procedure. As such, it merits noting some observations on

its framework. First, there are some odd aspects to the sequential nature of the assumed DGP

that draws technical inefficiency u prior to input-output decision (x, y). It reflects the view

that there is some pre-existing, absolute measurement in managerial ability that exactly leads

to the corresponding technical inefficiency level. However, in empirical contexts the concept

of technical inefficiency seems to represent more of an ex post (i.e. post-production) relative

evaluation like the residual of a frontier estimation equation (e.g. recall the initial interpretation

in equation (A.4)) than an ex ante absolute-scale factor that dictates input-output decisions. In

addition, the sequential DGP leads to a somewhat circular argument in the proposed procedure

for finite-sample bias correction and re-estimation of parameters.54

52The bias correction utilizes a truncated-regression estimate of α that fits better toward inefficient decisions, compared
to the parameter estimates based on regressing all observations on variables zi in a non-truncated manner. Applying these
parameters to efficient (out of sample) observations allows to predict a smaller technical feasibility on average (of bootstrap
replications). In essence, the gap between the observed and predicted frontiers yields the bias term estimate.

53The authors discuss the separability condition in the examples where functional forms are defined over separate
variables for technical inefficiency u and environmental factor z. Then, they point out that the separability may not hold
unless special cases of DGP. This is somewhat misleading; the frontier obtained by letting u→ 0 can be easily independent
of z when the two are related in the form u(z).

54The authors suggest to use the initial model for the determinants of technical inefficiency h(u|z) to generate pseudo-
observations in the input-output space via bootstrapping, predict the extent of the underestimated technical feasibility
ξ(z) for the first stage, and finally reestimate the second stage equation h(u|z, ξ(z)). While the idea may be sound, for
implementation it is unclear whether this sort of correction should be completed in just a single cycle or continued for
multiple cycles. Without any theoretical fixed points or pre-determined convergence criteria, such a circular argument
leaves an impression that it would be more appropriate to use a simultaneous estimation for joint distribution h(x, y, z)
as in model (A.15).
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Second, with regarding item (a), it is not necessary for the second-stage analysis to be esti-

mated by a truncated regression. In their view, the purpose of the second-stage regression is to

model the DGP of technical inefficiency h(u|z) while maintaining the distributional assumptions

for the separability condition. It is assumed that the conditional distribution h(u|z) is truncated

at the full technical efficiency level. However, such truncation is unnecessary if direct distribu-

tional assumption via MLE is avoided. The truncation may rather create distortions to the

underlying relationships between u and z. More importantly, the MLE of technical inefficiency

h(u, |z) cannot bear the interpretation of DGP under a truncated regression where the range

of random variable u depends on model parameter α. Early models like (A.4) share the same

problem.

Third, with regarding item (c), the apparent need of separability test arises due to the

use of two-stage estimation procedure but only under a certain case of presumed functional

relationships. Under the linear functional relationship with the constant effects of environmental

factors z like model (A.15), one can avoid a two-stage procedure and simply employ a single-step

simultaneous estimation for the frontier and technical inefficiency.

The current study maintains that under certain functional forms like (A.17), the two-stage

DEA procedure can be implemented coherently with the underlying DGP. OLS regression in the

second stage consistently characterizes the underlying relationship between technical inefficiency

u∗i and environmental factors zi, given that u∗i is consistently estimated in the first stage. The

OLS coefficients, however, do not bear the interpretation for causality since some unobserved

characteristic like inherent managerial ability may be systematically correlated with both factors

zi and technical inefficiency u∗i . In certain situations, second-stage model E[u∗|zi] may predict

a more-than-full technical efficiency level if the model is poorly fit. Some may suspect this as

incongruence with the DGP, but this is simply a result of poor parametrization. Also, in the semi-

parametric estimation, the hypotheses regrading the parametric part may be tested using the

model residual. That is, model residual ηi can provide statistical inferences for the parameters α

in the second stage without making inferences for the (exactly-identified) frontier structure fDEA

or individual technical inefficiency u∗i .
55 Bootstrapping method using an empirical distribution

of error term ηi seems most appropriate for such statistical inferences.56

To summarize, a joint model of technological frontier and technical inefficiency requires con-

siderations for a frontier representation, a direction of technical inefficiency measurement, and a

specification for the determinants of inefficiency. Joint estimation equation helps interpret the

55Note that the deviations from the presumed parametric structure allow hypothesis testing on the parameters in the
early deterministic parametric models in (A.4).

56If desired, the probabilistic/stochastic characterization of technical feasibility (A.3) can be adopted in conjunction
with non/semi-parametric model structure (e.g. Fan, Li, and Weersink, 1996; Park, Sickles, and Simar, 1998; Kumbhakar
et al., 2007; Kuosmanen and Kortelainen, 2012), in which different statistical inferences may be devised based on the
distributional properties of the stochastic noise and the model residual.
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underlying relationships among variable as a frontier model with accounting for a heterogeneous

error structure. Single-stage SFA approach can be improved if the additional information on the

error structure helps maintain its distributional assumptions. Similar single-stage DEA-based

approach is feasible for the additive measure of technical inefficiency (with linear, additive ineffi-

ciency shifts by environmental factors). Two-stage DEA approach provides a feasible estimation

method under the multiplicative measure of technical inefficiency (with multiplicative, propor-

tional inefficiency shifts by environmental factors). The statistical concept for the SFA approach

is based on the distributional assumptions of the DGP while that of the DEA-based approach

is based on the sample-level goodness of fit (e.g. least squares) for a given parametric structure

of technical inefficiency.

A.3 Extension to the Model of Technical Change

The intertemporal shifts in a technological frontier and technical efficiency provide the mea-

sures of technical change (TC) and technical efficiency change (TEC) respectively. These shifts

can be directly estimated as a part of the frontier and efficiency parametric structures or indi-

rectly estimated as the summary relationships among the separate time-specific frontiers and as-

sociated technical inefficiencies. The direct approach typically employs Hicks-neutral TC where

intertemporal changes are restricted to a single-dimensional intertemporal shift structure un-

der the time-invariant substitutions of inputs and outputs. On the other hand, the indirect

approach is based on a second-stage statistical analysis on the estimated time-specific frontiers

that summarizes their relationships into mean TC measures. The latter TC measures make use

of more flexible frontier estimations without a priori parametric restrictions of Hicks-neutrality

yet carry the interpretations similar to their Hicks-neutral counterparts. The following discussion

shows that such indirect TC measures are derived in a variant of the two-stage DEA procedure,

which can be regarded as a regression-based Malmquist Productivity Index (MPI) decomposi-

tion. Similar two-stage TC measures can be also derived for parametric frontier models like

SFA.

The family of piecewise linear DEA frontiers (A.12) is now extended as follows. When a

time-specific frontier is constructed from a subsample of observations that are observed in time

period t, the family of possible frontiers for time t = {1, .., T} is given by;57

f
DEA
t = {f : ∀i, f(xit) = cit + xitβit :

∀i, j, cit + xitβit ≤ cjt + xitβjt, c ∈ RN , β ∈ RNL
+ }. (A.20)

57If the frontier parameters for input substitution are time-invariant (i.e. βit = βi), the frontiers in (A.21) reduces to
the set of Hick-neutral frontier specifications.
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Given these time-specific frontiers, consider constructing two types of meta-frontiers; one con-

necting the most productive segments of these frontiers, and the other is the convex combination

of those.58 The former can be non-convex while the latter is always convex. Let fDEAM1 , fDEAM2 be

the set of such potentially-non-convex and convex meta-frontiers where

f
DEA
M1 = {f : f = max

t
ft, ft ∈ fDEAt }

f
DEA
M2 = {f : f =

∑
µtft,

∑
µt = 1, ft ∈ fDEAt , µ ∈ RT}. (A.21)

Now, consider estimations for technical inefficiency measurement u
∗(q)
it for estimation equation

q = {s,M} where equation q = s represents the technical inefficiency evaluation under the

time-specific frontiers fDEAt in (A.20), and equation q = M represents the counterpart under

the meta-frontier fDEAM1 or fDEAM2 in (A.21). Since the latter is a pseudo-technical inefficiency

measurement defined given the former, they are obtained sequentially: first, estimating the

model for time-specific frontier inefficiency {u∗(s)it }it and then meta-frontier inefficiency {u∗(M)
it }it

using those frontier esitmates.

By adding the intertemporal dimension, additive model (A.15) is extended to;

{u∗(s)Ait }it = argmin
u
{
∑
i

∑
t

η2it : ∀i, t, yit = ft(xit)− uit, uit = zitα+ τt + ηit,

∀t, ft ∈ fDEAt , u ∈ RNT
+ , α ∈ RR, τ ∈ RT , η ∈ RNT}. (A.22)

It is desirable to have similar numbers of observations across time periods for comparable mea-

sures of time fixed effects τt (i.e. the magnitude of finite-sampling bias ξit for frontier ft ∈ fDEAt

tends to decrease as the number of observations in period t increases). Similarly, feasible multi-

plicative model (A.17) is extended to;

{u∗(s)Mit }it = argmin
u
{
∑
i

∑
t

u2it :

∀i, t, yit = ft(xit) exp(−uit), ∀t, ft ∈ fDEAt , u ∈ RNT
+ },

E[u
∗(s)M
it |zit, t] = argmin

zitα+τt

{
∑
i

∑
t

η2it :

∀i, t, u∗(s)Mit = zitα+ τt + ηit, α ∈ RR, τ ∈ RT , η ∈ RNT} (A.23)

where the separability assumption requires that each time-specific frontier estimate fDEAt is

independent of environmental factors zit.

Next, consider technical inefficiency measurement under a meta-frontier. By the definition of

58The technology implied under the convex meta-frontier is the free-disposal convex hull of non-dominated decisions
among all observations pooled across producers and time periods.
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meta-frontier in (A.21), one can easily back out its pseudo technical inefficiency measurements

{u∗(M)
it }it. Notationally, let fDEAt (xk; j) = cjt + xkβjt denote the predicted output level for

input xit for the segment around input xk ∈ {xit}Ni=1 of time-t frontier fDEAt . Then, the

pseudo technical inefficiencies for fM ∈ fDEAM1 or fM ∈ fDEAM2 can be backed out in the following

operations;

fM ∈ fDEAM1 : u
∗(M)A
it = max

s,k
{fDEAs (xit; k)} − yit, u∗(M)M

it = ln[max
s,k
{fDEAs (xit; k)}/yit]

fM ∈ fDEAM2 : u
∗(M)A
it = max

k
{
∑

µsf
DEA
s (xit; k)− yit,

∑
s

µs = 1, µ ∈ RT
+},

u
∗(M)M
it = ln[max

k
{
∑

µsf
DEA
s (xit; k),

∑
s

µs = 1, µ ∈ RT
+}/yit]. (A.24)

The second-stage estimation for the determinants of pseudo-technical inefficiency u
∗(M)d
it (e.g.

some productivity measure common to all time periods) defined parallel to (A.22), (A.23) yields;

E[u
∗(M)d
it |zit, t] = argmin

zitα+τt

, {
∑
i

∑
t

η2it :

∀i, t, u∗(M)A
it = zitα+ τt + ηit, α ∈ RR, τ ∈ RT , η ∈ RNT} (A.25)

where direction d ∈ {A,M} denotes additive or multiplicative technical inefficiency specification.

Finally, regression-based, sample-average MPI and its decomposition are defined using the

two sets of parameterizations for technical inefficiency in (A.23) (or (A.22)) and pseudo-technical

inefficiency in (A.25). Let τ qt for equation q ∈ {s,M} denote the parameters for the time-specific

fixed effect in technical inefficiency that are obtained in problems (A.23) (or (A.22)), (A.25)

respectively. In addition, let τM−st = τMt − τ st denote the difference in τ qt across these estimation

equations. Then, the mean MPI, TEC, and TC for two time periods t0, t1 are defined as

(without natural logarithm for additive measures);

lnMPIt1,t0 = τMt1 − τMt0

lnTECt1,t0 = τ st1 − τ st0

lnTCt1,t0 = τM−st1 − τM−st0 . (A.26)

Using coefficients τ ’s from multiplicative model (A.23) (or additive model (A.22)) provides the

mean multiplicative (or additive) shifts of productivity, technical inefficiency, and technological

frontier between two periods.

With a modification to equations (A.26), one can define the measures of mean MPI, TEC,

and TC that are purged from the influences of time-specific shocks W t. For example, using OLS

residual τ̃ q, q ∈ {M, s,M − s} can net out the influences of W t for mean MPI, TEC, and TC
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measures in equations (A.26) where

τ qt = W tγ
q + τ̃ qt . (A.27)

The associated interpretation is that ex post technological frontiers ft(xit,yit|W t) given realiza-

tionW t are collectively related to the ex ante meta-frontier ft(xit,yit) = maxW t ft(xit,yit|W t).
59

Time-specific factors W t may include weather conditions, market shocks, supply disruptions,

or other events that fall outside the individual producer’s control and potentially affect both

technological frontier and technical inefficiency.

For parametric frontier models like SFA, the measure of TC can be directly estimated under

Hicks-neutrality. For notational simplicity, let us focus on the more common, multiplicative

technical inefficiency model in equation (A.9). A joint estimation for a time-invariant frontier

with augmenting intertemporal shift function τ f (t) and some technical inefficiency structure

(with its intertemporal shift function τu(t)) can be written as;

yit = fSFA(xit,W t; β̄, τ
f (t)) exp(−uit + vit) = 0, uit = u(zit,W t;α, τ

u(t)) + ηit ≥ 0. (A.28)

Replacing time-invariant frontier parameters β̄ with time-variant counterparts , ∀t, βt = β̄+ β̃t

allows a test of Hicks-neutral TC with the null hypothesis of parameter restrictions H0 : β̃t = 0.

When the hypothesis is rejected, the researcher may employ indirect mean TC measures

(along with mean MPI and TEC measures) similarly to the non/semi-parametric counterparts

above. For example, a joint estimation for time-specific frontiers (with separate coefficients βt,

∀t) and a linear technical inefficiency structure with time fixed effects τ st and the marginal effects

of environmental variables α is given by;

yit = fSFA(xit;βt) exp(−usit + vsit) = 0, usit = zitα
s + τ st + ηsit ≥ 0. (A.29)

When the meta-frontier is defined as a union of these time-specific frontiers (i.e. fSFA(xit;βM) =

∪sfSFA(xit;βs)), the composite error of pseudo-technical inefficiency uMit and stochastic noise

vMit against the meta-frontier can be backed out by;

uMit − vMit = ln[max
s
{fSFA(xit;βs)}/yit] (A.30)

where uMit and vMit can be only jointly obtained. This allows to define (composite) local frontier

59Though the terms “ex ante” and “ex post” are used, for simplicity the current paper abstracts away from modeling
decisions under uncertainty in the sense that production process does not allow the producer to prepare for the contingent
states of nature. That is, uncertain event realizations are regarded exogenous to producer decisions.
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gap uM−sit − vM−sit ;

uM−sit − vM−sit ≡ uMit − vMit − (usit − vsit) = ln[fSFA(xit;βM)/fSFA(xit;βt)]. (A.31)

Then, one can parameterize the structures of the meta-frontier composite error uMit − vMit and/or

the composite frontier gap uM−sit − vM−sit . For example, using the OLS regression on the frontier

gaps and backing out the parametric structure for the meat-frontier error yields;

uM−sit − vM−sit = ziα
M−s + τM−st + ηM−sit

τM ≡ τM−s + τ s, αM ≡ αM−s + αs. (A.32)

The estimates for τM , τ s, and τM−s can be then differenced as in equations (A.26) to define

the mean MPI, TEC, and TC measures. Additionally, these coefficients may be purged for the

time-specific shocks W t in a simple method like equation (A.27). Note that statistical concepts

for α’s and τ ’s are based on the goodness of fit (with inferences obtained by some bootstrap

method) as opposed to a part of the direct statistical model for the DGP.60 Unlike the two-stage

DEA procedure, the separability condition is not needed in this case since the frontier estimation

in equation (A.29) jointly accounts for the structure of technical inefficiency.

60If desired, one can measure mean TC using hypothetical observations for pseudo-composite error us
itk − vsitk under

different time-specific frontiers fSFA(x;βk), k = 1, .., T can be obtained as

us
itk − vsitk ≡ ln fSFA(xit;βk).
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B Extensions to Meta- and Group-Specific Technologies (and Scale

Efficiency)

The section extends the previous concepts of between- and within-subsample technical effi-

ciency comparisons to the situation where subsamples can be constructed with two dimensions

of production contexts. Specifically, building on the context of MPI and its decomposition, sub-

samples in below are defined over given categorical groups and time periods. Thus, technical

efficiency comparisons are extended to those for within-group/group-specific MPI and its de-

compositions and those for between-group counterparts. The main advantage of the regression

approach is that it simplifies the measurements of such distances while keeping its concepts

consistent with the existing methodology.

Notationally, suppose that observations can be partitioned by group variable g ∈ G =

{1, .., G} (e.g. geographical region) and time period t ∈ T = {1, .., T}. Let subsample s(.) be the

mapping of the two variables g, t into the index of mutually exclusive subsamples that represent

all (existing) combinations of group g and time t. Accordingly, let the index of observations

i(g, t) reflect such partitioning into subsamples, so that subsample-specific frontiers are defined

as described in the previous section.61 Similarly, let the meta-technology be defined as the union

of such subsample-specific technologies, or F = ∪s(g,t)F (s(g, t)). Following the conventional

terminologies in the literature, consider the meta-frontier-level productivity change (meta-fronter

MPI: “MMPI”) and its decomposition into TEC (“MTEC”) and TC (“MTC”) and the group-

level, group-specific MPI (“GMPIg”) and its decompositions into TECg and TCg for each group

g. The relationship between MMPI and GMPIg can be described with pure technological catch-

up (PTCUg) and frontier catch-up (FCUg) (Chen and Yang, 2011); for each g ∈ {1, .., G}62

GMPIgt0,t1 = TECg
t0,t1 · TC

g
t0,t1

MMPIgt0,t1 = MTECg
t0,t1 ·MTCg

t0,t1 = GMPIgt0,t1 · PTCU
g
t0,t1 · FCU

g
t0,t1

where TECg
t0,t1 = φ̂(xt1,yt1; s(g, t1))/φ̂(xt0,yt0; s(g, t0))

TCg
t0,t1 =

(
φ̂(xt0,yt0; s(g, t0))

φ̂(xt1,yt1; s(g, t1))

φ̂(xt1,yt1; s(g, t0))

φ̂(xt0,yt0; s(g, t1))

)1/2

PTCU g
t0,t1 = TGR(xt1,yt1; s(g, t1))/TGR(xt0,yt0; s(g, t0))

FCU g
t0,t1 =

(
TGR(xt0,yt0; s(g, t0))

TGR(xt1,yt1; s(g, t1))

TGR(xt1,yt1; s(g, t0))

TGR(xt0,yt0; s(g, t1))

)1/2

=
MTCt0,t1
TCg

t0,t1

(B.1)

61For example, let i(g, t) be an index for observation i with ti = t, gi = g and I(g, t) = {I|gi = k, gi = t} the subset of
index set containing Ngt observations of i(g, t)’s for group g and time t (with

∑
gtNgt = N).

62The current definition of meta-frontier differs from that of Chen and Yang (2011), who consider the meta-frontiers
across groups at different time periods.
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with MTC, MTEC defined equivalently as TC and TEC in (6) respectively. Thus, conceptually

PTCUg is the intertemporal change in TGR , or the catch-up of the group-specific frontier to

the meta-frontier while FCUg is the relative technical changes between the meta-frontier and

group-specific frontier. All of these components of productivity change are calculated on a pair-

of-points basis, for instance, at two particular points (xt0,yt0), (xt1,yt1) as discussed in the

previous section.

Now, consider a regression-based secondary analysis on efficiencies that sorts out such de-

compositions for the pooled observations across groups. In particular, the specification parallel

to (11) is given by;

ln φ̂(xit,yit;GT) =
G∑
g=1

T∑
k=1

(
τMg,k1it(git = g)1t(t = k)

)
+ zit α

M + εMit ,

ln φ̂(xit,yit; s(g, t)) =
G∑
g=1

T∑
k=1

(
τ sg,k1it(git = g)1t(t = k)

)
+ zit α

s + εsit

ln φ̂(xit,yit;GT)/φ̂(xit,yit; s(g, t) =
G∑
g=1

T∑
k=1

(
τM−sg,k 1it(git = g)1t(t = k)

)
+ zit α

M−s + εM−sit ,

∀g = 1, .., G, t = 1, .., T, τM−sg,t = τMg,t − τ sg,t, αM−s = αM −αs, εM−sit = εMit − εsit
(B.2)

where group git ∈ {1, .., G} is the group index for each observation it. For g-th group in

time t, parameters τMg,t , τ
s
g,t capture the mean technical efficiencies at the meta-level and within-

subsample level respectively, and parameter τM−sg,t measures the mean frontier gap between the

meta-frontier and subsample-specific frontier. Those coefficients define the regression-average

decomposition of MMPI in (B.1); for a given group g and two time periods {t0, t1}

lnE[MTECg
t0,t1] ≡ τMg,t1 − τMg,t0

lnE[MTCg
t0,t1] ≡ 0

lnE[TECg
t0,t1] ≡ τ sg,t1 − τ sg,t0

lnE[TCg
t0,t1] ≡ τM−sg,t1 − τM−sg,t0 = lnE[PTCU g

t0,t1] = − lnE[FCU g
t0,t1]. (B.3)

The second line says that the meta-frontier does not vary over time in our application simply by

its definition, and the definitions and interpretations of MTECg, TECg, and TCg are parallel to

those in (10). Since the meta-frontier is constant across time periods, PTCU g and −FCU g sim-

ply coincide with TCg. With the definitions in (B.3), the decomposition of MMPI is consistent
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with (B.1) in the following sense;

lnE[MMPIgt0,t1] = lnE[MTCg
t0,t1] + lnE[MTECg

t0,t1] = τMg,t1 − τMg,t0

= lnE[TECg
t0,t1] + lnE[TCg

t0,t1] + lnE[PTCU g
t0,t1] + lnE[FCU g

t0,t1]. (B.4)

Finally, if desired, additional layer of decomposition may be added regarding the assumed

returns to scale (RTS) structure of the estimated frontier. In DEA, the priori assumption on RTS

yields different frontier approximations. In particular, the ratio of the two technical efficiency

scores estimated under CRS and VRS frontiers is often referred to scale efficiency (SE). Under

the assumption that the CRS frontier is constructed based on the most efficient scale (MES) of

operation, a technically-efficient decision under the VRS frontier can be regarded scale-inefficient

by the inefficient choice of operation scale other than the MES. When this layer of decomposition

for scale efficiency is added to the previous model, all the components of (B.1) are calculated

separately under VRS and CRS, and new components regarding scale efficiency change (SEC) are

introduced to explain the gaps between the technologies under the CRS and VRS assumptions.63

Correspondingly, a part of (B.1) is now rewritten as;

GMPIg,Ct0,t1 = TECg,V
t0,t1 · TC

g,V
t0,t1 · SEC

g
t0,t1

MMPICt0,t1 = MTECV
t0,t1 ·MTCV

t0,t1 ·MSECt0,t1

= GMPIg,Ct0,t1 · PTCU
g,V
t0,t1 · FCU

g,V
t0,t1 ·MSECt0,t1/SEC

g
t0,t1

SECg
t0,t1 =

(
SE(xt1,yt1; s(g, t0))

SE(xt0,yt0; s(g, t0))

SE(xt1,yt1; s(g, t1))

SE(xt0,yt0; s(g, t1))

)1/2

MSECt0,t1 =

(
SE(xt1,yt1; s(g, t0))

SE(xt0,yt0; s(g, t0))

SE(xt1,yt1; s(g, t1))

SE(xt0,yt0; s(g, t1))

)1/2

where SE(xt,yt; s(g, t
′)) = φ̂CRS(xt,yt; s(g, t

′))/φ̂V RS(xt,yt; s(g, t
′)) ∈ (0, 1], (B.5)

for which superscripts C, V denote CRS and VRS assumptions on the technology, and scale

efficiency (SE) takes the ratio of the efficiency under CRS technology to the efficiency under

VRS.

The assumption on returns to scale (RTS) wraps the whole model of meta-technology F in

(2) (and subsample-specific technologies in (1)) in the sense that F V RS ⊂ FCRS.64 This reflects

the fact that efficiency measurements, including those against meta-technologies, are calculated

by taking scale-environment RTS ∈ {V RS,CRS} as given. Statistical estimations like (11)

can be carried out either pooled or separately for each scale-environment, depending on the

assumptions on statistical errors. Finally, all the regression-average decompositions like (B.3)

63Fare et al. (1994) have integrated the concept of SEC in the MPI decomposition.
64If NIRS is added, FV RS ⊂ FNIRS ⊂ FCRS .
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are calculated from efficiency measurements under VRS except for new SEC components given

by;

lnE[MSECg
t0,t1] = (τM,C

g,t1 − τ
M,C
g,t0 )− (τM,V

g,t1 − τ
M,V
g,t0 )

lnE[SECg
t0,t1] = (τ g,Cg,t1 − τ

g,C
g,t0)− (τ g,Vg,t1 − τ

g,V
g,t0) (B.6)

where C, V in the superscripts denote CRS and VRS for the assumed RTS structure. Thus,

SEC is obtained as the difference in mean-level efficiencies across time in the difference between

the two scale assumptions, resembling a difference-in-differences estimator.
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C Alternative Input-Output Specifications

Estimations are replicated for the following alternative specifications of outputs and reference

technologies

� A. Output: Milk (cwt), Reference: obs. in concurrent years

� B. Output: Output equivalent, Reference: obs. in all previous and concurrent years

� C. Output: Output equivalent, Reference: obs. in concurrent years

� (Base model: Milk (cwt), Reference: obs. in all previous and concurrent years )

where output equivalent is the gross income deflated by the price indices weighted for its com-

ponents at the observation level. Summary statistics and estimation results are presented in

below. More details on the results in these specifications are available upon request.
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Table C.1: Summary of DEA Efficiency and TGR Scores

Summary Statistics

RTS Subsample Min 25th Median Mean 75th Max

A. Milk, Concurrent Reference Frontiers
a. Efficiency at year-specific frontiers
(1) NIRS Confinement 0.489 0.840 0.930 0.909 1.000 1.000
(2) NIRS Grazers 0.419 0.815 0.973 0.900 1.000 1.000
(3) CRS Confinement 0.489 0.832 0.918 0.903 1.000 1.000
(4) CRS Grazers 0.419 0.789 0.936 0.881 1.000 1.000

b. TGR using meta-frontiers
(5) NIRS Confinement 0.724 0.895 0.934 0.927 0.967 1.000
(6) NIRS Grazers 0.579 0.858 0.907 0.899 0.964 1.000
(7) CRS Confinement 0.692 0.887 0.920 0.919 0.957 1.000
(8) CRS Grazers 0.579 0.863 0.922 0.909 0.975 1.000

B. Output Equiv., Cumulative Reference Frontiers
a. Efficiency at year-specific frontiers
(1) NIRS Confinement 0.511 0.794 0.866 0.866 0.960 1.000
(2) NIRS Grazers 0.538 0.764 0.887 0.863 1.000 1.000
(3) CRS Confinement 0.511 0.785 0.863 0.863 0.956 1.000
(4) CRS Grazers 0.475 0.750 0.868 0.847 0.990 1.000

b. TGR using meta-frontiers
(5) NIRS Confinement 0.642 0.816 0.928 0.902 0.985 1.000
(6) NIRS Grazers 0.564 0.728 0.810 0.820 0.928 1.000
(7) CRS Confinement 0.633 0.821 0.920 0.897 0.980 1.000
(8) CRS Grazers 0.554 0.705 0.806 0.816 0.922 1.000

C. Output Equiv., Concurrent Reference Frontiers
a. Efficiency at year-specific frontiers
(1) NIRS Confinement 0.532 0.842 0.923 0.906 1.000 1.000
(2) NIRS Grazers 0.561 0.865 1.000 0.927 1.000 1.000
(3) CRS Confinement 0.532 0.839 0.918 0.904 1.000 1.000
(4) CRS Grazers 0.475 0.840 1.000 0.914 1.000 1.000

b. TGR using meta-frontiers
(5) NIRS Confinement 0.643 0.806 0.895 0.878 0.948 1.000
(6) NIRS Grazers 0.542 0.672 0.742 0.768 0.830 1.000
(7) CRS Confinement 0.649 0.799 0.884 0.869 0.940 1.000
(8) CRS Grazers 0.527 0.662 0.738 0.762 0.829 1.000
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Table C.3: Summaries of TEC, TC Estimates

Confinement Grazers

Output, Ref. Specification Efficiency Frontier Efficiency Frontier

I. Without Controlling for Time-specific Variables
A. Milk, Concurrent Reference Frontiers

1995-1999 0.979 1.100 0.994 1.134
2005-2009 0.950 1.291 0.925 1.198
Difference: TC, TEC -0.029 0.191 -0.069 0.064

B. Output Equiv., Cumulative Reference Frontiers
1995-1999 0.975 1.086 0.956 1.137
2005-2009 0.905 1.490 0.882 1.489
Difference: TC, TEC -0.070 0.404 -0.074 0.352

C. Output Equiv., Concurrent Reference Frontiers
1995-1999 1.012 1.045 1.000 1.059
2005-2009 0.965 1.378 0.942 1.354
Differencz: TC, TEC -0.047 0.333 -0.058 0.295

II. With Controlling for Time-specific Variables
A. Milk, Concurrent Reference Frontiers

1995-1999 0.978 1.084 0.99 1.042
2005-2009 0.961 1.193 0.939 1.116
Difference: TC, TEC -0.017 0.109 -0.051 0.074

B. Output Equiv., Cumulative Reference Frontiers
1995-1999 0.958 1.081 0.962 1.106
2005-2009 0.924 1.199 0.948 1.221
Difference: TC, TEC -0.034 0.118 -0.014 0.115

C. Output Equiv., Concurrent Reference Frontiers
1995-1999 0.993 1.092 1.001 1.043
2005-2009 0.974 1.260 0.986 1.198
Difference: TC, TEC -0.019 0.168 -0.015 0.155

1. The first and last 5-year averages of estimated coefficients are reported as summary
measures of TEC and TC during 1995-2009. Efficiency-based technical efficiency
change (E.TEC) and frontier-based technical change (F.TC) calculations are shown.
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Table C.4: Marginal Effects of Producer-Specific Characteristics

Confinement Grazers

M.E. M.E.

A. Milk, Concurrent Reference Frontiers
Equation s
1(Farm ownership) 4.25 (1.15, 7.02) ** 7.42 (0.01, 13.62) **
1(Off-farm income) -6.45 (-11.55, -1.13) ** -6.40 (-13.79, 0.17) *

Equation M- s
1(Farm ownership) 1.10 (-0.04, 2.15) * 2.02 (-1.58, 5.12)
1(Off-farm income) 0.04 (-1.91, 1.80) 0.99 (-1.87, 4.49)

B. Output Equiv., Cumulative Reference Frontiers
Equation s
1(Farm ownership) 3.55 (-0.03, 7.27) * 8.13 (0.50, 15.17) **
1(Off-farm income) -4.79 (-10.66, 1.18) * -11.22 (-20.05, -3.08) ***

Equation M-s
1(Farm ownership) 0.32 (-0.76, 1.52) -0.89 (-5.40, 2.55)
1(Off-farm income) 1.62 (-0.18, 3.37) * -10.43 (-14.59, -6.17) ***

C. Output Equiv., Concurrent Reference Frontiers
Equation s
1(Farm ownership) 2.54 (-0.71, 6.10) 4.62 (-2.54, 11.53)
1(Off-farm income) -4.64 (-10.37, 1.31) -10.52 (-17.55, -1.82) **

Equation M- s
1(Farm ownership) 1.10 (-0.36, 2.34) 1.99 (-1.94, 5.88)
1(Off-farm income) 1.30 (-1.06, 3.67) -10.76 (-15.64, -5.96) ***

1. Statistical significance, based on 400 bootstraps applied to the empirical distribution of the error
term in the second-stage regression: *** α = 0.01, ** α = 0.05, * α = 0.1.

2. NIRS is assumed.

3. Producer-specific indicators for farm ownership and off-farm income have the means of 0.77 and
0.07 respectively among confinement and 0.71 and 0.21 among grazers.
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Table C.5: Marginal Effects of Time-Specific Characteristics

Confinement Grazers

S.D.*M.E. (Percentage Points) S.D.*M.E. (Percentage Points)
Variables Point Est. 95% CI S.Sig. Point Est. 95% CI S.Sig.

A. Milk, Concurrent Reference Frontiers
Equation M- s (Frontier-based)

Rainfall winter -2.47 (-3.11, -1.75) *** -1.86 (-2.74, -0.79) ***
Rainfall spring 0.65 (-0.22, 1.42) 0.32 (-1.07, 1.60)
Rainfall summer 4.76 (3.75, 5.84) *** -1.30 (-2.76, 0.50)
Rainfall autumn 2.95 (2.28, 3.55) *** 0.46 (-0.38, 1.34)
Temp. winter 5.99 (4.91, 7.05) *** 1.16 (-0.24, 2.68) *
Temp. spring 2.44 (1.78, 3.09) *** -0.45 (-1.44, 0.46)
Temp. summer -6.50 (-7.60, -5.38) *** -6.11 (-7.82, -4.49) ***
Temp. autumn 5.59 (4.89, 6.26) *** 0.26 (-0.58, 1.32)

B. Output Equiv., Cumulative Reference Frontiers
Equation M- s (Frontier-based)

Rainfall winter -5.62 (-6.34, -4.98) *** -6.43 (-7.40, -5.48) ***
Rainfall spring 3.13 (2.29, 4.16) *** 5.46 (4.15, 6.91) ***
Rainfall summer 4.58 (3.51, 5.63) *** -0.56 (-1.95, 0.93)
Rainfall autumn 4.16 (3.57, 4.80) *** 6.03 (5.16, 6.83) ***
Temp. winter 3.24 (2.14, 4.50) *** 1.41 (-0.10, 2.91) *
Temp. spring 3.08 (2.31, 3.91) *** 1.43 (0.42, 2.46) **
Temp. summer -6.23 (-7.47, -4.94) *** -8.87 (-10.40, -7.10) ***
Temp. autumn 8.25 (7.55, 8.95) *** 6.33 (5.32, 7.19) ***

C. Output Equiv., Concurrent Reference Frontiers
Equation M- s (Frontier-based)

Rainfall winter -5.17 (-5.82, -4.47) *** -7.19 (-8.11, -6.37) ***
Rainfall spring 3.27 (2.29, 4.19) *** 6.00 (5.04, 7.09) ***
Rainfall summer 7.75 (6.52, 8.92) *** 2.31 (1.09, 3.87) ***
Rainfall autumn 4.17 (3.53, 4.78) *** 6.25 (5.52, 7.10) ***
Temp. winter 6.97 (5.80, 8.05) *** 4.87 (3.70, 6.32) ***
Temp. spring 2.72 (2.02, 3.40) *** 0.49 (-0.31, 1.34)
Temp. summer -4.96 (-6.13, -3.80) *** -9.10 (-10.81, -7.69) ***
Temp. autumn 6.72 (6.01, 7.49) *** 2.96 (2.18, 3.85) ***

1. Statistical significance, based on 400 bootstraps applied to the empirical distribution of the year-specific error
term in the second-stage regression: *** α = 0.01, ** α = 0.05, * α = 0.1.

2. NIRS is assumed.

3. Marginal effects are shown for the unit change of each variable by one standard deviation. Estimates for the
constant term are omitted from this table.

4. Time-specific weather variables of annual rainfall (inches) and seasonal temperatures (Degrees Fahrenheit) for
winter, spring, summer, and autumn have the means (s.d.) of 44.3 (8.8), 36.3 (2.6), 54.0 (1.7), 75.2 (1.6), and
57.3 (1.4) during 1995-2009 respectively.
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Table C.6: Truncated Regressions for Specification A: Milk, Concurrent Reference Frontiers

Confinement Grazers

Estimated Coefficients Estimated Coefficients
Variables Point Est. 95% CI S.Sig. Point Est. 95% CI S.Sig.

Intercept -0.771 (-3.760, 2.180) -8.036 (-21.620, 10.340)
1(Farm ownership) 0.091 (0.020, 0.160) *** 0.334 (0.110, 0.580) **
1(Off-farm Income) -0.070 (-0.170, 0.020) -0.126 (-0.430, 0.090)
Year 0.018 (-0.010, 0.050) -0.098 (-0.250, 0.090)
Year Squared 0.000 (0.000, 0.000) 0.003 (-0.010, 0.010)
Rainfall winter -0.005 (-0.020, 0.010) 0.015 (-0.040, 0.060)
Rainfall spring 0.002 (-0.010, 0.020) -0.009 (-0.070, 0.050)
Rainfall summer 0.000 (-0.020, 0.020) 0.068 (0.000, 0.140) *
Rainfall autumn -0.001 (-0.010, 0.010) -0.019 (-0.050, 0.020)
Temp. winter 0.005 (-0.020, 0.030) 0.036 (-0.070, 0.140)
Temp. spring -0.001 (-0.020, 0.020) 0.061 (-0.050, 0.140)
Temp. summer -0.001 (-0.040, 0.040) 0.017 (-0.160, 0.170)
Temp. autumn -0.011 (-0.040, 0.020) 0.016 (-0.090, 0.120)

1. Statistical significance, based on 400 bootstraps applied to the assumed truncated normal distribution in the
second-stage regression: *** α = 0.01, ** α = 0.05, * α = 0.1.

2. It follows Simar and Wilson (2007)’s truncated normal regression on technical inefficiency (without log-
transformation) with bias-corrections.

3. NIRS is assumed.
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