Comparison of Production Risks in State-Contingent Framework:
Application to Balanced Panel Data Set

Kota Minegishi
University of Maryland, College Park

Selected Poster prepared for presentation at the Agricultural & Applied Economics
Associations 2013 AAEA & CAES Joint Annual Meeting, Washington D.C.,
August 4-6, 2013
Introduction

In the absence of complete insurance markets, producers bear risks under uncertainty. The extent of optimal production risks depends on the production technology, nature of state contingency, and producer’s attitudes toward risks. In economic theory, the state-contingent (SC) framework is a representation of uncertainty that allows a general treatment of production decisions under uncertainty through the interactions between feasible production set and risk preferences of the producer (Chambers and Quiggin, 2000). This study develops an empirical methodology to adopt this general framework for analyzing production risks from balanced panel data on production decisions. The current application compares the stochastic technologies of confinement and grazing dairy systems in Maryland.

Uncertainty Representations: SC v.s. OS Frameworks

A). State-Contingent (SC) Framework
- States of nature $\Omega = \{1, \ldots, S\}$ with state probabilities $\{\pi_1, \ldots, \pi_S\}$
- Portfolio of state-contingent incomes $y \in \mathbb{R}^S$ chosen by a producer,
 $$\max \{W(y) : y = r - C(r)\Omega\}$$
 for risk preferences $W : \mathbb{R}^S \rightarrow \mathbb{R}$ and cost function $C : \mathbb{R}^S \rightarrow \mathbb{R}$
- Optimal Portfolio Choice (Pictured)
 - Indifference Curve $W(f - C(r))$
 - Iso-cost SC Revenue Feasibility $R(C) = \{r' \in \mathbb{R}^S : C(r') \leq C\}$
 - Optimal SC revenues: r^*
 - Risk-neutral probability (shadow values of states): π^*

B). Outcome-State (OS) Framework
- States defined by the distribution of potential outcomes $y \in \mathbb{R}^S$
- Portfolio of state-contingent incomes $y \in \mathbb{R}^S$ given to a producer
- Special case of SC framework under no technological substitutability

Empirical Setup for SC Framework

Goal
- Comparing riskiness of two or more stochastic technologies

Empirical Difficulties
- Defining empirical states of nature
- Handling unobserved/omitted states of nature

Proposed DEA-like Nonparametric Technology Estimation
- Consistent estimation under omitted states
- Efficiency measured in the direction of observed states

Key Assumptions on Balanced Panel Data
- Stationarity of state contingency, technology, risk preferences
 - Identical optimal decisions on SC portfolios across time periods
- Cross-sectionally identical state realizations
 - e.g. Market and weather shocks shared across producers
 which allow us to:
 - View panel data on ex post outcomes as cross-sectional ex ante SC portfolios
 - Estimate technical feasibilities of SC portfolios
 - Simulate optimal production risks under assumed risk structures

Value-added Input-Output Specification
- Modeling for the feasibility of SC portfolios $Y(x^i, \Omega) \subset \mathbb{R}^S$ for given short-term fixed inputs x^i
- No direct modeling for SC revenues and short-term variable inputs

Data

Schedule F farm tax form, with additional variables

<table>
<thead>
<tr>
<th>Sample Means in 2006-2009 Balanced Panel</th>
<th>Profit ($1k) Milk (1k cwt)</th>
<th>M.Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>55.0</td>
<td>49.8</td>
</tr>
<tr>
<td>2007</td>
<td>108.0</td>
<td>65.9</td>
</tr>
<tr>
<td>2008</td>
<td>84.2</td>
<td>66.7</td>
</tr>
<tr>
<td>2009</td>
<td>32.8</td>
<td>52.2</td>
</tr>
<tr>
<td>Avg.</td>
<td>70.0</td>
<td>58.7</td>
</tr>
</tbody>
</table>

Value-added State-Contingent Technology Estimation

DEA-like Technical Feasibility for multi-output, multi-input technologies
- $\mathbb{E}_{i=1}^{N} \text{“states”} \text{corresponding to years 2006-2009}$
- $y_{i,s}$: profit for farm $i = 1, \ldots, N$, year/state $s = 1, \ldots, T$
- x^i: fixed inputs (i.e. cow, acre), constant returns to scale
- $\pi^\prime(y_x, \mathbb{E}_{i=1}^{N}) = \{y_r \in \mathbb{R} : \sum x_y \leq x^i_s, \forall y_\mathbb{E}_{i=1}^{N} \geq y_x' = \lambda \in \mathbb{R}^T\}$

SC technical efficiency estimates
- $\text{Conf.}: \text{mean 0.714 (s.d. 0.342)}, \text{Graz.}: \text{mean 0.937 (s.d. 0.208)}$

Optimal Risks 1: Maxmin & Risk Neutral Preferences

Maximin: the most risk-averse
- Risk neutral: the least risk-averse

Simulated Optimal Profit Levels ($1k$)

<table>
<thead>
<tr>
<th>Inputs (100-cow)</th>
<th>Risk-Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confinement (1) 100-are 36 57 57 57</td>
<td>Maxmin P-1 P-2 P-3 P-4</td>
</tr>
<tr>
<td>(2) 200-are 59 104 90 90</td>
<td></td>
</tr>
<tr>
<td>(3) 300-are 62 109 90 90</td>
<td></td>
</tr>
<tr>
<td>Grazers (4) 100-are 45 51 49 52 52</td>
<td></td>
</tr>
<tr>
<td>(5) 200-are 88 97 93 99 99</td>
<td></td>
</tr>
<tr>
<td>(6) 300-are 88 97 93 99 99</td>
<td></td>
</tr>
</tbody>
</table>

States (years) labeled as “good” or “bad” state
- Based on milk and feed price fluctuations
- $\text{Good (2007, 2008), Bad (2006, 2009)}$

Optimal Risks 2: Linear Mean-MAD Preferences

Risk-averse utility structure based on mean and riskiness components
- $\text{mean (})\mu$, mean absolute deviation (MAD: ϕ) of profits ($1k$)
- Linear case under $\mu - k\phi$ for some constant k

<table>
<thead>
<tr>
<th>Optimal decisions at fixed inputs of 100-cow, 200-are</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
</tr>
<tr>
<td>$\mu - k\phi$</td>
</tr>
</tbody>
</table>

State: significance between confinement and grazing operations: $* \alpha = 0.01, \text{**} \alpha = 0.05$

Conclusions

- Production risks can be analyzed in SC framework with panel data
- SC and OS frameworks can lead to different implications
- MD dairy producers attain similar utility levels between confinement and grazing systems while optimal portfolios and associated riskiness may differ across these systems