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Abstract

The increasing mean wage-interest ratio and decreasing mean capital-labor ra-
tio observed in some Chinese manufacturing industries suggest that technological
change is factor-biased. In order to study the nature of technological change and its
contribution to economic growth, this paper builds and estimates a structural model
of firms’ production decisions with biased technological change. This model allows
me to identify and estimate the firm-time-specific factor-biased technology using
micro data. The basic idea of the estimation is that the choice of inputs contains
information about the unobserved productivities; therefore we can invert the inputs
demand function to recover the unobserved productivities. I estimate the model
from a firm-level data set of four Chinese Manufacturing industries. The empiri-
cal results provide firm-level evidence of biased technological change over time and
biased technological dispersion across firms. The estimation results show that tech-
nological change contributes to the growth of gross output by 1.81%-3.10% annually
and value added by 12.67%-21.16%, which is higher than the combined contribution
of capital and labor. Capital efficiency grows much faster than labor efficiency in
China, and the contribution of technological change to economic growth is mainly
due to the change of capital efficiency. The results also show that large firms have
a higher capital-labor efficiency ratio and that biased technological dispersion ex-
plains a large part of the dispersion of capital-labor ratio across firms.
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1 Introduction

During the last three decades, China maintained a high economic growth rate of over 8%

per year (IMF, 2011), much higher than that in peer countries during the same period.

One important question for China is: is this growth sustainable? If the growth is mainly

driven by the increased inputs (especially labor), then the economic growth will stop when

the inputs bonuses are exhausted. If the growth is mainly driven by technological change,

the economic growth is sustainable. So it is very important to identify the sources of

growth in China.1

Starting in 1999, Chinese government issued a technology-promoting policy to encour-

age firms to replace their aged technologies with new ones, through tax credits, loans and

land rationing. This policy could potentially speed up the adoption of new technology

by firms, meaning that technological change could be an important source of econom-

ic growth in China in 2000s. One goal of this paper is to evaluate the contribution of

technological change to economic growth after the implementation of this policy.

In the mean time, firm-level data from Chinese manufacturing industries shows that in

some industries the average wage-interest ratio increased sharply but the average capital-

labor ratio decreased significantly, from 2000 to 2007. This suggests that a capital-saving

technological change was ongoing in these industries during this period. In this circum-

stance, the model of Hicks neutral technology advancement misspecified the technology

pattern in China and is likely to produce erroneous results regarding the contribution of

technological change to economic growth. In this paper I introduce a factor-biased tech-

nology measure, which allows capital efficiency and labor efficiency to growth separately.

This generalized framework also allows us to study how much the advancement of capital

efficiency and labor efficiency, separately, contribute to the economic growth. The answer

to these questions will provide some basis for growth policy.

This paper develops a new method to identify and estimate a firm-level multidimen-

sional productivity measure with factor-biased technology using input-output data. This

productivity measure accounts for separate capital-augmenting and labor-augmenting ef-

ficiency. The estimation is directly based on economic theory. The basic idea of the

estimation is that the choice of (static) inputs contains information about unobserved

1Some literature documented that before 2000, input growth was the major sources of economic growth
in China (Hu and Zheng, 2006; Easterly and Levine, 2001) under Hicks-Neutral technology assumption.
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capital efficiency and labor efficiency. I thus can invert the input demand function to

recover the unobserved capital efficiency and labor efficiency. I then substitute this re-

covered efficiencies for the structural productivity errors in the production function and

solve the transmission bias. For clarity, I henceforth define the “capital-labor efficiency

ratio” as the ratio of capital-augmenting efficiency to labor-augmenting efficiency; the

“biased technological change (BTC)” as the change of the capital-labor efficiency ratio

over time; the “biased technological dispersion (BTD)” as the cross-firm dispersion of the

capital-labor efficiency ratio at a given time.

I estimate the model using a rich firm-level Chinese Manufacturing survey. I choose

four industries with different technology level and capital intensities: Clothing, Indus-

trial Paper & Paper Board Making, Production Equipments for Foods, Beverages and

Tobacco, and Motor Vehicles. The estimation results first provide firm-level evidence of

the existence on biased technological change at the firm level. The results show that

capital efficiency grows much faster (> 20%) than labor efficiency (< 5% and sometimes

negative) during 2000-2007 in the four industries examined. When only continuing firms

are considered, the capital efficiency change contributes to the annual industrial growth

positively, by 1.60%, 1.74%, 3.29% and 2.64% respectively for the four industries. Labor

efficiency contributes negatively in three out of the four industries, by 0.21%, -0.09%,

-0.19% and -0.10% respectively for the four industries. The net entry and exit contributes

to the industrial growth by 4.96%, -1.22%, -2.05%, and -1.05% for the four industries

respectively. If I instead analyze the growth of value added, I find that technological

change contributes to over one half of the growth of value added, which is higher than

the combined contribution of increased capital and labor inputs. The contribution of

technological change arises mainly from advancement of capital efficiency.

An advantage of the estimated firm-time-specific biased technology in my model is

that we can evaluate the technology bias heterogeneity across firms. Results provide

evidence of biased technological dispersion (BTD) across firms, which is new in the lit-

erature. Large firms on average have higher capital-labor efficiency ratio and the biased

technological dispersion explains a large part of the dispersion of the capital-labor ratio

across firms. The estimated firm-time-specific biased technology in my model extends

the current literature on biased technological change2, which focuses on the country-level

2For example,Brown and Cani (1963), David and Van de Klundert (1965), Wilkinson (1968), Sato
(1970, 1980), Stevenson (1980), Panik (1976), Kalt (1978), Cowing and Stevenson (1981), Antras (2004),
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or industry-level biased technological change. This result has important implications for

the behavior and size distribution of firms, specifically entry/exit, inputs demand, and

growth/contraction of firms.

The idea of exploiting the first order conditions of profit maximization in production

estimation is also used in recent papers. Ackerberg, Caves, and Frazer (2006) point out

the possibility of using the parametric first order condition of static inputs to control

for transmission bias. Katayama, Lu, and Tybout (2009), Gandhi, Navarro, and Rivers

(2011), Doraszelski and Jaumandreu (2012), and Grieco, Li, and Zhang (2013) also used

the first order condition to assist in the production estimation. These studies focus on

a two-stage estimation procedure and rely on a crucial assumption of Markov productiv-

ity to form the moment conditions to estimate the production parameters. In contrast,

this paper directly recovers the unobserved multidimensional productivity from the first

order condition and constructs the moment conditions directly using the non-structural

errors in the production/revenue function. One advantage of this approach is that the

estimation doesn’t rely on the restrictive Markov process assumption on the productivity

evolution process. As a result, cross section data is sufficient for the estimation. Another

advantage is that it is straightforward and simple to implement. Additionally, this ap-

proach is directly based on the economic theory, profit maximization, and only requires

mild assumptions for identification.

The use of first order conditions also provides a natural way to break Diamond’s Im-

possibility Theorem (Diamond, McFadden, and Rodriguez, 1978), which states that the

elasticity of substitution and biased technological change cannot be identified simultane-

ously from input-output data if no further restrictions are added. The reasoning behind

this theorem is that both elasticity of substitution and capital-labor efficiency ratio affect

the relative choice of inputs and we could not disentangle them from input-output data if

no further conditions are added. The use of the first order conditions establishes a link be-

tween elasticity of substitution and biased technological change, leading to identification

of both of them.

The remainder of the paper is organized as follows: Section 2 introduces the back-

ground and motivational facts. Section 3 introduces the model and estimation procedure

for general (parametric) production functions. Section 4 and section 5 discuss the esti-

Klump, McAdam, and Willman (2007), Leon-Ledesma, McAdam, and Willman (2010).
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mation procedure and empirical results from the translog production function. Section

6 provides a test against neutral technology. Sections 7 and 8 investigate the pattern of

biased technological change and biased technological dispersion. Section 9 discusses the

sources of growth in China and section 10 concludes.

2 The Background and Motivational Facts

2.1 Background: The Technology-Promoting Policy

In order to maintain a sustainable growth and prepare for the entrance into the World

Trade Organization (WTO), the Chinese government issued a series of policies to encour-

age technological change after 1997. Two of these important policies are “The guide to

the Current Priority High-Tech Areas for Industrial Development” and “The list of Out-

dated Productivity, Production Process and Products to be Eliminated”, both issued in

1999. These two policies encourage firms to update their technology, production process-

es and products. The former policy lists the technology, production process and products

that firms are encouraged to develop, and the latter policy lists the ones that firms should

eliminate. The encouraged technology, production processes and products use up-to-date

technology and the discouraged ones use old technology. The government encouraged

firms to update their technology through strong economic incentives such as tax credits,

loan appraisals and land rationing. The government also implements a strict appraisal

and evaluation procedure for firms to invest in new projects. New projects using the

encouraged technologies would be easily approved by the Censoring Bureau, while new

projects using old technologies would have more trouble getting approved.

“The Guide for Industrial Structure Change”, issued in 2005, more clearly lists the

encouraged, restricted and forbidden projects. To accompany these policies, the Min-

istry of Land and Resources issued two land-use restrictions, “Projects Restricted from

Using Land” and “Projects Forbidden from Using Land”, to help implement technology-

promoting policies. These policies together provide strong incentives for existing firms

to update their technology, and for new firms to use new technology. This paper stud-

ies the pattern of technological change of Chinese firms under this background and its

contribution to industrial growth.
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2.2 Data

The data used in this paper is a rich, firm-level panel dataset from Chinese manufacturing

industries, which was collected through annual surveys of manufacturing enterprises and

maintained by the China National Bureau of Statistics. The number of firms increased

from around 160,000 in 2000 to over 300,000 in 2007. The surveys covers two types of

manufacturing firms: (1) state-owned enterprises (SOEs), and (2) non-SOEs whose annual

sales are more than five million RMB (approximately 650,000 US dollar). The data set

contains information on firm-level annual revenue, input expenditures, wage rate, detailed

firm characteristics (e.g. age, ownership, location etc.), and nearly 100 financial variables.

For a detailed description of the data set, refer to Feenstra, Li, and Yu (2011).

This paper uses data from four industries in China: Clothing, Industrial Paper & Paper

Board Making (Paper&Board Making henceforth), Production Equipments for Foods,

Beverages and Tobacco (Equipments henceforth), and motor vehicles. These industries

varies in their technology level as well as capital-labor ratio. They play important roles

in Chinese economy and differ significantly in their technology and capital-labor ratio.

Clothing industry is a traditional industry in China and is highly labor intensive. The

major machine used in this industry is a sewing machine; therefore, the productivity

largely depends on the type of sewing machine used and how efficiently the workers are

organized. The Paper & Board Making industry used poor technology with high pollution

emissions in China before 2000, but faced pressure from the government to update its

technology. The Equipments industry is in the middle of the four industries in terms

of capital intensity. The Motor Vehicles industry is capital intensive and it uses mature

technology in China.

Table 1 reports some basic features of the firms in these industries. The number of

observations varies from 1,194 in the motor vehicles industry to over 50,000 in the clothing

industry. The labor revenue share ranges from 3% in Motor Vehicles industry to 9% in

Clothing industry3. At the same time, the capital-labor ratio ranges from 27.25 thousand

RMB per worker in Clothing industry to 143.35 thousand RMB in Motor Vehicles industry.

Among these industries, the Clothing industry is the most labor intensive, the Industrial

Paper & Board Making and Motor Vehicle industries are the most capital intensive, and

the Equipments industry in the middle. Additionally, firm size is the largest in the motor

3Note that we are using the gross production here. The material account for over 75% of the revenue.
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vehicle industry.

2.3 Motivational Facts

2.3.1 Evolution: Capital-Labor Ratio and Inputs Prices

I compute the yearly mean of the capital-labor ratio and the wage-interest ratio for each

industry in Table 2. All mean values are weighted by sales. According to the economic

theory, an increase in the wage-interest rate ratio will drive up the capital-labor ratio,

whatever the pattern of technological change. If the technological change is neutral,

then the observed capital-labor ratio should rise. If there is a labor-saving technological

change at the same time, the observed capital-labor ratio should rise even more. If the

technological change is capital-saving, the observed capital-labor ratio can either go up

or down, depending on which of the two forces (price change or technological change) is

stronger. If the capital-saving technological change is not strong enough to offset the effect

of an increased wage-interest ratio, the observed capital-labor ratio will still go up. If the

capital-saving technological change is strong enough to offset the effect of an increased

wage-interest ratio, the observed capital-labor ratio will go down.

Table 2 shows that during 2000 to 2007 when the wage-interest ratio in the Clothing

and Motor Vehicles industries rose significantly by 22.96% and 17.77%, respectively, the

capital-labor ratio decreased by 3.64% and 44.26%, respectively. This finding suggests

that the Clothing and Motor Vehicle industries experienced strong capital-saving technical

changes during this period..

In the other two industries, both the wage-interest rate ratio and the capital-labor

ratio increased over the data period. This fact is consistent with either a neutral tech-

nological change, a labor-saving technological change, or a capital-saving technological

change which is not strong enough to offset the effect of the increased wage-interest ratio.

So, a quantitative analysis is needed to understand the pattern of technological change in

these industries.

When there is a biased technological change, models that assume neutral technology

misspecify the technological pattern and will lead to an inaccurate estimation of the

contribution of technological change to industrial growth. In order to accurately evaluate

the sources of growth in the Chinese economy, it is necessary to go beyond the neutral

technology measure and consider the biased technological change. Moreover, it is also
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interesting to know the contribution of capital efficiency and labor efficiency to economic

growth, which is something a neutral technology model can not address. This motivates

the study of biased technological change in this paper.

2.3.2 Dispersion: Capital-Labor Ratio and Input Prices

Another stylized fact in the data is the high dispersion of the capital-labor ratio among

firms. Figure 1 shows the dispersion of the capital-labor ratio for each industry in 2007.

The firms in each industry are ordered and grouped into ten cohorts by capital-labor

ratio. Each cohort represents 10% of the firms and is represented by a bar in the figure.

The height of the bar represents the mean of the capital-labor ratio for that cohort. The

capital-labor ratio differs significantly across firms within each industry. In the Clothing

industry for example, the first 10% of firms have a mean of 2.07 thousand RMBs of capital

per worker and the last 10% of firms have a mean of about 140 thousand RMBs of capital

per worker (about 70 times larger). Generally, Figure 1 indicates that there is a significant

dispersion of the capital-labor ratio among firms within each industry in 2007.

Input price dispersion caused by market friction provides one possible explanation for

the dispersion of the capital-labor ratio (Spaliara, 2008). However, it is hard to explain

the different capital-labor ratios for firms with similar input prices. One example is the

dispersion of the capital-labor ratio across plants within the same firm. As Chew, Clark

and Bresnahan (1989) point out, the input price difference cannot explain the capital

intensity difference among plants producing the same products within the same firm, s-

ince all plants within the same firm face more or less the same factor prices. Klump and

de La Grandville (2000) provide another explanation based on elasticity of substitution.

However, their estimator of elasticity of substitution is inconsistent if there is biased tech-

nological dispersion/change. The reason is that the elasticity of substitution is estimated

based on the relative demand of capital and labor, which is affected by biased technology.

If the technology is indeed biased but treated as neutral, the factor demand differentials

among firms caused by biased technology will be mistakenly explained as being caused

by different elasticity of substitution across firms.

Other factors such as ownership, firm size and macro economic environment also affect

firms’ capital-labor ratio. Table 3 reports the R-square for four regressions with the

capital-labor ratio as the dependent variable and the variables listed above as regressors.
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It shows how much of the dispersion of capital-labor ratio could be explained by these

factors. The wage-interest rate ratio alone can explain 7.77%, 15.96%, 21.42% and 3.26%

respectively, for the Clothing, Paper & Board Making, Equipments, and Motor Vehicles

industries. Controlling for firm size, year dummy and ownership in addition increases the

explanation power to 9.57%, 17.84%, 24.13% and 11.61%, respectively. This suggests that

some important firm heterogeneities exist, which cause a large part of the unexplained

dispersion of the capital-labor ratio.

The biased technological dispersion provides a candidate explanation of the observed

dispersion of the capital-labor ratio. With biased technology, firms differ not only in the

absolute level of productivity, but also in the relative efficiency of factors. The former

determines the absolute level of inputs used, or the size of factor demand; the latter

determines the relative amount of the input used, or the composition of factor demand.

More specifically, the relative factor efficiency differentials among firms imply a different

marginal product of factors among firms, which leads to different capital-labor ratios

among firms even when their input prices are the same. This paper estimates the effect

of biased technology on capital intensity based on a structural model which allows for a

flexible factor elasticity of substitution and flexible biased technological change/dispersion

across firms.

3 A Model for General Production Function

This section develops a model of firms’ optimal choice of inputs to help identify the bi-

ased technological change/dispersion. The basic idea is that the optimal choice of inputs

contains information about the unobserved productivity. Thus, we can recover the mul-

tidimensional productivity from the observed input choices to solve for the transmission

bias. The first order conditions also establish a link between the elasticity of substitution

and the efficiency ratio, which provides a natural way acound the Diamond’s Impossibility

Theorem (Diamond, McFadden, and Rodriguez, 1978) and leads to the identification of

both technology bias and elasticity of substitution. This section introduces the model for

the general (parametric) production function and establishes the conditions for identifi-

cation. As an illustration I apply this method to the translog production function in the

next section.
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3.1 Production Function

I assume that technological change is purely factor-augmenting. In this case, improve-

ment of factor efficiencies change the marginal products of different factors in different

ways. I consider a production function with capital-augmenting and labor-augmenting

technological change.

A1 (Factor-Augmenting): Technological change is capital and/or labor augment-

ing.

A firm’s production function is parameterized up to finite parameters θ. Under as-

sumption A1, the production function takes the general form

Yjt = F
(
AkjtKjt, A

l
jtLjt,Mjt; θ

)
where Akjt is the capital-augmenting efficiency and Aljt is the labor-augmenting efficiency.

The capital-labor efficiency ratio is
Akjt
Aljt

. It measures how much the technology is biased

towards favoring capital (or labor). I define (ωjt, υjt) as the logarithm of capital and labor

efficiencies, where ωjt = lnAkjt and υjt = lnAljt. From now on I will refer to (ωjt, υjt) as the

(log) capital efficiency and labor efficiency, and ωjt−υjt as the (log) capital-labor efficiency

ratio. Kjt, Ljt and Mjt represent capital, labor and intermediate inputs respectively.

I further assume that the production function satisfies the following regularity condi-

tions:

A2 (Differentiability): F(·,·,·) is twice continuously differentiable in all three of its

arguments.

A3 (Positive marginal products): F1, F2, F3 > 0.

A4 (Diminishing marginal product): Fii < 0 and Fij > 0, for all i, j = 1, 2, 3 and

i 6= j.

I allow the technology to change in a very flexible way. Note that the production

function need not to be neoclassical4, as it is allowed to have retrogressive technological

change. In fact, It is even not necessarily classical as it allows non-constant returns to

scale.

A problem related to the productivity measure is that the quality of inputs and out-

4A production function with constant returns to scale is said to be ”classical” if it is continuous and
has positive marginal products and diminishing marginal rates of substitution. The production function
is said to be ”neoclassical” if it further satisfies the non-retrogression condition, which says technological
change is always positive.
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puts may be different across firms. Both the firm productivity and input quality affect the

estimates of input efficiency. In particular, the estimated productivity measure will con-

tain the effect of both the productivity of the technology used by the firm and the input

quality difference. The price contains important information about the quality of goods.

I follow Kugler and Verhoogen (2009, 2012) and use input (output) price as a measure

of input (output) quality. Specifically, I assume that the dispersion of prices reflects the

quality differences of inputs and outputs across firms, and that firms pay the same price

for the quality-adjusted products. This also solves the problem of firms using different

units to record their amount of inputs and outputs. By using the quality-adjusted inputs

and outputs to replace (Kjt, Ljt,Mjt) and Yjt in the production function, Akjt and Aljt is

the labor efficiency and capital efficiency, net of the inputs quality difference. So Akjt and

Aljt now measure the efficiencies brought on by firm technology, rather than input quality.

3.2 Non-Identification Result

Suppose that the data contains output value (Qjt) and expenditures on capital, labor and

material. Assume that the observed output is subject to an i.i.d measurement error, εjt.

That is Qjt = Yjt exp(εjt), where Yjt is the firm’s targeted output. We want to identify the

unobserved input efficiency (ωjt, υjt) and the production parameter θ from the observed

data.

Under the above assumptions, so far the model is not identified due to the Diamond’s

Impossibility Theorem. One of the challenges is to overcome the transmission bias caused

by the two dimensional unobserved capital efficiency and labor efficiency. The nonpara-

metric control function approach based on investment (Olley and Pakes, 1996) is subject

to the controversial invertibility problem, as well as the collinearity problem in their first

stage estimation (even in their single unobservable case). These two problems become

even worse in the case of multidimensional unobservables (Ackerberg, Caves, and Frazer,

2006). Even when the invertibility condition is established and the unobservables are non-

parametrically recovered from observed variables, with multidimensional unobservables,

we still cannot identify the model because we have multiple nonparametric functions to

be estimated in a single equation.

The second problem is related to the aforementioned Diamond’s Impossibility Theorem
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(Diamond, McFadden, and Rodriguez, 1978), which says that under assumptions A1-A55,

we cannot identify both the capital-labor efficiency ratio and the elasticity of substitution

(implied by the production parameters) simultaneously. The reason is that both the

capital-labor efficiency ratio and elasticity of substitution are free to change, and both

affect the optimal choice of inputs. The impact of a change in the elasticity of substitution

can make up for the effect of a change of technology ratio, and vice versa. As a result,

more than one combination of elasticity of substitution (production parameters) and the

technology ratio are consistent with the observed data. Therefore, the model is not

identified.

There are many ways to add more moments to the data to identify the model. I briefly

discuss three methods of doing this that seem likely to arise frequently in practice and

play key roles in application.

The first possible source of identification is to add structure to the growth rate of

capital and labor efficiencies. For example, as is often done in the literature we can assume

that capital efficiency and labor efficiency grow non-retrogressively and that growth rates

are functions of time t with finite parameters. This additional assumption on the growth

trend of capital and labor efficiencies helps identify the model and leads to a very simple

estimation procedure and an intuitive explanation of the parameters. As a result, it is

widely used in the literature. However, we understand that this restriction is strong

and questionable in practice, as capital and labor efficiencies do not necessarily grow at

constant rate. Also, this restriction cannot be applied to cross-sectional data as we do

not have an order of firms to define the growth rate.

The second possible source of identification is to use panel data. In the literature,

only time series were used to identify the model. With panel data, if firms share common

capital and labor efficiencies, the elasticity of substitution can be identified from the

cross-sectional variation in the input usage. In particular, we can identify the elasticity

of substitution from the cross-sectional variation in the input-output combination across

firms and then identify the biased technological change from the time series. However,

if we are not willing to assume that all firms share the same capital efficiency and labor

efficiency, the panel data does not help for identification.

The third possible source of identification is to rely on the structure implied by eco-

5They assumed constant returns to scale and non-retrogressive technology change in addition.
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nomic theory about firm’s input choice to pin down the relationship between the elasticity

of substitution and the efficiency ratio. A natural choice of this structure is the first order

conditions for firms’ static choice on labor and material. These first order conditions

establish a link between the technology ratio and the elasticity of substitution implied by

the production parameters. As a result, when there is a change in the efficiency ratio we

cannot change the elasticity of substitution (or production parameters) arbitrarily to gen-

erate the observed data. This additional structure breaks overcomes the non-identification

results summarized in Diamond, McFadden, and Rodriguez (1978). One obvious advan-

tage of this method is that the additional structure has a solid theoretical ground and is

naturally implied by the microeconomic theory on firms’ objectives.

3.3 A Model of Optimal Input Choice

I utilize the first order conditions with respect to labor and material choice to help identify

this model. Firms are price takers in both input and output markets6. They could face

different input and output prices, which reflect the quality difference of inputs and output

across firms. So the quality-adjusted price is the same for all firms at the same period. I

assume that capital is fixed at the beginning of each period and that investment is chosen

dynamically to maximize firm value. I also assume that firms know their own productivity

level (capital efficiency and labor efficiency) before choosing labor and material.

A6 (Profit Maximization): Observing their own capital efficiency, labor efficiency

and capital stock at the beginning of each period, firms choose labor and material statically

to maximize their own period profit.

Denote Pt,Wt and Pm
t as the output price, wage rate and material price for quality-

adjusted products. A firm’s optimal static decision problem for labor and material is

written as

max
Ljt,Mjt

{PtF (exp(ωjt)Kjt, exp(υjt)Ljt,Mjt)−WtLjt − Pm
t Mjt}

6It is easy to extend this assumption to the case of monopolistic competition in the output market.
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The corresponding first order conditions are:

exp(υjt)PtF2 (·) = Wt

PtF3 (·) = Pm
t

where F2 and F3 are the partial derivative of F with respect to its second and third

arguments respectively. Multiplying both sides of the first equation by
Ljt
PtYjt

and the

second by
Mjt

PtYjt
and rearranging yields

exp(υjt)Ljt
F2 (·)
F (·)

=
WtLjt
PtYjt

(1)

Mjt
F3 (·)
F (·)

=
Pm
t Mjt

PtYjt

Denote SLjt and SMjt as the revenue share of labor and material, respectively, observed

in the data. SLjt and SMjt are written as

SLjt =
PLLjt
PjtQjt

=
WtLjt

PtYjt exp(εjt)
(2)

SMjt =
PLLjt
PjtQjt

=
Pm
t Mjt

PtYjt exp(εjt)

By replacing
PLLjt
PjtYjt

and
PMMjt

PjtYjt
in equation (1) with the expressions in equation (2), we

have

exp(υjt)Ljt
F2 (exp(ωjt)Kjt, exp(υjt)Ljt,Mjt)

F (exp(ωjt)Kjt, exp(υjt)Ljt,Mjt)
= SLjt exp(εjt) (3)

Mjt
F3 (exp(ωjt)Kjt, exp(υjt)Ljt,Mjt)

F (exp(ωjt)Kjt, exp(υjt)Ljt,Mjt)
= SMjt exp(εjt)

This two-equation system has two unobserved structural errors ωjt and υjt. We can solve

for ωjt and υjt from this equation system, as functions of unobserved data, the non-

structural errors εjt, and the the production parameters. The first order conditions also

establish a link between the efficiency ratio and the elasticity of substitution (implied

by production parameters). As discussed above, this linkage overcomes the Diamond’s

Impossibility Theorem (Diamond, McFadden, and Rodriguez, 1978) and leads to the

identification of the technology ratio and elasticity of substitution from input and output

data.
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Note that the setup allows the capital and labor efficiencies to be flexible, but the

”material efficiency” is assumed to be constant. The reason is that the most important

aspect of productivity is how the firm organizes capital and labor for production. The

materials will be used up and its efficiency change, if any, is small. The literature on

biased technology also mainly focused on the capital and labor efficiencies. This paper

follows the literature and focuses on the capital and labor efficiencies, while assuming that

material efficiency is constant. This treatment greatly reduces the technical difficulties,

and allows us to focus our attention on the dispersion and change of capital efficiency and

labor efficiency, which are the most important components of the productivity.

If material efficiency is also of interest and is introduced in the model, the estimation

strategy introduced later in this paper still applies. In this case, there are three unobserved

productivity measures (capital efficiency, labor efficiency and material efficiency). The

additional investment information can be utilized, in addition to the usual first order

conditions associated with labor and material, to help recover the unobservables. Since

the choice for investment is dynamic,, which usually makes it difficult or even impossible

to have a closed form solution, the use of investment information adds some technical

challenges to the method. This will be an interesting research topic.

3.4 Recovering the Unobserved Productivity

I want to estimate all parameters in the production function from the data on input and

output. The basic idea is to recover the unobserved productivities from the first order

conditions.

The additional structure implied by the first order conditions pins down the relation-

ship between the efficiency ratio and elasticity of substitution. This restriction can help

identify the model if we can recover the unobserved true productivity from the first order

conditions uniquely. In the first order conditions, there are two independent equations

and two unknowns. Generally we can solve for the unknowns.

Denote f(x, y) =

 exp(υjt)Ljt
F2(·)
F (·) − SLjt exp(εjt)

Mjt
F3(·)
F (·) − SMjt exp(εjt)

, where x = (Kjt, Ljt,Mjt, S
L
jt, S

K
jt , εjt)

and y = (ωjt, υjt). Denote the true values of capital efficiency and labor efficiency, which

generate the data, as ydata = (ωdatajt , υdatajt ). Denote the observed data (Kjt, Ljt,Mjt, S
L
jt, S

K
jt )

together with the true measurement error εjt as xdata. Then we have f(xdata, ydata) = 0.
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Denote the output elasticity of labor and material as El
jt =

∂ lnQjt
∂ lnLjt

and Em
jt =

∂ lnQjt
∂ lnMjt

, and

denote Ei
jtx =

∂Eijt
∂x

as the derivative of output elasticity Ei
jt with respect to efficiency x,

where where i = l,m and x = ω, υ. Proposition 1 establishes the conditions under which

we can invert the first order conditions to recover the unobserved productivities.

Proposition 1 (Invertibility Condition) Suppose assumptions A1-A6 are satisfied and

we observe a random sample of (Kjt, Ljt,Mjt, S
L
jt, S

K
jt ) and denote xdata = (Kjt, Ljt,Mjt, S

L
jt, S

K
jt , εjt)

If
El
jtω

Em
jtω

6=
El
jtυ

Em
jtυ

(4)

at the point (xdata, ydata), then there exists an ε > 0 and a two-dimensional function

Z(·; θ) =

 ω(·; θ)

υ(·; θ)

, such that for any (x, y) ∈
{

(x, y) :
∥∥(x, y)− (xdata, ydata)

∥∥ < ε
}

,

y = Z(x; θ) =

 ω(x; θ)

υ(x; θ)

 .

Proof. The proof is an application of the implicit function theorem. See the Appendix

A for the detail of the proof.

The key condition for this invertibility condition to be satisfied is
Eljtω
Emjtω

6= Eljtυ
Emjtυ

. It

says that the capital- and labor-augmenting efficiencies affect the output elasticity of

inputs differently. The marginal labor-to-material output elasticity ratio with respect

to capital efficiency does not equal that with respect to labor efficiency at the observed

data point. Given this condition, the idea behind proposition 1 is straightforward. The

output elasticity determines the revenue share of inputs. As ωjt and υjt affect the output

elasticity differently, we can infer ωjt and υjt from the relative revenue share of labor and

material, which are observed in the data.

What if ωjt ≡ υjt? In this case, we do not have condition (4).7 We do not rely on

the relative revenue share of material and labor to recover ωjt and υjt. In this case, we

can directly solve for ωjt (or υjt) from the absolute level of revenue share of material, or

revenue share of labor. We can recover them from only one first order condition and leave

the other as a restriction.

7Note that in this case, if we still distinguish capital-augmenting efficiency and labor-augmenting
efficiency (although they are equal), condition (4) is still satisfied. But it is a waste of notation in this
case.
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The uniqueness condition depends on the parameters and there is no general result for

uniqueness. But I will show that for CES and Translog production function the recovered

(ωjt, υjt) is unique.

Example 1: CES Production Function

CES production function is given by: Yjt = C [(AjtKjt)
γ + (BjtLjt)

γ + (Mjt)
γ]

s
γ , where

Ajt = exp (ωjt) , Bjt = exp (υjt). s > 0 measures the scale economy in the production

process.

I assume firms are price takers in both input and output markets. They face different

input and output prices, which measures the quality of input and output. The first order

conditions for CES are:

sLγBγ
jt

[(AjtKjt)
γ + (BjtLjt)

γ + (Mjt)
γ]

= SLjt exp(εjt)

sMγ

[(AjtKjt)
γ + (BjtLjt)

γ + (Mjt)
γ]

= SMjt exp(εjt)

Under the restriction that s > 0 and γ 6= 0 (Non Cobb-Douglas Production Function),

we can solve for the closed form solutions to the capital efficiency and labor efficiency

Ajt =

(
s− SLjt exp(εjt)− SMjt exp(εjt)

SMjt exp(εjt)

) 1
γ Mjt

Kjt

Bjt =

(
SLjt
SMjt

) 1
γ Mjt

Ljt

Plugging them into the production function, taking the logarithm and adding i.i.d

measurement error to the output yields the estimation equation

lnQjt =

(
lnC +

s

γ
ln s

)
− s

γ
lnSMjt + s lnMjt + (1− s

γ
)εjt (5)

�.

Example 2: Translog Production Function

We will show that the translog production function also satisfies the invertibility con-

dition under a mild restriction in the next section.�
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3.5 Estimation Equation

Under assumption 1, we can recover the unobserved multidimensional productivities from

the first order conditions with respect to labor and material as functions of capital, labor,

material, labor share, material share and production parameters. Denote the solution as

ω∗jt = ω (Kjt, Ljt,Mjt, SLjt, SMjt, εjt; θ) , (6)

υ∗jt = υ (Kjt, Ljt,Mjt, SLjt, SMjt, εjt; θ) .

Replacing ωjt and υjt in the production function with equation (6) yields the estimation

equation:

Yjt = F
(
exp(ω∗jt)Kjt, exp(υ∗jt)Ljt,Mjt

)
,

where ω∗jt = ω(Kjt, Ljt,Mjt, SLjt, SMjt, εjt; θ) and υ∗jt = υ(Kjt, Ljt,Mjt, SLjt, SMjt, εjt; θ).

Yjt is the targeted output of the firm and is not observed by econometricians. Replacing

it by the observed output (Qjt) with measurement error yields the estimation equation:

lnQjt = lnF
(
exp(ω∗jt)Kjt, exp(υ∗jt)Ljt,Mjt

)
+ εjt (7)

This is a parametric equation, which is nonseparable in the error terms εjt because ω∗jt

and υ∗jt also contain εjt. The identification condition requires that εjt is uniquely deter-

mined by equation (7) for any production parameter θ at any data point (Qjt, Kjt, Ljt,Mjt,

SLjt, SMjt). That is εjt = ε(Qjt, Kjt, Ljt,Mjt, SLjt, SMjt; θ). It is easy to show the exis-

tence of such a function under the same condition as in proposition 1. The above example

shows that in CES εjt is uniquely determined in the production function. However, for

general production functions the uniqueness of such a function depends on both the form

of production function and the data point. For example, in translog production function

the uniqueness of εjt depends on both the parameters and observed data points. This is a

shortcoming of translog production function. Given that εjt can be uniquely determined

by equation (7) as εjt = ε(Qjt, Kjt, Ljt,Mjt, SLjt, SMjt; θ), we can estimate the model with

Nonlinear Least Square (NLLS) or General Mothod of Moments (GMM). The moment

conditions are given as:

E
[
Z ′jtεjt

]
= 0

where εjt is the measurement error in output and Zjt represents the set of instrument
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variables. In the estimation, I choose Zjt to include all the first and second order terms

of lnKjt, lnLjt, lnMjt, including all cross terms. We can also form additional moments

using the fact that SLjt exp(εjt) =
WtLjt
PjtYjt

and SMjt exp(εjt) =
Pmt Mjt

PjtYjt
are orthogonal with

εjt.

4 Implementation in Translog Production Function

As a demonstration, in the rest of this paper I apply the approach to a transcendental

logarithmic production function (translog). The advantage of the translog production

function over other popularly used production functions (e.g. Cobb-Douglas and CES)

is that it allows flexible output elasticity and elasticity of substitution, which can vary

across firms and over time. I extend the standard translog production function to allow

for dispersion of biased technology across firms and over time. This extended translog

production function is

lnYjt = a0 + ak (ωjt + lnKjt) + al (υjt + lnLjt) + am lnMjt (8)

+
1

2
akk (ωjt + lnKjt)

2 +
1

2
all (υjt + lnLjt)

2 +
1

2
amm (lnMjt)

2

+akl (ωjt + lnKjt) (υjt + lnLjt) + akm (ωjt + lnKjt) lnMjt

+alm (υjt + lnLjt) lnMjt

I assume that firms are price-takers in both input and output markets. The corre-

sponding first order conditions of the static choice of labor and material are:

Wt =
PtYjt
Ljt

[al + all(υjt + lnLjt) + akl(ωjt + lnKjt) + alm lnMjt] (9)

Pm
t =

PtYjt
Mjt

[am + amm lnMjt + akm(ωjt + lnKjt) + alm(υjt + lnLjt)]

The optimal investments are determined as

V (Sjt) = max
ijt,rdjt

E
{
π(Kjt, ωjt, υjt) + βEV (Sjt+1)− C(rdjt−1, rdjt, γ

rd
jt )
}

where the outer expectation is taken over the cost shocks to R&D (γrdjt ) and the inner

expectation is taken over the productivity innovation (ηwjt, ηvjt).
8

8The investment decisions are not necessary for the identification of biased technology in this paper,
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The first order conditions imply that the capital share and labor share are:

Sljt exp(εjt) ≡
WtLjt
PtYjt

= al + all(υjt + lnLjt) + akl(ωjt + lnKjt) + alm lnMjt (10)

Smjt exp(εjt) ≡
Pm
t Mjt

PtYjt
= am + amm lnMjt + akm(ωjt + lnKjt) + alm(υjt + lnLjt)

which are functions of the unobserved capital efficiency and labor efficiency. This equation

corresponds to equation (3) in section 3. In principle, the unobservables can be recovered

from the capital and labor shares under regularity conditions. The above factor share

equation system can be rearranged to derive: akl all

akm alm

 ωjt

υjt

 =

 Sljt exp(εjt)− (al + all lnLjt + akl lnKjt + alm lnMjt)

Smjt exp(εjt)− (am + akm lnKjt + alm lnLjt + amm lnMjt)



Assumption (invertibility): det

 akl all

akm alm

 6= 0.

The invertibility assumption requires that aklalm 6= akmall. This requirement is not

strong, in general, and is satisfied except in very extreme cases. Moreover, this assumption

does not place a significant restriction on the scale economies, elasticity of substitution,

first order and second order conditions of the static optimization.

Under the invertibility assumption, the latent productivity variables can be recovered

as: ωjt

υjt

 =

 akl all

akm alm

−1  Sljt exp(εjt)− (al + all lnLjt + akl lnKjt + alm lnMjt)

Smjt exp(εjt)− (am + akm lnKjt + alm lnLjt + amm lnMjt)


(11)

Given parameters and the data, the capital and labor efficiencies can be solved for

from equation (11). Then by inserting the expressions in equation (11) into the original

but the additional moments associated with them can be used to improve the efficiency of the estimator.
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production function equation to substitute ωjt and υjt, we have the estimation equation:

lnQjt = a0 + ak (ωjt + lnKjt) + al (υjt + lnLjt) + am lnMjt (12)

+
1

2
akk (ωjt + lnKjt)

2 +
1

2
all (υjt + lnLjt)

2 +
1

2
amm (lnMjt)

2

+akl (ωjt + lnKjt) (υjt + lnLjt) + akm (ωjt + lnKjt) lnMjt

+alm (υjt + lnLjt) lnMjt + εjt

where ωjt

υjt

 =

 akl all

akm alm

−1  Sljt exp(εjt)− (al + all lnLjt + akl lnKjt + alm lnMjt)

Smjt exp(εjt)− (am + akm lnKjt + alm lnLjt + amm lnMjt)


(13)

The non-structural error enters the estimation equation nonlinearly and is nonsepara-

ble from regressors. We can estimate equation (12) using nonlinear least square (NLLS)

or generalized method of moments (GMM). In this paper, I use GMM to estimate the

parameters. I first solve for εjt from equation (12) and (13). Then I use εjt to form the mo-

ment conditions to estimate the parameters. The moment conditions used are: E(εjt) = 0

and εjt is orthogonal to lnKjt, lnLjt, lnMjt, (lnKjt)
2 , (lnLjt)

2 , (lnMjt)
2 , lnKjt lnLjt,

lnKjt lnMjt, and lnLjt lnMjt.

A technical problem is that there is no closed form solution to εjt. If we solve for εjt

numerically, the estimation will be very slow because it involves solving for εjt from an

equation for each data point during each iteration. To speed up the estimation, I use

the first-order Taylor expansion around εjt = 0 to approximate εjt. I expect that |εjt|

is small, since εjt is the logarithm of the measurement error in the production function.

In this case, the approximation of εjt based on the Taylor expansion is close to its true

value. The technical details are reported in the Appendix B.

The advantages of this new method are multi-folded. Firstly, the invertibility condition

can be easily tested. Secondly, in my new method, the parameters of static variables are

identified although there are still collinearity, because I recover the unobserved productiv-

ity parametrically. This overcomes the collinearity problem and thus the nonidentification

of the static parameters in the first stage of Olley and Pakes (1996) and Levinsohn and

Petrin (2003). Another advantage of the new method is that the identification does not

depend on any restrictive Markov process assumptions of productivity evolution. As a
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result, cross sectional data is sufficient for the estimation.

5 Empirical Results

I estimate the model for each of the four industries: Clothing, Industrial Paper and

Paper Board Making, Production Equipments for Foods, Beverages and Tobaccos, and

Motor Vehicles. Estimating separately allows industries to have different production

functions and different patterns of technological dispersion and evolution. Table 4 reports

the estimation results. The production parameters are statistically significant (except

the constants). I test the invertibility condition for each of the industries based on the

estimation results and it holds for all of them. The test details are reported in the

Appendix D.

The economic meaning of the original parameters in the translog function is not very

intuitive. I translate them into the output elasticity and scale economies, which are

reported in Table 5. The mean output elasticity of labor and material are calculated from

equation (10) and the capital elasticity from a similar equation:

Ŝkjt = ak + akk(ωjt + lnKjt) + akl(υjt + lnLjt) + akm lnMjt.

In the translog production function, the output elasticity of input depends on both the

production parameters and the point at which the production happens, as shown in equa-

tion (10). The reported output elasticity and scale economies are specific to the production

point observed in the data. Table 5 shows that the estimated output elasticities of capital,

labor and material are within reasonable range. In the Clothing and Equipment indus-

tries, the labor elasticity is relatively higher and the capital elasticity is relatively lower.

In the Paper&Paper Board making and Motor Vehicles industries the labor elasticity is

low and the capital elasticity is high. This is consistent with the fact that the former two

industries are more labor intensive while the latter two are more capital intensive. All

four industries show decreasing returns to scale at the production point observed in the

data. However, firms may have increasing returns to scale before reaching the observed

production point, as the returns to scale vary with the production point.
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5.1 Elasticity of Substitution

There are two challenges in computing the elasticity of substitution for the translog pro-

duction function. First, the translog production allows for a non-constant elasticity of

substitution, which changes with the production points the firm chooses. Also, there is

no closed form solution to the elasticity of substitution in the translog function. There-

fore, I calculate a numerical elasticity of substitution for each observation instead. The

technical details are reported in the Appendix C.

Table 6 reports the nine quantiles of the elasticity of substitution for each of the four

industries. The medians of the elasticity of substitution are smaller than one, ranging

from 0.1046 to 0.4932. These are smaller than the ones reported in the literature under

constant elasticity of substitution assumption. One reason may be that the assumed

neutral technology and the effect of biased technological dispersion/change on the input

demand are captured by the estimated elasticity of substitution. Moreover, the results

here also show that there is a significant dispersion in the elasticity of substitution even

among firms within one industry. Taking the Clothing industry for example, the first

quantile of the elasticity of substitution is 0.2162 and the ninth is 0.9090. Figure 2

shows a plot of the kernel density of elasticity of substitution for the Clothing industry

as a example. It shows that the dispersion of elasticity in this industry is large. One

explanation for the dispersion is that different sized firms differ in their ability to substitute

labor for capital. In fact, I find a negative correlation between firm size (measured by

sales) and the elasticity of substitution. This suggests that small firms can substitute

labor and capital more easily than large firms.9

The smaller-than-one median elasticity of substitution has a important implication for

the relationship between biased technological change and input demand. It implies that

inputs are generally gross complements. When, for example, capital efficiency increases,

the firm will use less capital and more labor as it cannot substitute capital for labor

efficiently. Therefore, change in capital efficiency actually saves capital when the elasticity

of substitution is smaller than one. This decreases the capital-labor ratio. To explain the

opposite movements of the capital-labor ratio and the wage-interest ratio observed in

9This result is different from Klump and de La Grandville (2000), which found that larger firms
have higher elasticity of substitution. The difference comes from the fact that they do not consider the
dispersion of the capital-labor efficiency ratio across firms, which makes their estimates inconsistent in
the context of biased technical dispersion.
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some Chinese industries, we expect to see that capital efficiency grows faster than labor

efficiency, which is a capital-saving technological change given that capital and labor are

gross complements.

6 Tests of Biased Technology

We can recover the firm-time specific capital efficiency (ωjt) and labor efficiency (υjt)

from equation (13). In this subsection, I test the biased technology against the constan-

t capital-labor efficiency ratio. The testing strategy is based on the testing statistics

developed in Hadri (2000), which is a extension of Kwiatkowski–Phillips–Schmidt–Shin

(KPSS) tests for panel data.10 I test both the biased technological change over time and

the biased technological dispersion across firms. This exercise provides evidence of biased

technological change and biased technological dispersion at the firm level.

6.1 Test for Biased Technological Change

If the capital-labor efficiency ratio is constant, then the observed efficiency ratio, bjt, is

constant over time. By allowing shocks to bjt, the efficiency ratio equals the sum of a

constant and an i.i.d random shock, ujt. That is,

bjt = αj + ujt,

for all j. The test of neutral technology is equivalent to the test that the technology bias,

bjt, is level stationary over time. If there is biased technological change, then bjt changes

over time. We can set the model as:

bjt = αjt + ujt,

where αjt captures everything that affects the change of the capital-labor efficiency ratio.

Let αjt be a random walk process, αjt = αjt−1+vjt, where vjt is an i.i.d random shock with

variance σ2
v . If the technological change maintains a constant capital-labor ratio, then αjt

10Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests are used for testing a null hypothesis that an
observable time series is stationary around a deterministic trend. Such models were first proposed by
Bhargava (1986). Kwiatkowski, Phillips, Schmidt, and Shin (1992) proposed a test of the null hypothesis
that an observable series is trend stationary (stationary around a deterministic trend)
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is a constant. This is equivalent to saying that σ2
v = 0. If the technological change is not

neutral, αjt changes over time and σ2
v 6= 0. The test hypothesis can be set as follows,

H0 :
σ2
v

σ2
u

= 0 (constant capital-labor efficiency ratio)

H1 :
σ2
v

σ2
u

6= 0 (biased technological change)

Under the null hypothesis, bjt = αj + ujt. I estimate the equation under the null

hypothesis and denote ûjt as the regression residual. Denote

LM =

1
N

N∑
j=1

(
1
T 2
j

Tj∑
t=1

Ŝ2
jt

)
σ̂2
u

where Ŝjt is the partial sum of ujt, Ŝjt =
t∑

τ=1

ûjτ ; σ̂2
u is a consistent estimator of σ2

u. Under

the null hypothesis, σ̂2
u = 1

N

N∑
j=1

(
1

Tj−1

Tj∑
t=1

ê2jt

)
. The test statistic is written as:

Z =

√
N (LM − µW )

σW

where µW and σW , respectively, represent the mean and standard deviation of the random

variable W , which is defined as the integration of a standard Brownian bridge over the

interval [0, 1]. It is a standard result that µW = 1
6

and σW = 1√
45
. Hadri (2000) proved that

under the null hypothesis, the statistic has asymptotic standard normal distribution.11

Table 8 reports the test results. For all four industries, the test statistic is much

larger than the upper bound of the 1% confidence interval. We can safely reject the

null hypothesis and conclude that capital efficiency and labor efficiency grow at different

speeds. This test provides solid evidence of biased technological change in these industries

during the data period. Given evidence of biased technological change in China, models

of neutral technological change will misestimate the contribution of technological change

to economic growth; therefore, a model with biased technological change is required. The

individual contribution of capital efficiency and labor efficiency to the economic growth

is also important from a policy point of view.

11See Hadri (2000) for more details if interested.
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6.2 Test for Biased Technological Dispersion

The test for biased technological dispersion is similar to the test for biased technology. If

the capital-labor efficiency ratio has no dispersion across firms, then the observed efficiency

ratio, bjt, is a constant across firms for any given period. That is, bjt = αt + ujt, for all

t. The challenge of testing the biased technology is that there is no clear order of cross

sectional firms. The testing strategy is to choose a way to order the cross sectional firms,

and mimic the testing strategy discussed in the above subsection. The way of ordering

is not important as long as it is not correlated with the ujt, since bjt will always be a

constant plus an i.i.d random shock if there is no biased technological dispersion. In the

test, I order firms randomly, which should be uncorrelated with ujt.

The null hypothesis is that there is no dispersion of the capital-labor efficiency ratio

across firms for any given period, and the alternative hypothesis is that there is biased

technological dispersion. The results are reported in table 9. The test statistic is much

larger than the upper bound of the 1% significance interval, indicating that I can safely

reject the null hypothesis. This means that there is biased technological dispersion across

firms.

The evidence of biased technological dispersion across firms has important implications

for the sources of economic growth. In this case models of neutral technology ignore

the firm heterogeneity in the capital-labor efficiency ratio, which leads to inconsistent

estimation of firm productivity. This will lead to erroneous estimates of the contribution

of technological change to economic growth. Moreover, firms with different capital-labor

efficiency ratios differ in their relative demand of capital and labor. As the capital-labor

efficiency ratio changes, capital and labor move across firms. This redistribution of inputs

will also impact growth of economy.

The evidence of biased technological dispersion across firms also has important impli-

cations for may other fields. In Industrial Organization, it will affect the results related

to the entry/exit and size distribution of firms. With biased technological dispersion,

firms not only differ in their level of productivity, but also in their relative capital-labor

efficiency ratio. Both of these affect the firm’s behavior such as entry/exit decisions. For

example, when there is an unexpected shock which increases the capital price significantly,

the cost to firms with lower capital efficiency (who thus use more capital) will increase

much more than for firms with higher capital efficiency. As a result, the former will
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shrink or even exit and the latter will grow, even if they have the same level of productiv-

ity (measured by TFP) before the shock. In international trade, the biased technological

dispersion also has wide applications. For example, it will affect the production location

choice of multinational firms. Firms with low labor efficiency (thus high labor demand)

are more likely to establish their plants in labor abundant countries.

7 Biased Technological Dispersion

This section discusses the biased technological dispersion across firms and shows that

this unobserved firm heterogeneity explains a large part of the dispersion of capital-labor

ratios across firms. The next section discusses the biased technological change over time.

The efficiency ratio, as defined, is calculated as the difference between ωjt and υjt.

Figure 3 shows the relationship between the efficiency ratio and firm size. It is shown

that large firms have a higher technology ratio. The correlation between the efficiency

ratio and firm size ranges from 0.7768 to 0.9586 in the examined industries, as shown

in table 10. This results implies that larger firms are using technologies which manage

capital more efficiently relative to labor.

To explore how much the biased technological dispersion explains the dispersion of

K/L, I run a regression of the capital-labor ratio on the efficiency ratio and all other fac-

tors considered in Table 3. The results are shown in table 11. It is shown that adding the

technology ratio alone in the regression increases the explained variation of the capital-

labor ratio significantly. In the Clothing industry, adding the technology bias increases

the explained dispersion of the capital-labor ratio from 9.57% to 75.29%. The efficien-

cy ratio alone explains 65.72% of the variation of the capital-labor ratio across firms,

while the combined effect of the wage-interest rate ratio, firm size, ownership and year

dummy accounts for less than 10%. In the other three industries, the technology ratio

alone can explain the dispersion of the capital-labor ratio by 59.56%, 45.82% and 75.38%

respectively.

The correlation between the technology ratio and the capital-labor ratio is significant

and negative, as indicated by the negative coefficient on the technology ratio in the re-

gression. This means that firms with a higher capital-labor efficiency ratio use less capital

and more labor. This finding is consistent with the fact that capital and labor are gross

complements (elasticity of substitution is smaller than one). This finding implies that
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firms which are eager to save capital try to increase capital efficiency, and firms which are

eager to save labor try to increase labor efficiency. In the case of China, labor is abundant

and capital is scarce. Firms face higher pressure to save capital. We expect that capital

efficiency develops faster than labor efficiency.

The regression also shows that the wage-interest ratio and firm size both have a positive

effect on capital-labor ratio. State owned firms have a higher capital labor ratio and FDI

firms have a lower capital-labor ratio, compared to other non-SOE firms.

8 Biased Technological Change

This section investigates the feature of biased technological change. I compute the mean

of capital efficiency and labor efficiency weighted by firm sales for each industry-year.

Then the growth rate is computed as the percentage change in the mean efficiencies.

Note that when computing the mean, both new firms and continuing firms are included,

so the calculated efficiency growth rates involve the contribution of both continuing firms,

entering firms and exiting firms.

Table 12 shows that the capital efficiency grew much faster than labor efficiency in

all four industries. Capital efficiency grew at 23.13%-33.42% annually, while labor effi-

ciency at -1.94%-4.80% annually in these industries. This is different from the findings in

developed countries, which found that labor efficiency grows faster (Kalt, 1978; Cowing

and Stevenson, 1981; Antras, 2004; Klump, McAdam, and Willman, 2007). One expla-

nation for the difference is the different endowment structure in China and developed

countries. China has abundant labor but scarce capital, so Chinese firms develop capital

saving technology to maximize profit. In developed countries, capital is abundant and

labor is scarce and expensive, so firms in these countries develop labor saving technology

to maximize profit. As capital and labor are gross complements, a capital-saving tech-

nology requires that capital efficiency grows faster than labor efficiency. A labor-saving

technology requires that labor efficiency grows faster than capital efficiency.

Another reason for the fast growth of capital efficiency and slow growth of labor

efficiency is the technology-promoting policy, which provides strong incentives for firms to

update their technology. However, in the policy documents, the advanced technologies are

defined mainly by the equipment used. This says very little about the labor-augmenting

technologies. This very likely has an impact on firms’ technology choices.
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Another explanation is that firms in China do not have incentive to develop labor

saving technologies (by increasing labor efficiency) because China has an abundant labor

supply. In contrast, firms in developed countries face high wages and, as a result, they

try harder to improve labor efficiency to save labor.

As shown in Table 2, the capital-labor ratio decreases when the wage-interest rate

ratio increased in clothing and motor vehicle industries from 2000 to 2007. This is coun-

terintuitive. As labor becomes relatively more expensive, firms will use relatively more

capital and less labor, all other things constant. As a result, the capital-labor ratio should

increase. The biased technological change provides a candidate explanation for this ab-

normal observation. In these industries, the capital efficiency grows faster than labor

efficiency during this period, as shown in table 12. As a reaction to this, firms chose to

use relatively more labor than capital, because capital and labor are gross complements in

these industries (the estimated elasticity of substitution is smaller than one). This drives

down the capital-labor ratio.

Note the estimation does not rely on the restrictive assumptions about the productivity

evolution process. As a post-regression check, I run some reduced form regressions to

study the factors affecting the biased technological change. I am particularly interested

in the effect of R&D on technological change and the persistence of capital and labor

efficiencies. If R&D has an impact on the future capital-labor efficiency ratio, then firms

can endogenously determine the direction of biased technological change by choosing the

level of R&D. The persistence of capital and labor efficiencies are important, because

they measure how much productivity firms can carry over to future production. If the

efficiencies are persistent, firms will have a higher incentive to improve their productivity,

because with persistent productivity they can benefit from this for multiple periods in

the future once their productivity is improved today.

I regress capital and labor efficiencies on R&D, lagged capital efficiency, and lagged

labor efficiency. I also control for ownership by adding dummy variables for SOE and

FDI. The results are reported in table 13.

The first finding is that both capital efficiency and labor efficiency are very persistent.

The persistence coefficient for capital efficiency is 0.8476 in the Clothing industry; 0.8834

in the Paper & Paper Board Making industry; 0.8839 in the Production Equipments in-

dustry; and 0.6925 in the Motor Vehicles industry. This indicates that firms can carry a
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large part of their capital efficiency to the next period. At the same time, labor efficiency

has a positive impact on future capital efficiency in the first three industries and has no

significant effect in the Motor Vehicle industry. Note that because ωjt and υjt are the

logarithms of the absolute capital efficiency and labor efficiency, the persistence parame-

ters are actually the elasticities between the current productivity and future productivity.

Taking the Clothing industry for example, the result says that an 1% increase in current

capital efficiency increases future capital efficiency by 0.8476%. A 1% increase in current

labor efficiency increases future capital efficiency by 0.1501%, much smaller than the effect

of capital efficiency.

Labor efficiency is also persistent in these industries. The persistence parameters in the

four industries are 0.6587, 0.8079, 0.7806 and 0.8884 respectively. This means that firms

can carry over a large part of their labor efficiency to the future. A 1% increase in current

labor efficiency will increase future labor efficiency by 0.6587%, 0.8079%, 0.7806% and

0.8884%, respectively. However, the current capital efficiency does not have a statistically

significant effect on future labor efficiency, except in the Motor Vehicle industry. It is still

unclear why this is the case, but it probably means that expertise in managing capital

does not increase the expertise in managing labor in Chinese firms. The persistence of

capital and labor efficiencies provide extra incentive for firms to invest in productivity

improvement, because the improvement is carried over to future periods.

The second finding is that R&D has a positive impact on capital efficiency in all

four industries. This suggests that firms can endogenously affect their capital efficiency

through R&D investment. However, R&D has no statistically significant effect on the

labor efficiency. This may be due to two reasons. First, the technology-promoting policies

issued in 1999 and subsequent years defined the technologies by production equipment

which determines the capital efficiency, but not labor efficiency. Firms receive economic

incentives (such as tax credits, loan support and land rationing) only when they use the

technologies defined in these policies. As a result, it is likely that the technological changes

brought on by these policies are mainly focused on capital efficiency. Another possible

reason is related to the accounting system. The investment in improving labor efficiency

is not usually accounted in R&D. That’s why the observed R&D has no significant effect

on labor efficiency. In both cases, firms can choose their level and ratio of capital-labor

efficiency by choosing investment in R&D (and other labor efficiency-related investments).
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Ownership also has an impact on technology bias , which is consistent with the facts

documented in China. Compared to non-SOE firms, SOEs have lower capital efficiency in

all industries. SOEs also have lower labor efficiency in the Paper & Ppaper Board Making

and Motor Vehicles industries. In the other two industries the SOEs have statistically

indifferent labor efficiency compared to non-SOEs. FDI firms in these industries do not

show a significant advantage in capital efficiency and labor efficiency, which is probably

due to the fact that these industries are not high-tech industries and FDI firms do not

have many technology advantages.

9 Contribution of Biased Technological Change to E-

conomic Growth

The multidimensional productivity measure with biased technological change and biased

technological dispersion allows us to answer some fundamental questions about economic

growth in China. In particular, how much does technological change contribute to indus-

trial growth? How much do capital efficiency and labor efficiency each contribute to the

growth? And, is the growth in China sustainable? The answers to the first two ques-

tions shed some light on the sustainability of the growth in the Chinese economy. If the

technological change contributes a lot to the industrial growth, we should be optimistic

with the sustainability of the high growth rate in the Chinese economy. Otherwise, the

economic growth may stagnate after the drainage of the input growth. The answer to the

second question further lends some basis to the growth policies, by evaluating the relative

importance of the capital efficiency change and labor efficiency change in the economic

growth in China.

This section computes the sources of economic growth based on the estimates of bi-

ased technology. I decompose the growth rate of industrial output (gross output or value

added) into several sources: capital, labor, material, capital efficiency, labor efficiency and

entry/exit. Note that in this decomposition, the first five factors cover only effects from

continuing firms. The net entry/exit effect contains the total effect from entering/exiting

firms, which arises from the replacement of both technology and physical inputs by en-

tering/exiting firms. I put the technical details of the decomposition in Appendix E.

Table 14 and Table 15 report the results for gross output and value added, respectively.
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The growth rate in the four industries, as reported in the last column in these two tables,

ranges in 13.03%-18.43% for gross output, and 23.74%-26.30% for value added. These

growth rates are much higher than the average growth rate of the Chinese economy over

these years, indicating that manufacturing sectors grow faster than the average economy.

There was significant entry and exit in these industries during these years, in which entry

and exit contributes to 4.96% of the growth in the Clothing industry. In the other three

industries, entry/exit contributes negatively to the gross growth. Because the number

of firms was increasing at in these industries, the negative contribution of entry/exit to

growth implies that the entering firms are smaller than the exiting firms. To understand

the sources of growth in China, in the rest of this section I will focus on the growth of

value added, which is similar to the definition of gross domestic product (GDP). I will

also use the results from gross output as a verification.

9.1 Continuing Firms

Total Contribution of technological change The first interesting finding is that

technological change as a whole contributes in large to the growth of value added in all

four industries. The sum of the second and third columns in table 15 represents the total

contribution of technological change to the growth of value added. In the four industries,

technological change increased the growth rate of value added by 12.67%-21.16%. That

accounts for 52.70%, 63.61%, 63.46%, and 89.13% of the total growth of value added in

these industries. In contrast, the increased usage of capital and labor, in total, increased

the growth rate of value added by 7.5%-13.43%. The contribution of technological change

is higher than that of increased usage of capital and labor.

The results from the gross output also show that technological change significantly

contributes to the growth of gross output. As reported in table 14, technological change

contributes to the growth of gross output by 1.37%-2.54% in the four industries. That is

comparable to or even higher than the combined contribution of capital and labor, which

ranges from 0.94%-2.28% in the four industries. This indicates that the growth of these

industries will not stagnate if capital and labor stop growing, if the technological change

can maintain its current rate.
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Contribution of capital efficiency and labor efficiency The second finding is that

the contribution of technological change to the economic growth is mainly due to capital

efficiency change. In Table 15, capital efficiency change increased the growth rate of

value added by 11.40%-22.28% in the four industries. In contrast, labor efficiency change

contributed 1.27% to the growth in the Clothing industry and had a negative contribution

to the growth of value added in the other three industries. Results from the gross output

growth show similar results: capital efficiency change contributes to the output growth

positively by 1.60% - 3.29% and labor efficiency change contributes negatively by -0.09%-

-1.9% except in the Clothing industry (0.21%). This result is consistent with the finding

that capital efficiency grows faster than labor efficiency, as shown in Table 12.

This finding has multiple implications to growth policy. On one hand, it reflects that

the technology-promoting policies, that started at the end of the 1990s, mainly affected

the capital efficiency. In those policies, the definition of new technologies focused on

the equipment used but neglected the organization of workers. As a result, firms used

more capital-biased technology. On the other hand, the finding also implies that labor

efficiency change has great potential to help promote economic growth in the future.

When the cheap labor from the agricultural sector is drained, policy makers will need to

encourage the development of labor-saving technology in order to maintain the economic

growth.

9.2 Entering and Exiting Firms

The net effect of entry and exit contributes in large to the output growth, from -0.99%-

6.62%. This contribution is due to both the change in the usage of inputs and the differ-

ence in the technology used by the entering firms compared to exiting firms. Note that

entry/exit contributes to the output growth through the replacement of both technology

and physical inputs. This section shows the productivity features of entering and exiting

firms.

Table 16 compares the efficiencies of entering, exiting and continuing firms. Compared

to exiting firms, the entering firms have an advantage in at least one of the efficiencies. In

clothing and motor vehicles, entering firms have higher capital efficiency, but slightly lower

labor efficiency than exiting firms. In the Paper & Paper Board Making and Equipments

industries, entering firms have both higher capital efficiency and labor efficiency. These
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results suggest that firm turnover plays an important role in technological change.

10 Concluding Remarks

This paper builds and estimates a structural model of firms’ production decisions with

different capital- and labor-augmenting efficiencies across firms. This setup allows for

a factor-biased technological change over time and factor-biased technological dispersion

across firms. I develop a new method to identify and estimate the biased technology from

input-output data. The identification relies on the first order conditions of firms’ optimal

input choices to recover the unobserved productivities. The use of first order conditions

also establishes a link between the biased technological change and the elasticity of sub-

stitution. This additional restriction overcomes the Diamond’s Impossibility Theorem

(Diamond, McFadden, and Rodriguez, 1978) and leads to the identification of both the

biased technological change and the elasticity of substitution. This method can estimate

the firm-level technology bias at any time.

The estimation results using a firm-level panel data set during 2000-2007 in China

provide firm-level evidence of biased technological change over time and biased techno-

logical dispersion across firms. The results show that during 2000-2007, capital efficiency

grew much faster than labor efficiency in China. The results also show that large firms

manages capital more efficiently relative to labor, and the biased technological dispersion

explains a large part of the dispersion of the capital-labor ratio among firms.

This model provides a method to explore some fundamental questions in economic

growth, such as the contribution of technological change and, more specifically, the con-

tribution of capital- and labor-augmenting efficiency changes to economic growth. These

questions are especially important for China, which has maintained a high growth rate in

the past three decades. In the application, I find that technological change contributes

to over one half of the growth of value added. From 2000 to 2007, the value added grows

at a rate of 23.74%-26.30% in the four industries, of which 12.67%-21.16% is explained

by the technological change. This finding indicates that after the implementation of

the technology-promoting policies since 1999, the technological change became the major

source of growth in these industries. This finding sheds some positive light on the sustain-

ability of the growth of the Chinese economy. Another important finding is that the high

contribution of technological change is mainly due to capital efficiency change. The labor
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efficiency change has a relatively small and even negative contribution. This reflects the

effect of the technology-promoting policy during the data period, which emphasizes the

adoption of new production lines but ignores the labor efficiency change. It also suggests

that Chinese firms can further explore their potential by improving their labor efficiency

in the future.

The firm-level technology bias has potentially wide applications in many fields. It

captures another layer of firm heterogeneity in productivity and emphasizes that the

composition of input efficiencies is an important firm heterogeneity in addition to the

productivity level. It predicts that firms with different compositions of capital efficiency

and labor efficiency will react differently to the same economic shock even if they have

the same measured neutral technology level. For example, subject to a negative capital

price shock, firms with higher capital efficiency will expand their production and firms

with lower capital efficiency will shrink even if they all have the same measured neutral

technology before the shock. This is of vital importance when performing firm behavior

analysis. In industrial organization, for example, the unobserved composition of technol-

ogy is important in the study of entry/exit, growth/shrinkage and the size distribution of

firms. In international trade, the composition of technology is important to understand-

ing decisions of multinational firms (e.g. outsourcing decision and production location

choice around the world). In policy analysis, the composition of technology is important

in evaluating the effectiveness and fairness of a policy in public economics. For example,

if some firms continuously use more capital relative to labor while others instead use more

labor due to technology bias, a seemingly neutral policy, such as an investment tax rebate

policy, may favor the more capital-intensive firms/industries.

35



References

Ackerberg, D. A., K. Caves, and G. Frazer (2006): “Structural Identification of
Production Function,” UCLA, Deloitte and Touche, Rotman School of Management.

Antras, P. (2004): “Is the U.S. Aggregate Production Function Cobb-Douglas? New
Estimates of the Elasticity of Substitution,” Contributions in Macroeconomics, 4, 1.

Bhargava, A. (1986): “On the Theory of Testing for Unit Roots in Observed Time
Series,” Review of Economic Studies, 53, 369–384.

Brown, M., and J. S. D. Cani (1963): “Technological Change and the Distribution
of Income,” International Economic Review, 4, 289–309.

Cowing, T. G., and R. E. Stevenson (1981): Productivity measurement in regulated
industries. Academic Press.

David, P. A., and T. Van de Klundert (1965): “Biased efficiency growth and capital-
labor substitution in the US, 1899-1960,” The American Economic Review, pp. 357–394.

Diamond, P., D. McFadden, and M. Rodriguez (1978): “Measurement of the
elasticity of substitution and bias of technical change,” In Fuss, M. and Fadden, D.
M., editors, Production economics, 2, 125–147.

Doraszelski, U., and J. Jaumandreu (2012): “R & D and productivity: Estimating
endogenous productivity,” University of Pennsylvania and Boston University.

Easterly, W., and R. Levine (2001): “What have we learned from a decade of
empirical research on growth? It’s Not Factor Accumulation: Stylized Facts and Growth
Models,” The World Bank Economic Review, 15(2), 177–219.

Feenstra, R. C., Z. Li, and M. Yu (2011): “Exports and credit constraints under
incomplete information: Theory and evidence from china,” Discussion paper, National
Bureau of Economic Research.

Gandhi, A., S. Navarro, and D. Rivers (2011): “On the Identification of Production
Functions: How Heterogeneous is Productivity?,” University of Wisconsin-Madison and
University of Western Ontario.

Grieco, P., S. Li, and H. Zhang (2013): “Production Function Estimation with
Unobserved Input Price Dispersion,” Pennsylvania State University Working Paper.

Hadri, K. (2000): “Testing for stationarity in heterogeneous panel data,” The Econo-
metrics Journal, 3(2), 148–161.

Hu, A., and J. Zheng (2006): “An empirical analysis of provincial productivity in China
(1979–2001),” Journal of Chinese Economic and Business Studies, 4(3), 221–239.

IMF (ed.) (2011): World Economic Outlook.International Monetary Fund.

Kalt, J. P. (1978): “Technological change and factor substitution in the United States:
1929-1967,” International Economic Review, 19(3), 761–775.

36



Klump, R., and O. de La Grandville (2000): “Economic Growth and the Elasticity
of Subsitituion: Two Theorems and Some Suggestions,” American Economic Review,
90(1), 282–291.

Klump, R., P. McAdam, and A. Willman (2007): “Factor substitution and factor-
augmenting technical progress in the United States: a normalized supply-side system
approach,” The Review of Economics and Statistics, 89(1), 183–192.

Kwiatkowski, D., P. C. Phillips, P. Schmidt, and Y. Shin (1992): “Testing the
null hypothesis of stationarity against the alternative of a unit root: How sure are we
that economic time series have a unit root?,” Journal of econometrics, 54(1), 159–178.

Leon-Ledesma, M. A., P. McAdam, and A. Willman (2010): “Identifying the
Elasticity of Substitition with Biased Technical Change,” American Economic Review,
100(4), 1330–1357.

Levinsohn, J., and A. Petrin (2003): “Estimating Production Functions Using Inputs
to Control for Unobservables,” The Review of Economic Studies, 70(2), pp. 317–341.

Olley, G. S., and A. Pakes (1996): “The Dynamics of Productivity in the Telecom-
munications Equipment Industry,” Econometrica, 64(6), pp. 1263–1297.

Panik, M. J. (1976): “Factor Learning and Biased Factor-Efficiency Growth in the
United States, 1929-1966,” International Economic Review, 17(3), 733–739.

Sato, R. (1970): “The estimation of biased technical progress and the production func-
tion,” International Economic Review, 11(2), 179–208.

(1980): “The impact of technical change on the holotheticity of production
functions,” The Review of Economic Studies, 47(4), 767–776.

Stevenson, R. (1980): “Measuring technological bias,” The American Economic Re-
view, 70(1), 162–173.

Wilkinson, M. (1968): “Factor supply and the direction of technological change,” The
American Economic Review, 58(1), 120–128.

37



Appendices

Appendix A Proof of Proposition 1

By the definition of El and Em, the function f(x; y) is written as

f(x; y) =

{
El
jt − SLjt exp(εjt),

Em
jt − SMjt exp(εjt).

The first order derivative of f(x; y) with respect to y is

∂f(x; y)

∂y
=

El
jtω El

jtυ

Em
jtω Em

jtυ

.

Under the condition that given the production parameters
Eljtω
Emjtω
6= Eljtυ

Emjtυ
at the data point

(xdata, ydata), we have
∂f(x; y)

∂y
|(xdata,ydata) 6= 0.

Also, according to the first order conditions, we have

f(x; y) |(xdata,ydata)= 0.

Then following the Implicit Function Theorem, there exists a ε > 0 and a two-dimensional

function Z (·; θ) =

(
ω (·; θ)
υ (·; θ)

)
, such that for any (x, y) ∈

{
(x, y) :

∥∥(x, y)− (xdata, ydata)
∥∥ < ε

}
,

y = Z (x; θ) =

(
ω (x; θ)
υ (x; θ)

)
.

This completes the proof of proposition 1. n

Appendix B Taylor Expansion to Speed Up the Pro-

gram

This appendix shows how to solve for εjt from the estimation equation using Taylor
expansion in order to speed up the estimation. The solved εjt then is used to form the
moment conditions in the estimation. As |εjt| is small, since εjt is the logarithm of the
measurement error in the production function, the approximation of εjt based on Taylor
expansion is close to its true value. This approximation avoids solving equations for εjt
at each data point for each iteration and can significantly speed up the program.

The estimation equation is written as,
lnQjt = (ak + akm lnMjt) (ωjt) + (al + alm lnMjt) (υjt)
+1

2
akk (ωjt + lnKjt)

2 + 1
2
all (υjt + lnLjt)

2 + akl (ωjt + lnKjt) (υjt + lnLjt)

+a0+(ak + akm lnMjt) (lnKjt)+(al + alm lnMjt) (lnLjt)+
1
2
amm (lnMjt)

2+am lnMjt+
εjt
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where[
ωjt
υjt

]
=

[
akl all
akm alm

]−1 [
Sljt exp(εjt)− (al + all lnLjt + akl lnKjt + alm lnMjt)

Smjt exp(εjt)− (am + akm lnKjt + alm lnLjt + amm lnMjt)

]

Denote D =

[
akl all
akm alm

]−1
and Dmn as the element of matrix D in row m and column

n. The derivative of lnQjt with respect to εjt evaluated at εjt = 0 is

d lnQjt

dεjt
|εjt=0 = (ak + akm lnMjt)

(
D11S

l
jt +D12S

m
jt

)
+ (al + alm lnMjt)

(
D21S

l
jt +D22S

m
jt

)
(14)

+
[
akk
(
ωjt|εjt=0 + lnKjt

)
+ akl

(
υjt|εjt=0 + lnLjt

)] (
D11S

l
jt +D12S

m
jt

)
+
[
all
(
υjt|εjt=0 + lnLjt

)
+ akl

(
ωjt|εjt=0 + lnKjt

)] (
D21S

l
jt +D22S

m
jt

)
+ 1

Taking the first order expansion of the function lnQjt at point εjt = 0, we have

lnQjt = lnQjt|εjt=0 +
d lnQjt

dεjt
|εjt=0 (εjt − 0) + o(εjt)

lnQjt = lnQjt|εjt=0 +
d lnQjt

dεjt
|εjt=0 (εjt − 0) + o(εjt)

Assume that for given data,
∣∣∣d lnQjtdεjt

∣∣∣ is bounded from zero for any parameter at εjt = 0,

so we have

εjt =
[
lnQjt − lnQjt|εjt=0 − o(εjt)

]
/
d lnQjt

dεjt
|εjt=0

≈
[
lnQjt − lnQjt|εjt=0

]
/
d lnQjt

dεjt
|εjt=0

where lnQjt|εjt=0 is the value of lnQjt evaluated at εjt = 0, and
d lnQjt
dεjt
|εjt=0 is given in

equation (14).

Appendix C Compute the Numerical Elasticity of Sub-

stitution

This appendix calculates the numerical elasticity of substitution for the translog produc-
tion function.

lnYjt = a0 + ak (ωjt + lnKjt) + al (υjt + lnLjt) + am lnMjt (15)

+
1

2
akk (ωjt + lnKjt)

2 +
1

2
all (υjt + lnLjt)

2 +
1

2
amm (lnMjt)

2

+akl (ωjt + lnKjt) (υjt + lnLjt) + akm (ωjt + lnKjt) lnMjt

+alm (υjt + lnLjt) lnMjt
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Marginal product of capital

FK =
ak
Kjt

+
akk (ωjt + lnKjt)

Kjt

+
akl (υjt + lnLjt)

Kjt

+
akm lnMjt

Kjt

FL =
al
Ljt

+
all (υjt + lnLjt)

Ljt
+
akl (ωjt + lnKjt)

Ljt
+
alm lnMjt

Ljt

FM =
am
Mjt

+
amm lnMjt

Mjt

+
akm (ωjt + lnKjt)

Mjt

+
alm (υjt + lnLjt)

Mjt

FK
FL

=

ak
Kjt

+
akk(ωjt+lnKjt)

Kjt
+

akl(υjt+lnLjt)

Kjt
+

akm lnMjt

Kjt

al
Ljt

+
all(υjt+lnLjt)

Ljt
+

akl(ωjt+lnKjt)

Ljt
+

alm lnMjt

Ljt

=
ak + akk (ωjt + lnKjt) + akl (υjt + lnLjt) + akm lnMjt

al + all (υjt + lnLjt) + akl (ωjt + lnKjt) + alm lnMjt

Ljt
Kjt

Elasticity of substitution between labor and capital:

σKL = − d ln(K/L)

d ln(FK/FL)

= − d ln(K/L)

d ln
[
(
ak+akk(ωjt+lnKjt)+akl(υjt+lnLjt)+akm lnMjt

al+all(υjt+lnLjt)+akl(ωjt+lnKjt)+alm lnMjt
)
Ljt
Kjt

]
= −

(
ak+akk(ωjt+lnKjt)+akl(υjt+lnLjt)+akm lnMjt

al+all(υjt+lnLjt)+akl(ωjt+lnKjt)+alm lnMjt
)
Ljt
Kjt

d
[
(
ak+akk(ωjt+lnKjt)+akl(υjt+lnLjt)+akm lnMjt

al+all(υjt+lnLjt)+akl(ωjt+lnKjt)+alm lnMjt
)
Ljt
Kjt

] d (K/L)

K/L

= −

(
ak+akk(ωjt+lnKjt)+akl(υjt+lnLjt)+akm lnMjt

al+all(υjt+lnLjt)+akl(ωjt+lnKjt)+alm lnMjt

)
Ljt
Kjt

K/L

d

[
ak+akk(ωjt+lnKjt)+akl(υjt+lnLjt)+akm lnMjt

al+all(υjt+lnLjt)+akl(ωjt+lnKjt)+alm lnMjt

Ljt
Kjt

]
d(K/L)

= −
(
Skjt
Sljt

)
Ljt
Kjt

K/L

d
(
Skjt
Sljt

Ljt
Kjt

)
d (K/L)


−1

There is no closed-form solution. I instead compute the numerical approximation.
The procedure is: (1) Keep Ljt constant and increase Kjt by 1%; (2) compute the change
of ln(Kjt/Ljt) and ln(FK/FL) numerically; (3) use the formula to compute the approxi-
mation of the elasticity of substitution.
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= −

 0.01∗0.99[
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jt

Sl
jt

]
K

−
[
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jt
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jt

]
K−1%K

 (
Skjt

Sl
jt

)

1
.

Appendix D Test the Invertibility Condition

To derive the estimation equation (12 ), I assume that the invertibility condition is satisfied
(Assumption 8). This means that the estimator is valid under this restriction aklalm −
akmall 6= 0. In this appendix I describe the details to test this restriction. The test is
based on Wald statistics. The null and alternative hypothesis are

H0 : aklalm − akmall = 0 (Invertibility condition is violated)

H1 : aklalm − akmall 6= 0 (Invertibility condition is satisfied)

The test results are reported in table 7. It shows that H0 is strongly rejected in all
industries. This indicates that the invertilibity condition generally is valid.

Appendix E Sources of Industrial Growth

The rate of output growth
d lnYjt
dt

= ak

(
dωjt
dt

+
d lnKjt
dt

)
+ al

(
dυjt
dt

+
d lnLjt
dt

)
+ am

d lnMjt
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+akk (ωjt + lnKjt)
(
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dt

d lnYjt
dt

=

(
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dt

+
d lnKjt

dt

)
[ak + akk (ωjt + lnKjt) + akl (υjt + lnLjt) + akm lnMjt]

+

(
dυjt
dt

+
d lnLjt
dt

)
[al + all (υjt + lnLjt) + akl (ωjt + lnKjt) + alm lnMjt]

+
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dt
[am + amm lnMjt + akm (ωjt + lnKjt) + alm (υjt + lnLjt)]

= Skjt
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dt

+ Skjt
d lnKjt

dt
+ Sljt

dυjt
dt

+ Sljt
d lnLjt
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d lnKjt
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d lnLjt
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dt
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where

Skjt , [ak + akk (ωjt + lnKjt) + akl (υjt + lnLjt) + akm lnMjt] ,

Sljt , [al + all (υjt + lnLjt) + akl (ωjt + lnKjt) + alm lnMjt] ,

Smjt , [am + amm lnMjt + akm (ωjt + lnKjt) + alm (υjt + lnLjt)] .
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The growth of output can be accounted for by five sources. The first three sources
are due to the growth of physical inputs (capital, labor and material), which correspond

to the first three terms in the equation. The last two sources, captured by Skjt
dωjt
dt

and

Sljt
dυjt
dt
, correspond to the contribution of productivity. It is a composite of two sources,

the growth of capital efficiency (Skjt
dωjt
dt

) and the growth of labor efficiency (Sljt
dυjt
dt

). This
is a new term compared to the traditional neutral technology measure, which measures
only the level of productivity change. Instead, out new measure allows us to attribute the
change of productivity to the change of capital efficiency and labor efficiency.

In discrete time

a
Yjt

Yjt−1
= Skjt

a
Kjt

Kjt−1
+ Sljt

a
Ljt

Ljt−1
+ Smjt

a
Mjt

Mjt−1
+ Skjt

i
ωjt + Sljt

i
υjt

where
a
Xjt is defined as

a
Xjt = Xjt −Xjt−1.

Industrial Growth with Entry and Exit
The aggregate output for each industry at time t and t−1 is defined as Yt =

∑
j∈Jt Yjt

and Yt−1 =
∑

j∈Jt−1
Yjt−1 respectively. Jt and Jt−1 are the sets of firms in the industry at

time t and t−1. Define Ct = Jt∩Jt−1, Nt = Jt/Jt−1 and Xt = Jt−1/Jt. Then Ct represents
the set of continuing firms, Nt the set of new entrants, and Xt the set of exiters. The
growth of the aggregate output in the industry is written as
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where Sjt−1 is the share of firm j in the aggregate industrial output at date t, Sjt−1 =
Yjt−1

Yt−1
.

There are three sources of the growth of aggregate industrial output. The first source is
the accumulation of physical inputs. The increased usage of capital, labor and material
contributes to the growth of industrial output, as shown in the first line of the last equality.
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The second source is due to the growth of productivity. The growth of capital efficiency
and/or labor efficiency contributes to the growth of industrial output, as shown in the
second line of the last equality. Note that this measure allows the capital efficiency and
labor efficiency to grow in an uneven way. That is, technological change could be biased.

The last source is the net entry and exit effect. Entering firms contribute to increase
the industrial output and the exiting firms contribute to decrease the industrial output.
The net effect is captured by the third line of the last equality. The total effect is the sum
of the three sources.
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Table 1: Summary Statistics of Key Variables (Industry Mean)1

Industry #Firms Age R2 K L LSH Wage R/L K/L

Clothing 50,180 87 38,825 6,280 284.98 0.09 14.95 136.24 27.25
Paper&Board 14,065 129 58,515 27,536 252.42 0.05 12.69 231.82 143.35
Equipment 1,388 149 42,251 12,038 187.62 0.08 23.73 225.20 82.90
Motor Vehicle 1,194 82 301,847 55,854 532.58 0.03 19.67 566.77 114.77

1 All values in 1,000 RMB. Age in months.
2 R: revenue. K: capital. L: number of workers. LSH: labor share in revenue. Wage: wage rate. R/L:

revenue per worker. K/L: capital-labor ratio.

Table 2: Industry Mean1 of Capital-Labor Ratio and Inputs Prices in China: 2000-2007

2000 2001 2002 2003 2004 2005 2006 2007 growth

Clothing
Wage/Interest 206.22 191.37 222.81 228.84 213.69 229.24 260.35 253.56 22.96%
Capital/Labor 28.67 27.20 29.660 26.63 25.42 26.43 27.43 27.63 -3.64%
Paper&Board
Wage/Interest 169.18 171.73 203.46 200.47 190.07 201.40 210.49 217.00 28.26%
Capital/Labor 107.20 129.64 148.11 159.30 139.76 151.88 141.76 144.36 34.66%
Equipment2

Wage/Interest 243.47 257.56 351.92 395.58 360.56 407.14 416.80 367.46 50.93%
Capital/Labor 79.70 61.46 79.79 80.10 76.56 87.57 93.94 81.83 2.67%
Motor Vehicle
Wage/Interest 272.06 255.53 267.01 302.03 319.15 314.90 336.21 320.42 17.77%
Capital/Labor 168.20 170.53 143.24 118.96 101.94 105.53 104.41 93.75 -44.26%

1 Weighted mean by revenue share.
2 Equipment refers to Foods, Beverages and Tobacco Production Equipment industry.

Table 3: Explanation Power of Inputs Prices and Other Factors

Factors Rsquare(1)1 Rsquare(2) Rsquare(3) Rsquare(4)

Clothing 0.0777 0.0820 0.0926 0.0957
Paper&Board 0.1596 0.1635 0.1773 0.1784
Equipment 0.2142 0.2254 0.2404 0.2413
Motor Vehicle 0.0326 0.0574 0.0622 0.1161

1 Dependent variable is the capital-labor ratio. Regressors differs from regres-

sions from (1)to (4). The regressors in each regression: (1) wage-interest rate

ratio; (2) add control for firm size measured by sales; (3) add control for year;

(4) add control for ownership.
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Table 4: Estimation Result of Production Function

Clothing Paper & Board Equipment Motor Vehicle

para SE para SE para SE para SE

ak 0.0393 (0.0336)1 0.0884 (0.0060) 0.1402 (0.0014) 0.1080 (0.0819)
al 0.5272 (0.1360) 0.3527 (0.0405) 0.5009 (0.0094) 0.1553 (0.0979)
am 0.3593 (0.0219) 0.5202 (0.0410) 0.3524 (0.0027) 0.6963 (0.0373)
akk -0.0301 (0.0004) -0.0062 (0.0000) -0.0152 (0.0000) 0.0001 (0.0039)
all -0.1178 (0.0121) -0.2176 (0.0391) -1.5105 (0.0023) -0.2396 (0.0534)
amm 0.1530 (0.0263) -0.0633 (0.0025) 0.2510 (0.0001) -0.2652 (0.0353)
akl 0.1171 (0.0011) 0.1061 (0.0026) 0.2552 (0.0000) 0.2552 (0.0158)
akm 0.0189 (0.0015) 0.0216 (0.0001) -0.0569 (0.0000) 0.0617 (0.0063)
alm -0.2982 (0.0043) -0.4102 (0.0332) -0.1790 (0.0000) -0.5947 (0.0636)
a0 1.7012 (0.3914) 1.3191 (0.4027) 1.0480 (0.0146) 1.0166 (0.7686)

#obs 50,022 13,958 1,374 1,185

1 Standard deviation in parentheses.

Table 5: Output Elasticity and Scale Economics

Industry Labor Material Capital Scale

Clothing (1810) 0.0937 0.7414 0.0725 0.9076
Paper&Board(2221) 0.0453 0.7640 0.0763 0.8856
Equipment(3631) 0.0835 0.7251 0.0779 0.8865
Motor Vehicle (3731) 0.0285 0.8036 0.1061 0.9382

Table 6: Distribution of Elasticity of Substitution (Quantile)

Industry .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Clothing 0.2162 0.3009 0.3707 0.4331 0.4932 0.5556 0.6270 0.7262 0.9090
Paper&Board 0.1779 0.2442 0.2990 0.3515 0.4093 0.4796 0.5682 0.6933 0.9033
Equipment 0.0763 0.1228 0.1607 0.2072 0.2515 0.3007 0.3652 0.4389 0.5631
Motor Vehicle 0.0321 0.0491 0.0674 0.0852 0.1064 0.1310 0.1631 0.2056 0.2914

1 They represent different quantiles.
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Table 7: Wald Test of Invertibility Condition1

Industry Statistic 5% significance level 2.5% significance level

Critical Decision Critical Decision

Clothing 2.55E-10 0.0040 Reject H0 0.0010 Reject H0
Paper&Board 3.23E-06 0.0040 Reject H0 0.0010 Reject H0
Equipment 1.70E-04 0.0040 Reject H0 0.0010 Reject H0
Motor Vehicle 2.33E-04 0.0040 Reject H0 0.0010 Reject H0

1 H0: invertibility condition is violated. H1: Invertibility condition is satisfied.

Table 8: Test against Neutral Technology Change1

Industry Statistic 5% significance level 1% significance level

Lower2 Upper Lower Upper

Clothing 2.44E+06 -1.96 1.96 -2.5758 2.5758
Paper&Board 1.52E+06 -1.96 1.96 -2.5758 2.5758
Equipment 5.50E+05 -1.96 1.96 -2.5758 2.5758
Motor Vehicle 3.69E+05 -1.96 1.96 -2.5758 2.5758

1 H0: Neutral technology change. H1: Biased technology change.
2 Lower and upper represent lower bound and upper bound, respectively.

Table 9: Test against Neutral Technology Dispersion1

Industry Statistic 5% significance level 1% significance level

Lower Bd Upper Bd Lower Bd Upper Bd

Clothing 1.19E+19 -1.96 1.96 -2.5758 2.5758
Paper&Board 1.04E+16 -1.96 1.96 -2.5758 2.5758
Equipment 3.18E+11 -1.96 1.96 -2.5758 2.5758
Motor Vehicle 1.37E+11 -1.96 1.96 -2.5758 2.5758

1 H0: Neutral technology dispersion. H1: Biased technology dispersion.

Table 10: Correlation Between Technology Bias (TB) and Firm Size1

Industry Clothing Paper&Board Equipment Motor Vehicle

Corr(TB,firmsize) 0.7768 0.9586 0.9533 0.8161

1 Technology Bias (TB) is the ratio of capital efficiency to labor efficiency. Firm size is

defined as sales.
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Table 11: Explanation Power of Inputs Prices and Other Factors1

Factors Rsquare(1) Rsquare(2) Rsquare(3) Rsquare(4) Rsquare(5)

Clothing 0.0777 0.0820 0.0926 0.0957 0.7529
Paper&Board 0.1596 0.1635 0.1773 0.1784 0.7740
Equipment 0.2142 0.2254 0.2404 0.2413 0.6995
Motor Vehicle 0.0326 0.0574 0.0622 0.1161 0.8699

1 Dependent variable is the capital-labor ratio. Regressors differs from regression from (1) to

(5). The regressors in each regression: (1) wage-interest rate ratio; (2) add control for firm

size measured by sales; (3) add control for year; (4) add control for ownership; (5) add the

technology bias measure.

Table 12: Growth Rate (%) of Capital Efficiency (KE) and Labor Efficiency (LE)1

Year Clothing Paper&Board Equipment Motor Vehicle

KE LE KE LE KE LE KE LE

2001 29.3500 4.9500 38.1500 -4.3800 49.4400 -2.3200 25.1800 5.4900
2002 30.7600 0.7000 26.6400 -3.1300 18.7400 -0.1800 37.7600 -10.9800
2003 29.9800 8.2500 22.8300 1.1400 34.2800 -1.6900 49.6100 2.9000
2004 19.5100 11.2100 24.3700 1.2100 57.2100 -0.9000 48.1200 -13.6500
2005 29.7800 4.7900 22.0100 2.3400 39.5800 -2.4900 1.3700 5.0400
2006 27.6000 3.7000 27.8900 0.6400 34.6800 0.1400 20.0300 -2.4000
Mean 23.8500 4.8000 23.1300 -0.3100 33.4200 -1.0600 25.6200 -1.9400

1 Unbalanced panel. So the result Includes contribution of both continuing and entering/exitting

firms.
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Table 13: R&D and the Evolution of Capital and Labor Efficiency

Clothing Paper&Board Equipment Motor Vehicle

Para SE Para SE Para SE Para SE

Capital E:
R&D 0.1856 (0.0448)1 0.0538 (0.0655) 0.1229 (0.0169) 0.5844 (0.1884)
lagKE 0.8476 (0.0055) 0.8834 (0.0116) 0.8839 (0.0353) 0.6925 (0.0480)
lagLE 0.1501 (0.0182) -0.0905 (0.0225) -0.0984 (0.0792) -0.0847 (0.0923)
SOE -0.1986 (0.0695) -0.2655 (0.0725) -0.4791 (0.2641) -0.4982 (0.3992)
FDI -0.0016 (0.0197) -0.0094 (0.0678) 0.0408 (0.1795) 0.1286 (0.2738)

contant 2.2930 (0.0734) 1.4348 (0.1405) 1.8680 (0.5125) 2.0616 (0.5205)
Labor E:

R&D -0.0071 (0.0169) -0.0690 (0.0322) -0.0402 (0.0684) -0.0693 (0.0754)
lagKE -0.0010 (0.0021) -0.0774 (0.0057) -0.0733 (0.0143) 0.0044 (0.0192)
lagLE 0.6587 (0.0069) 0.8079 (0.0111) 0.7806 (0.0321) 0.8884 (0.0369)
SOE 0.0165 (0.0262) -0.0645 (0.0356) 0.0234 (0.1071) -0.2251 (0.1597)
FDI -0.0704 (0.0075) -0.0631 (0.0333) -0.0268 (0.0728) -0.1123 (0.1096)

contant -0.4450 (0.0277) -0.5016 (0.0690) -0.5184 (0.2078) -0.7860 (0.2083)
BTC:
R&D 0.1927 (0.0487) 0.1229 (0.0838) 0.1631 (0.2051) 0.6536 (0.2256)
lagKE 0.8486 (0.0060) 0.9609 (0.0149) 0.9572 (0.0429) 0.6881 (0.0575)
lagLE -0.5086 (0.0198) -0.8984 (0.0288) -0.8790 (0.0963) -0.9730 (0.1105)
SOE -0.2151 (0.0755) -0.2010 (0.0928) -0.5025 (0.3211) -0.2732 (0.4781)
FDI 0.0688 (0.0215) 0.0537 (0.0867) 0.0676 (0.2183) 0.2409 (0.3279)

contant 2.7379 (0.0798) 1.9364 (0.1798) 2.3864 (0.6231) 2.8476 (0.6233)

1 The standard errors are in the parentheses.
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Table 14: Sources of Aggregate Growth of Gross Output(%): 2001-2006

Capital Labor Capital Labor Material Entry Growth1

Efficiency Efficiency Input Input Input /Exit Rate

Clothing:
2001 1.50 0.22 0.81 1.19 6.83 4.33 14.88
2002 1.72 -0.07 1.17 1.46 10.16 2.56 17.01
2003 1.65 0.33 0.77 1.10 9.85 8.15 21.86
2004 1.06 0.33 0.18 0.67 6.15 5.02 13.41
2005 1.92 0.27 0.24 1.38 12.58 3.81 20.21
2006 1.73 0.18 0.44 1.63 10.21 5.89 20.08
Mean 1.60 0.21 0.60 1.24 9.30 4.96 17.91

Paper&Board:
2001 2.45 -0.23 1.28 0.51 11.47 -1.68 13.79
2002 1.76 -0.24 3.82 1.04 20.01 -12.09 14.30
2003 1.78 0.01 2.46 0.43 15.69 9.95 30.32
2004 1.37 0.04 1.17 0.33 22.52 -13.55 11.88
2005 1.39 -0.02 0.38 0.39 10.57 7.52 20.23
2006 1.70 -0.11 1.44 0.42 11.01 2.51 16.96
Mean 1.74 -0.09 1.76 0.52 15.21 -1.22 17.92

Equipment:
2001 3.60 -0.44 0.04 2.03 17.75 -14.96 8.03
2002 1.48 0.49 0.67 0.33 19.02 -4.96 17.03
2003 2.50 -0.55 1.51 1.59 13.62 5.88 24.55
2004 5.85 -0.20 -0.11 1.00 16.73 2.75 26.01
2005 3.05 -0.15 0.23 0.66 16.22 -4.66 15.35
2006 3.24 -0.31 0.23 1.01 11.82 3.63 19.61
Mean 3.29 -0.19 0.43 1.10 15.86 -2.05 18.43

Motor Vehicle:
2001 1.60 0.19 0.13 0.00 8.70 -15.13 -4.51
2002 4.08 -0.22 1.87 0.51 11.70 -5.52 12.42
2003 4.32 -0.21 -0.56 0.22 12.23 5.05 21.05
2004 4.09 -0.44 0.33 0.60 18.90 -1.15 22.33
2005 -0.18 0.14 1.59 0.20 1.77 3.66 7.18
2006 1.93 -0.08 0.49 0.25 10.35 6.77 19.72
Mean 2.64 -0.10 0.64 0.30 10.61 -1.05 13.03

1 “Growth rate” refers to the growth rate of deflated output value.
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Table 15: Sources of Aggregate Growth of Value Added (%): 2001-2006

Capital Labor Capital Labor Entry Growth1

Efficiency Efficiency Inputs Inputs /Exit Rate

Clothing:
2001 11.70 1.23 5.27 6.95 -7.78 17.37
2002 13.05 -0.53 7.34 8.24 -13.61 14.49
2003 12.29 2.12 4.75 5.46 10.40 35.03
2004 7.28 2.21 1.79 2.77 11.26 25.31
2005 12.55 1.48 2.14 7.06 3.46 26.69
2006 11.53 1.09 3.22 7.83 1.68 25.34
Mean 11.40 1.27 4.08 6.38 0.90 24.04

Paper&Board:
2001 22.36 -1.99 0.33 3.51 -28.05 6.16
2002 15.10 -2.13 16.95 5.48 -7.08 28.33
2003 14.10 -0.13 12.43 2.16 12.34 40.91
2004 14.03 -0.33 7.87 2.95 -20.93 3.59
2005 13.42 -0.03 5.43 2.10 19.66 40.58
2006 17.49 -1.02 8.27 3.13 -4.65 23.22
Mean 16.08 -0.94 10.21 3.22 -4.78 23.80

Equipment:
2001 22.06 -4.27 2.25 11.20 10.78 42.03
2002 7.89 0.79 4.71 3.51 -0.61 16.30
2003 13.18 -2.55 8.48 8.42 17.23 44.77
2004 27.25 -2.37 1.05 6.73 -12.77 19.90
2005 22.06 -1.32 3.48 5.65 2.06 31.93
2006 18.33 -0.91 3.24 5.35 -23.15 2.86
Mean 18.46 -1.77 3.87 6.81 -1.08 26.30

Motor Vehicle:
2001 21.29 0.89 3.00 0.12 -52.06 -26.76
2002 31.98 -1.84 12.39 3.79 3.07 49.39
2003 33.12 -2.22 -3.58 1.33 16.72 45.37
2004 33.55 -3.85 5.27 3.70 -23.14 15.53
2005 1.72 1.23 13.37 1.06 12.50 26.43
2006 15.49 -0.90 2.82 1.80 13.30 32.51
Mean 22.28 -1.12 5.54 1.97 -4.93 23.74

1 “Growth rate” refers to the growth rate of deflated value added.
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Table 16: Capital and Labor Efficiencies (KE and LE)for Entering, Exiting and Con-
tinuing Firms1

Entering Exiting Continuing Entering Exiting Continuing

Clothing: Equipment:
KE 18.6178 18.3428 19.6618 25.8614 25.7389 27.4545
SE (2.4051)2 (2.4326) (2.4551) (3.3686) (3.2723) (3.5105)
LE -2.2297 -2.1358 -2.4554 -7.3170 -7.4331 -7.9434
SE (0.6023) (0.6188) (0.5603) (1.0032) (1.0624) (1.1085)

Paper&Board: Motor Vehicle:
KE 16.7768 16.6605 18.0933 13.6393 12.7998 14.9539
SE (2.7150) (2.6688) (2.9092) (2.0935) (2.0125) (1.8309)
KE -3.7738 -3.9903 -4.4054 -10.3969 -10.1211 -12.0527
SE (0.8282) (0.8775) (1.0230) (1.6310) (1.3649) (1.8341)

1 Because this dataset only covers all SOE’s and private firms above some scale, the entry and exit
here does not mean the birth and death of firms. Instead they are defined as entering and exiting
the dataset we have.

2 Standard errors (SE) in parentheses.

Figure 1: Dispersion of Capital-Labor Ratio in 2007, by Industry)
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Notes: The figure shows the large dispersion of capital-labor ratio with each industry.
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Figure 2: Distribution of Elasticity of Substitution (Clothing)
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Notes: The figure shows that the estimated elasticity of substitution is significantly different from one.
It also shows large dispersion of elasticity of substitution among firms within one industry.
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Figure 3: Biased Technology Dispersion (BTD) and Firm Size (Clothing)
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Notes: Firm size is measured as annual revenue. This figure shows that larger firms on average have
higher ratio of capital efficiency to labor efficiency.
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