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ABSTRACT 

The obesity epidemic and excessive consumption of sugary beverages has led to 

proposals of economics-based interventions to promote healthy eating. We quantify the 

differential effects of taxing sugar-sweetened beverages by calories and by ounce on 

consumer demand, using a fully modified distance metric model of differentiated product 

demand that endogenizes the representation of group and rival product prices. The novel 

demand model outperformed the conventional distance metric model in both goodness-

of-fit and economic significance of model predictions. A calorie-based beverage tax was 

estimated to cost $0.29 less in consumer’s surplus per 1,000 beverage calories reduced 

than an ounce-based tax.  

Keywords: obesity, sugar-sweetened beverage tax, distance metric demand model  

JEL codes: D12, D61, H20 
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With obesity rates remaining at epidemic levels in the United States (Ogden et al., 2012) 

and obesity-related noncommunicable diseases inflicting large economic burdens on 

society, public policy makers have given increased consideration to policies with 

potential to promote healthy eating. To address the fundamental imbalance between 

energy intake through foods and energy expenditure that underlies excess body weight, 

policy proposals have targeted calorie-dense foods with minimal nutritional value. Sugar-

sweetened beverages (SSBs), which include carbonated soft drinks (CSDs), fruit drinks, 

and sports and energy drinks, accounted for an estimated 7% of total energy intake for an 

average American in 2005–2006 (National Cancer Institute 2010) and are a significant 

risk factor for obesity and obesity-related health complications (e.g., Schulze et al. 2004). 

Therefore, public health advocates and some policy makers have made SSBs the focus of 

potential policy interventions.  

Policy interventions aimed at reducing SSB intake have focused on two factors 

affecting demand: accessibility and affordability. Examples of access restrictions include 

state or local bans on regular or all carbonated soft drinks in schools (Huang and Kiesel 

2012) and policies that limit the availability of SSBs at meetings and events (New York 

City Department of Health, 2013). Targeted taxes on SSBs represent the most common 

policy aimed at making SSBs less affordable. In 2012, eight states and two cities filed 

SSB tax legislation (Rudd Center for Food Policy & Obesity, 2013). New York City’s 

proposed policy restricting the sale of SSBs to containers no more than 16 ounces in size 

in food service establishments was intended to reduce access to SSBs in large portion 

sizes.  
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Interventions aimed at restricting access to SSBs have received relatively broad 

support from public health advocates and the public. Recently, the use of pricing 

strategies to reduce energy intake for the overall population has been debated. A number 

of states currently apply a sales tax to soft drinks, including SSBs. However, the existing 

tax rates on soft drinks are trivial, on average 5% of the retail price (Bridging the Gap 

2011), and are not reflected in the posted shelf price. Hence, a small sales tax is not 

expected to substantively reduce consumption and obesity (Zheng et al. 2013). 

Notwithstanding numerous state and municipal legislative attempts to enact larger SSB 

excise taxes in magnitudes up to 1 cent per ounce of SSB, no jurisdiction has enacted 

such a large SSB tax. Although many leading public health institutions have come out in 

support of SSB taxes as a health improvement strategy, others have concerns about the 

economic implications of SSB taxes. Taxing SSBs may have the unintended consequence 

of causing consumers to substitute other calorie-dense but untaxed beverages and foods 

(Fletcher et al. 2010). An SSB tax may also reduce consumer surplus in the short run 

before any potential long-term health benefits are realized. Despite a reduction in short-

term consumer surplus, taxing SSBs represents an important policy tool to address 

obesity because of consumers’ responsiveness to price and its potential to have 

population impacts on health and long-term economic wellbeing, such as reduced 

medical costs.  

If a tax on SSBs were to be implemented, the optimal strategy would achieve a 

given level of reduction in SSB calories at the lowest cost to consumer surplus. The 

majority of existing SSB excise tax proposals specify levying a per volume tax (i.e., cent 
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per ounce). Such a strategy does not consider that a large variety of SSB products on the 

market are differentiated by brand, flavor and most importantly, caloric content. For 

example, the 91 top-selling SSB products in New York markets over the 2007–2011 

period had an average energy content of 91.6 kcal/8-ounce serving with a standard 

deviation of 33.7.
 1

 Assuming similar administrative costs across alternative SSB tax 

strategies, a tax levied based on the caloric density of an SSB product would presumably 

be more efficient in reducing SSB calories than an ounce-based SSB tax.  

The objective of this study is to quantify the efficiency gain from a calorie-based 

tax scheme compared with an ounce-based one using parameter estimates from a product-

level demand model. Our product-level demand model encompasses 178 beverage 

products accounting for 95% of all nonalcoholic regular and diet beverages (excluding 

milk, liquid coffee and tea, and soft drink powder) in volume in four New York markets. 

We measured SSB tax efficiency by per capita compensating variation (CV) per thousand 

beverage calories reduced. The extant literature on SSB demand (Zhen et al. 2011, 2013; 

Dharmasena and Capps 2012; Lin et al. 2011; Finkelstein et al. 2013) simulates the 

effects of ounce-based SSB taxes using parameters estimated from category-level 

demand models, where product-level substitutions are not explicitly modeled. Because a 

calorie-based SSB tax changes the relative prices of SSB products of different energy 

levels, it is essential that product-level substitutions be estimated. By allowing for 

product-level substitutions, our study fills an important gap in the SSB tax literature. 

We also contribute to the methodology literature on modeling demand for 

differentiated products. Our demand model is based on the distance metric (DM) 
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approach originated by Pinkse et al. (2002) to specifying cross-price effects among 

differentiated products based on their closeness in product attributes. The linear 

approximate almost ideal demand system (AIDS) of Deaton and Muellbauer (1980) is the 

most popular functional form in the DM literature. We identified two common practices 

in previous applications of the DM method to improve. First, in applying the DM method 

to the AIDS model, previous studies (Rojas and Peterson 2008; Pofahl and Richards 

2009; Bonanno 2013) have used the Laspeyres price index, where product prices are 

weighted by base budget shares, as the deflator for total expenditures. Second, in the 

demand equation for each product, the cross-price variables that are used to measure the 

cross-price effects were calculated as the unweighted means of rival product prices. With 

both practices, when there are large changes in relative prices, for example, caused by a 

large targeted food tax, the assumption that budget shares are fixed is not tenable. This 

makes the Laspeyres index and unweighted mean cross prices less accurate in 

representing true price variations in a DM AIDS model.  

To account for the effects of concurrent changes in product budget shares on 

deflated total expenditures and the cross-price terms, we modified the conventional DM 

AIDS by using the Stone price to deflate total expenditures and by using mean rival 

prices weighted by current-period budget shares to measure the cross-price effects of 

demand. We derived the correct conditional and unconditional price elasticities for the 

fully modified DM AIDS.  

We applied the conventional and the fully modified DM AIDS to supermarket 

scanner data on nonalcoholic beverage sales in four New York markets. The fully 
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modified model was found to outperform the conventional model in goodness-of-fit 

measures and to generate significantly higher degrees of product substitution than the 

conventional model. Our simulation based on demand estimates from the fully modified 

model suggests that a calorie-based SSB tax would cost $0.29 less in per capita consumer 

surplus loss per 1,000 kcal of beverage energy reduced than an ounce-based SSB tax. We 

demonstrate that the conventional DM AIDS underestimates the reduction in consumer 

surplus loss, attainable by switching from an ounce-based SSB tax to a calorie-based one, 

by a factor of more than three.  

BEVERAGE DEMAND AND THE DM METHOD 

Because no state has enacted a large targeted tax on SSBs and existing small sales taxes 

on soft drinks do not distinguish between full-calorie and diet beverages, studies of 

targeted SSB taxes have relied on simulation. In this approach, a demand model is 

estimated at the category level, and the demand parameter estimates are used to predict 

the effects of tax-induced SSB price changes on beverage and food demand. Zhen et al. 

(2011) examined household demand for nine nonalcoholic beverages using a dynamic 

AIDS and found evidence for habit formation in all beverage categories. Dharmasena and 

Capps (2012) and Lin et al. (2011) estimated beverage demand under static AIDS models 

and simulated the effects of SSB taxes on beverage consumption and body weight.  

Two studies have attempted to predict the effect of a large SSB tax on demand for 

selected food categories. Finkelstein et al. (2013) estimated a two-part reduced-form 

model of food and beverage demand and did not find significant substitution between 

SSBs and the food categories examined in their study. In contrast, Zhen et al. (2013) used 
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a utility-theoretic incomplete demand system and found that about one-half of the 

reduction in SSB calories would be compensated by an increase in energy intake from 

food. 

For most food and beverage categories on the U.S. market, there are a large 

number of products within a category that are differentiated by various attributes. In the 

most unrestricted product-level demand model, the number of price coefficients is equal 

to 2n , where n  is the number of products. Although imposing the symmetry, 

homogeneity, and adding-up restrictions helps reduce the number of parameters, the 

dimension of the parameter space is still too large to estimate for a model with more than 

a few dozen products. All five studies of SSB demand above circumvented this 

dimensionality issue by aggregating purchases to the category level but at the expense of 

not being able to model product-level demand. To compare the performance of an ounce-

based tax with a calorie-based tax, we needed to specify an alternative approach to 

confronting the constraint imposed by dimensionality.  

Three conventional approaches have been used to reduce the dimension of the 

parameter space. First, assuming the consumer chooses at most one unit of a product in a 

category at each shopping trip, a family of discrete-choice models is available for 

modeling product substitutions within a category (e.g., Nevo 2001). However, this 

approach does not shed light on consumer choices among categories. The second 

approach uses multistage budgeting to limit the number of products or product categories 

the consumer has to choose from at each stage of the budget decision (e.g., Ellison et al. 

1997). Although this method no longer restricts the consumer to one unit of a product as 
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a discrete-choice model does, it places restrictions on substitution or complement effects 

between products classified into different categories. Because products can often be 

categorized in more than one way, the estimated product-level cross-price effects are 

dependent on the categorization specified. In addition, if there are a large number of 

products, more than two budgeting stages may be needed to keep the number of goods 

(e.g., individual products, categories, or groups of categories) tractable at each stage. The 

third approach, the DM method proposed by Pinkse et al. (2002), specifies the cross-price 

effect between two products as a function of the distance between the two in attribute 

space. When there are fewer product attributes than the number of products, the DM 

method solves the dimensionality problem by casting the 2n -dimensional price effects 

into the lower-dimensional attribute space. In contrast to the discrete-choice models, the 

DM method assumes that the consumer can purchase any number of products within the 

budget constraint. Unlike the multistage budgeting approach to dimension reduction, the 

cross-price effects in the DM method are not solely determined by a categorization 

scheme but also by other product attributes. A DM-based demand model is linear in 

parameters. This is an important practical advantage over the highly nonlinear random 

coefficient discrete-choice model in light of the recent findings about the numerical 

performance of the latter (Dubé et al. 2012; Knittel and Metaxoglou 2013).  

THE FULLY MODIFIED DM AIDS  

We used the following linear approximate AIDS to represent preferences for beverage 

products  

(1)  hthti

Nj

jhthtijihtiiihtiht Pxppw
hti

lnlnln
,

,   

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where ihtw  is the budget share of product i  in market h  and period t ; jhtp  is the price of 

product j  normalized to one at product-specific sample mean (Moschini, 1995); htx  is 

per capita total beverage expenditure;  


htNj jhtjhtht pwP lnln  is the Stone price index 

for deflating total expenditures; htN  represents the full set of products available in market 

h  and period t ; set htiN ,  excludes product i  but otherwise equals htN ; and  ,  , and 

  are parameters. The conventional DM AIDS specified htP  as a Laspeyres index, that 

is,  


htNj jhtjht pwP lnln 0 , where 0jw  is the base share of product j . There are two 

concerns with using the Laspeyres price as the expenditure deflator. First, because the 

Laspeyres index does not account for budget share changes, it may be a less accurate 

index when changes in relative prices are large. Second, one of the main motivations for 

applying the DM method is its ability to model demand for a large number of products. 

As the product set htN  gets larger, it becomes more likely that not all products are sold in 

all markets and time periods. In this case,   htNj jw 0  is not guaranteed to be one for all 

h  and t , which is required for a budget share-weighted price index. In this study, we 

used the Stone price index to address these concerns. Because budget shares appear on 

both sides of equation (1), we used instrumental variables to account for this simultaneity 

(see the “Estimation and Results” section for estimation details).  

The DM method reduces the dimension of the parameter space by specifying the 

cross-price effect between two products to be functions of their closeness in attribute 

space. Although some studies also restrict the own-price coefficients ( ii ) and 
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expenditure coefficients ( i ) to be functions of product attributes (Pinkse and Slade 

2004; Rojas and Peterson 2008; Bonanno 2013), we do not impose these restrictions to 

give full flexibility to the estimated own-price and expenditure effects. In our fully 

modified DM AIDS, the cross-price coefficient htij,  ( ji  ) is a function of observed 

discrete product attributes: 

(2) 



M

m

htijmhtimhtij wd
1

,,,,, ,  

where ihtwmmhtim wddd ,,,  , md  and wmd ,  are parameters associated with the m th 

discrete attribute, and M  is the total number of discrete attributes. The term 


htijmw ,,  is 

used to weigh the effect of product j ’s price on demand for product i  through the m th 

attribute and is defined as  

(3) 












 









                                otherwise ,0

 0if ,
,

,

,

,

,

,, hti

hti

Nk

ikmkht

Nk

ikmkht

ijmjht

htijm

w
w

w

w






  

where ijm,  is a binary variable equal to 1 if product i  and its rival j  share the m th 

attribute (e.g., flavor or product category), and 0 otherwise.  

Several considerations led to the specification of equation (2). First, because not 

all products are available for all markets and time periods, 


htijmw ,,  was constructed such 

that 1
,

,, 




htiNj htijmw  for all h  and t . It then follows that 




htiNj jhthtijm pw
,

ln,,  is the 

share-weighted average price of rival products that take the same value in the m th 
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attribute as product i . The intuition is that demand for a product is more affected by 

prices of rivals with similar attributes than prices of more dissimilar products. In a 

conventional DM AIDS, 


htijmw ,,  is reduced to 


 
htiNk

ikmijmhtijmw
,

,,,,   for 0
,

, 
 htiNk

ikm , 

and 0 otherwise; and 




htiNj jhthtijm pw
,

ln,,  becomes the unweighted average price of rival 

products. When there are large variations in product market share, share-weighted rival 

prices may be more accurate than unweighted rival prices in capturing the degree of price 

competition.  

Second, the magnitude of the effect on demand of a unit change in the share-

weighted average price of rival products might not be uniform across products. The 

coefficient wmd ,  is interacted with ihtw  to account for this heterogeneity in cross-price 

effects. In contrast, wmd ,  is set to zero in a conventional DM AIDS model or in restricted 

versions of the fully modified model. 

Conditional Price Elasticities 

Deriving elasticities for the fully modified DM AIDS is complicated by budget shares 

appearing on both sides of equation (1). For brevity of notation, we dropped the market 

and time subscripts h  and t  from the mathematical expressions for elasticities. The 

Marshallian price elasticity conditional on total beverage expenditures is  

(4) 




















 

 j

i

Nr j

ir
rij

i

ij

j

i
ij

j

i
ij

p

P

p
p

wpd

wd

pd

qd

i
ln

ln

ln
ln

1

ln

ln

ln

ln



 ,  
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where iq  is the quantity of product i ; 1ij  for ji  , and 0 otherwise; 
































 M

m j

i
wmirm

j

irm

im

j

ir

p

w
dw

p

w
d

p 1

,,

,

,
lnlnln


; and 

 








Nr j

r
rrj

j p

w
pww

p

P

ln

ln
ln

ln

ln
 

(Green and Alston 1990). Differentiating 


irmw ,  ( ri  ) with respect to jpln  yields 

(5) 

 

































































i

i

ii

Nk

kjkjikmrjrjirm

Nk

jkikmk

Nk

ikmkj

r

Nk

ikmk

irmr

j

irm

ww            

pww
wp

w

w

w

p

w








,,

,

,,

,, lnln
1

ln

ln

ln
.  

Substituting (5) into (4) gives 

(6) 

 

 

 


























































 

  



 



  





 

Nr

rjrjrrji

Nr

M

m

ijijriirmwm

Nr

M

m Nk

kjkjikmrjrjrirmimij

i

ijij

pww

pwwd

wpwd

w
i

i i









ln

ln

ln

1

1

,,

1

,,,

.  

Equation (6) can be written in matrix form as 

(7) 
     

  IEUV       

IEDIEFHBIEDBAE
M

m

wm

M

m

mm

M

m

m





























 

 1

,

11   

where the matrix elements are ijijE   in E  ( nn  matrix), ijiiijijij wwwA   1  

in A  ( nn  matrix), iii wB 1  in B  ( nn  diagonal matrix), jijmimijm pwdD ln,,,

  in mD  
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( nn  matrix), 



iNr

rirmwmiiwm pwdD ln,,,,  ( nn  diagonal matrix), 



iNr

rirmiim pwH ln,,  

in mH  ( nn  diagonal matrix), 
 ijmimijm wdF ,,,  in mF  ( nn  matrix), iii wU   in U  

( 1n  vector), jjj pwV ln  in V  ( n1  vector), and I  is a nn  identity matrix. Solving 

equation (7) for E  gives the conditional price elasticity matrix: 

(8)     IIAIUVDDBFHBE
M

m

wm

M

m

m

M

m

mm 









































1

1

,

11

.  

Expenditure Elasticities 

The expenditure elasticities for the fully modified DM AIDS model are also more 

complicated than those for the conventional model because of the presence of current 

budget shares on the right-hand side of equation (1). The expenditure elasticity is  

(9) 




















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


 

 x

P

x
p

wxd

wd

xd

qd
i

Nr

ir
r

i

ii
ix

i
ln

ln
1

ln
ln

1
1

ln

ln
1

ln

ln



 ,  

where  


 
M

m

iwmirmirmimir xwdwxwdx
1

,,,, lnlnln  and 

 



Nr

rr xwpxP lnlnlnln . Differentiating 


irmw ,  ( ri  ) with respect to xln  

yields 
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Substituting (10) into (9) gives 
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Equation (11) can be expressed in matrix form as 

(12) 
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11   

where, in addition to matrices defined in equation (7), the matrix elements are ixxiE ,  

in xE  ( 1n  vector), iixi wA 1,  in xA  ( 1n  vector), jxj pV ln,   in xV  ( n1  

vector), and   is a 1n  vector of ones. Solving (12) for the vector of expenditure 

elasticities xE  gives 
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.  

Unconditional Price Elasticities 

In predicting the demand effects of SSB taxes, unconditional demand estimates are 

required for two reasons. First, previous research has shown that the group expenditure 

htx  cannot be assumed to be exogenous in many cases (LaFrance 1991). Second, a 

conditional demand model generally yields biased estimates of the impacts of price 
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changes on consumer surplus (Hanemann and Morey 1992). To derive unconditional 

demand elasticities and perform welfare analysis, we assumed weak separability of 

preferences for beverages and all other consumption goods. This allowed us to 

characterize the consumer’s consumption decision as a two-stage budgeting process, 

where expenditures on beverages as a group and all other goods are allocated at the first 

stage, and product-level demand decisions are made at the second stage according to 

equation (1) conditional upon htx . Following the DM literature, we specified the first-

stage demand as 

(14) hthththt ycpbaq    

where htq  is the per capita volume of nonalcoholic beverages sold in market h  and 

period t ; hta  is the intercept; htp  and hty  are the beverage group price in dollar/ounce 

and per capita income, respectively, both deflated by the consumer price index; and b  

and c  are parameters. Equation (14) is an incomplete demand equation that can be used 

to calculate the exact measure of changes in consumer’s surplus associated with changes 

in htp  (Hausman 1981). To derive product-level unconditional price elasticities, it is 

important to realize that a change in price of product j  affects demand for product i  in 

two ways: first through the price effect conditional on total beverage expenditure and 

second through an expenditure effect.  

The unconditional price elasticity of demand for product i  with respect to a 

change in price of product j  can be written as  

(15)  
jixijij px lnln     
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where  

(16) 
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is the marginal effect of log price j  on log total beverage expenditure, and the market 

and time subscripts are dropped for notational brevity. The jw  term in the curly brackets 

in (16) measures the first-order effect of a change in jp  on the beverage group price p , 

while the remaining terms in the curly brackets sum up the second-order effect of 

changing jp  on p  through changes in budget shares.  

In matrix notation, equation (16) can be expressed as 

(17)       xpxxp EEVIEVWbE  1   

where xpE  is n1  with jxpj pxE lnln,   and jj wW   ( n1  vector). Solving (17) for 

xpE  gives 

(18) 
    

   



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E

11

1
.  
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Therefore, the unconditional price elasticity (15) in matrix form can be written as 

(19) xpxEEEE  ,  

where the nn  matrix E  has ij  as its elements.  

DATA AND VARIABLES 

The nonalcoholic beverage sales data used were Nielsen’s ScanTrack market-level 

scanner data from four Nielsen New York markets: Albany, Buffalo, New York City, and 

Syracuse. Each market consists of a cluster of counties and is not confined by city or state 

boundaries. The Albany market includes not only counties in the neighborhood of Albany 

city but also counties in Massachusetts and Vermont; the Buffalo market incorporates 

several counties in Pennsylvania; and the New York City market covers parts of 

Connecticut and New Jersey. The scanner data are collected from a sample of 

supermarkets with annual sales of at least $2 million and projected to the market level by 

Nielsen for this store format. Data on milk, liquid tea and coffee, and soft drink powder 

and sales at convenience stores, drug stores, club stores, and mass merchandisers were 

not included. Sales data were recorded at the Universal Product Code (UPC) level and 

cover 64 four-weekly periods between January 28, 2007, and December 24, 2011. The 

scanner data included UPC-specific information such as package and container sizes, 

product module, brand, and others. Information on the caloric content of products was 

collected from manufacturers’ websites and linked with the ScanTrack data. To limit the 

number of products in the demand model and preserve as much product differentiation as 

possible, we created unique products in ScanTrack by aggregating similar UPC items 
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based on brand and product module. For example, Coke, Diet Coke, Caffeine-Free Coke, 

and Caffeine-Free Diet Coke are four unique products in our demand model, but 2-liter 

Coke and Coke in 12-ounce cans are considered the same product.  

The beverage market is characterized by a large number of products with small 

market shares. In 2007–2011, 18 products had market shares of 1% or above and 

collectively represented 43% of the beverage market in dollar sales. Lowering the market 

share threshold to 0.5% increases the number of products to 45 and combined market 

share to 61%, which still seems low for our purposes. To capture as much of the market 

in the demand model as feasible, we included all products whose total dollar sales over 

the 2007–2011 period represented 0.1% or more of the four Nielsen markets combined. 

As a result, our analysis sample for demand estimation was an unbalanced panel of 

43,087 four-weekly observations for 178 products from four markets accounting for 92% 

of the total ScanTrack market in dollar sales. 

Table 1 presents per capita annual volume, energy, and expenditures for the 178 

products by product category. In New York markets, CSDs account for the majority of 

beverage energy (51.5%) and a smaller share of total beverage expenditures (24.1%). 

Because ScanTrack does not account for sales at retail outlets other than supermarkets, it 

is useful to examine supermarket shares of total retail sales from all outlet types. Zhen et 

al. (2013) report estimates of national average household beverage purchases by category 

based on the 2006 Nielsen Homescan—household-based scanner data on food purchases 

from all retail outlets. Assuming comparable consumer demand between 2006 and 2007–

2011 and between New York and the rest of the country, a comparison of table 1 with 
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purchase estimates in Zhen et al. (2013) indicates that ScanTrack supermarket volume 

sales accounted for about 64% of total regular and diet CSD sales, 46% of total sports 

and energy drink sales, 73% of total 100% juice sales, 39% of total fruit drink sales, and 

76% of total bottled water sales. The lower shares for sports and energy drinks and fruit 

drinks are partly because our ScanTrack data do not include soft drink powder, while 

Zhen et al.’s estimates accounted for powdered drinks. 

Attribute Variables 

We specified eight discrete attributes that could potentially be important in determining 

the cross-price effects. The variable FAMBRAND _  takes 92 distinct values associated 

with 92 brand families. For example, Coke is a brand family that encompasses regular 

and Diet Coke and Caffeine-Free Coke. It is reasonable to expect products under the 

same brand family to be closer substitutes than products under different brand families. 

The BRANDNAME _  variable identifies all name-brand products, which are defined as 

any product that is not a private-label product. The PRODMAJOR_  variable indicates 

which products had an average market share of 0.5% or more over the 2007–2011 period. 

Because these products are likely to receive larger shelf space and be available in more 

stores, they may be closer substitutes to one another than to products having much 

smaller market shares. The CATPROD _  variable classifies the 178 products into six 

product categories (see table 1 for list of categories) consistent with the categorization 

scheme used in previous category-level demand analyses of SSB taxes (e.g., Zhen et al. 

2011; Dharmasena and Capps 2012). The CATENERGY _  variable distinguishes regular 

CSDs, full-calorie sports and energy drinks, and full-calorie fruit drinks from low-calorie 
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(defined as ≤ 10 kcal/8-ounce serving) versions of these beverages and bottled water. The 

rationale is that consumers might perceive soft drinks with more similar energy contents 

to be more substitutable. The variable CAFFEINE  indicates the presence of caffeine, 

which is found in some CSDs and all energy drinks. The FLAVOR  variable takes nine 

distinct values for the following nine flavors: cola, root beer, citrus for CSDs/fruit 

drinks/sports drinks, citrus for 100% juice, ginger ale, pepper, seltzer, apple, and 

cranberry.  

Although the attribute variable CCATPROD __  equals CATPROD _  across all 

178 products, CCATPROD __  is used differently in the calculation of the weighted 

average rival price associated with this attribute. When CCATPROD __  is the attribute 

of interest, ijm,  in (3) becomes a binary variable equal to 1 if products i  and j  are not 

from the same product category, and 0 otherwise. We use CCATPROD __  to allow for 

potential nonzero cross-price effects between two products that are otherwise unrelated in 

terms of the other seven discrete attributes.  

ESTIMATION AND RESULTS 

To control for time and market fixed effects, the intercept hta  in the first-stage demand 

equation (14) was augmented to include 13 dummies for the 13 four-weekly periods in a 

year; 4-year dummies for 2008 through 2011; and three market dummies for Buffalo, 

New York City and Syracuse. Albany and year 2007 were set as the reference market and 

year, respectively. The real group price htp  in equation (14) was calculated as 

ththt cpiPpp  , where p  is the sample mean nominal beverage price denominated in 
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dollar/ounce, htP  is the Stone price index from equation (1), and tcpi  is the consumer 

price index for period t . htp  may be endogenous for two reasons. First, the product 

prices that form htp  could be jointly determined by supply and demand. Second, the 

Stone price index htP  weighs product prices by current budget shares, which are also 

endogenous variables in the second-stage demand. 

We performed two Hausman specification tests (Hausman 1978) to determine the 

significance and source(s) of endogeneity in htp . First, we replaced the Stone price index 

in htp  with the Laspeyres price index, which uses base budget shares as weights, and 

created an instrument for htp  using product prices from neighboring markets. Prices from 

adjacent markets are valid instruments under the assumption that demand shocks are 

independent across markets after controlling for time and market fixed effects (Hausman 

1997). Because base budget shares are fixed, finding endogeneity in the group price htp  

is evidence for endogenous product prices and vice versa. Columns I and II of table 2 

present results from ordinary least squares (OLS) and two-stage least squares (2SLS) 

estimation of equation (14). The Hausman test for endogeneity is 0.06, which is not 

statistically significant at 21 degrees of freedom. Therefore, there is little evidence that 

product prices are endogenous once seasonal, year, and market fixed effects are 

accounted for.  

Second, to examine the degree of endogeneity in htp  attributable to endogenous 

budget shares in the Stone price, we used the Laspeyres price index as an instrument for 

htp  and received a Hausman test statistic of 5.46. Although this is much higher than the 
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first Hausman test statistic of 0.06, it is still statistically insignificant with 21 degrees of 

freedom. Table 2 columns III and IV present the OLS and 2SLS results when equation 

(14) is estimated using Stone price-based htp . The (unconditional) mean price elasticity 

of total beverage demand implied by the 2SLS estimates is −0.90 compared with −0.77 

based on the OLS estimates. Although not statistically significant, this difference is 

consistent with the hypothesis that the endogenous Stone price biases the OLS estimate 

of price response toward zero. Therefore, our analysis of SSB taxes in the remainder of 

this section is based on the 2SLS estimates.  

DM AIDS Estimates  

To evaluate the performance of the fully modified DM AIDS model, we estimated four 

versions of the DM AIDS model with varying degrees of resemblance to the fully 

modified model. Model 1 is the conventional model but using the Stone price index as the 

deflator for total beverage expenditure. Model 2 replaces current budget shares in (3) by 

base budget shares. This creates weighted mean rival prices and still allows 


htijmw ,,  to be 

treated as exogenous, which simplifies formulas for price elasticities. Model 3 is a fully 

modified DM AIDS model but with the restriction 0, wmd  imposed. Finally, Model 4 is 

the fully modified model without restricting wmd ,  to 0. 

The luxury of a large unbalanced panel allows us to control for a significant 

portion of the heterogeneity in product-level demand across products, markets, and time 

through fixed effects. For all four models, we augmented the intercept iht  in equation 

(1) as follows: 
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(20) ttrendihttempiihiht trendtemp  ,,    

where ih  is a constant specific to product i  in market h , httemp  is the temperature for 

market h  and period t , ttrend  is a linear time trend, and tempi,  and trendi,  are product-

specific parameters.  

Depending on how rival prices are weighted by 


htijmw ,,  to create the mean rival 

price associated with the m th attribute (i.e., the 




htiNj jhthtijm pw
,

ln,,  term), there are 

different numbers of endogenous covariates in equation (1) across the four models that 

need to be instrumented. In all four models, total beverage expenditure htx  is 

instrumented by the mean of total expenditures for market h  during the same time in 

other years; the Stone price index htP  is instrumented by the Laspeyres price index. For 

Model 1, the unweighted mean rival prices tied to the eight discrete attributes need not be 

instrumented. Model 2 uses mean rival prices weighted by base budget shares, which are 

assumed to be exogenous conditional on the fixed effects in equation (20). For Model 3, 

because current budget shares appear in 


htijmw ,, , we instrumented the weighted mean rival 

prices using base-share weighted mean rival prices. In addition to all the endogenous 

variables instrumented in Models 1 through 3, Model 4 has an additional source of 

endogeneity from the interaction of 


htijmw ,,  with ihtw  in equation (2), which we 

instrumented using the base share 0iw .  

We estimated all four DM AIDS models using fixed-effects (FE) 2SLS. Table 3 

reports the estimation results. The generalized 2R  ( 2GR ) of Pesaran and Smith (1994) is 
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used to measure goodness-of-fit for Models 1 through 4 because the standard 2R has been 

shown to be an invalid model selection criterion for instrumental variables’ regressions. 

The model fit continued to improve as we moved from Model 1, the conventional model, 

to Model 4, the fully modified model. The difference in 2GR  between Model 2 and 

Model 1 is 0.002, a nontrivial improvement considering that restricting md  m  in Model 

1 reduced 2GR  by only 0.0038. Because base share-weighted mean rival prices from 

Model 2 are used to instrument current share-weighted mean rival prices in Model 3, the 

2GR , which is based on prediction errors, is identical for Models 2 and 3. Model 4 has 

the best fit to the data with a 2GR  that is 0.008 higher than Model 3 and 0.01 higher than 

Model 1.  

In Models 1 through 3, md  estimates for attributes BRANDNAME _ , 

PRODMAJOR_ , CATPROD _ , CATENERGY _ , CAFFEINE , and FLAVOR  are 

positive and statistically significant, consistent with the a priori expectation that the 

degree of substitution between two products increases with their closeness in the attribute 

space. The estimated md  coefficient for FAMBRAND _  is negative, although 

statistically insignificant except for Model 1. This less intuitive result may be partly 

caused by collinear relationships between FAMBRAND _  and other attributes such as 

FLAVOR . The md  estimate for CCATPROD __  is negative and statistically 

significant, suggesting that not being from the same product category tends to reduce the 

degree of substitution or increase the degree of complementarity between the two.  
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In Model 4, the net effect of rival prices associated with attribute m  on demand 

varies across observations because of adjustment through the interaction between budget 

share ihtw  and coefficient wmd , . Estimates of wmd ,  are positive for PRODMAJOR_ , 

CATPROD _ , CATENERGY _ , and FLAVOR ; and negative for BRANDNAME _ , 

CAFFEINE , and CCATPROD __ . Because md  is estimated to be positive for 

BRANDNAME _  and CAFFEINE , the net effects of rival prices associated with the two 

attributes, htimd ,, , could still be positive for some values of ihtw .    

Estimated Price Elasticities 

Because of differences in how budget shares are used to weigh rival prices, similarity in 

parameter estimates across models does not necessarily mean comparable demand 

elasticities across models. For Model 1, where rival prices are not weighted by budget 

shares, the conditional price and expenditure elasticities are obtained by setting mH , mF , 

mD , and wmD ,  to null matrices in equations (8) and (13), respectively. Although rival 

prices are weighted by base budget shares in Model 2, Model 2’s elasticity formulas are 

identical to those of Model 1 because of the constancy of the base budget shares. Table 4 

reports summary statistics for unconditional price elasticities from all four models. The 

median own-price elasticity is close in value across models at around −2.0.  

The median cross-price elasticity is small in magnitude in all models. 

Approximately 57% of all cross-price elasticities are negative for Models 1 through 3 in 

contrast to the 43% for Model 4. Therefore, the fully modified DM AIDS model produces 

a higher degree of substitution across beverage products than the conventional model 



27 

(i.e., Model 1) and restricted versions (i.e., Models 2 and 3) of the fully modified model. 

Negative cross-price elasticities are not unexpected. For example, Finkelstein et al. 

(2013) and Zhen et al. (2013) both found that some food and beverage categories are 

complements. Unlike discrete choice models where products are restricted to be 

substitutes, the DM method does not restrict the sign of coefficients on rival prices and, 

therefore, does not a priori force any two products to be substitutes through functional 

form restriction.  

As the DM AIDS model is incrementally modified toward the fully modified 

model, we observe monotonic declines in the proportions of own-price and cross-price 

elasticities that are positive and negative, respectively. Although the decrease is small in 

magnitude in some cases, this is evidence in support of the fully modified DM AIDS 

model. The distributions of unconditional own-price and cross-price elasticities from 

Model 4 are illustrated in figures 1 and 2, respectively.  

Simulation of Ounce- and Calorie-Based SSB Taxes  

To evaluate the efficiency of ounce-based and calorie-based SSB taxes, we simulated two 

excise tax scenarios: in the first, a half-cent per-ounce tax is levied on all SSBs with more 

than 10 kcal/8-ounce serving; in the second, a 0.04-cent per kcal tax (equivalent to a half-

cent per ounce of regular Coke
2
) is imposed on the same SSB products. In both scenarios, 

we assumed the excise tax is passed one-for-one to retail prices. Using the estimated 

unconditional elasticities, we simulated both scenarios for all markets and time periods. 

The standard error for each point estimate of the simulated tax effect was generated by 

taking 100 random draws from a multivariate normal distribution with the mean vector 
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and variance-covariance matrix set to the estimated values of the first- and second-stage 

demand models. The mean point estimates and t-values for the two simulated scenarios 

are reported in table 5.  

In the first and second panels of table 5, the first-order effect measures the direct 

effect of tax-induced price changes on the group price index htP  holding budget shares 

constant at the pretax levels. However, the second-order effect reflects the indirect effect 

of changing budget shares on htP  (see equation [16] for discussion). The second-order 

effect gauges the importance of using the Stone price rather than the Laspeyres price 

index, which ignores the second-order effect, in deflating total expenditure htx  and 

predicting unconditional demand. On average, the first-order effect of a half-cent per 

ounce SSB tax is to raise htP  by 7.56% compared with 7.25% from a 0.04-cent per kcal 

SSB tax. The second-order effect is statistically significant but much smaller in 

magnitude (between 0.11% and 0.22% depending on the model and tax strategy) than the 

first-order effect.  

The third panel of table 5 presents simulated reductions in beverage calories 

caused by SSB taxes. Two noteworthy patterns emerge from these results. First, within 

each model, the ounce-based tax always produces less reduction in beverage calories than 

the calorie-based tax despite the fact that the calorie-based tax is less expensive in terms 

of its impact on group price. Second, the total amount of beverage energy reduced 

continues to get smaller as the DM AIDS model is increasingly modified. This is 

consistent with our finding that the fully modified model and its restricted versions 

produce stronger product substitution than the conventional model. Based on the fully 
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modified DM AIDS model, a half-cent per-ounce and a 0.04-cent per kcal SSB taxes are 

predicted to reduce per capita beverage energy from the 178 products in ScanTrack 

supermarkets by 1,916 and 2,001 kcal per year, respectively. 

We calculated the CV associated with each SSB tax strategy using the first-stage 

demand estimates, the combined effect of the SSB tax on htP , and the CV formula in 

Hausman (1981, equation [19]). The mean CV estimates (in absolute values) and 

predicted tax burdens are reported in the fourth and fifth panels of table 5, respectively. 

Consistent with the above discussion of predicted group price increases and calorie 

reduction, the tax burden is higher in the modified models than in the conventional 

model, and a calorie-based tax implies a lower CV (in absolute value) and tax burden 

than an ounce-based tax within each DM AIDS model.  

Finally, the last panel of table 5 presents the difference in CV per 1,000 kcal 

reduced between a calorie-based tax and an ounce-based tax. A positive difference 

indicates that a calorie-based SSB tax is less costly to consumers than an ounce-based tax 

for the same level of energy reduction. On average, the fully modified model predicts that 

a calorie-based SSB tax would result in $0.29 less in consumer surplus loss than an 

ounce-based tax per 1,000 kcal reduced; in contrast, the savings predicted by the 

conventional DM AIDS model is $0.09 per 1,000 kcal reduced. This difference is too 

large to be ignored considering that annual U.S. per capita energy intake from SSBs at 

home and away from home is about 50,000 kcal.
3
 Therefore, in addition to better 

goodness-of-fit, modifying the DM AIDS is also justified by the economic significance 

of its predictions.  
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CONCLUSION 

Policy makers across the country continue to propose SSB tax legislation as a means to 

curb obesity and raise government revenue. When the main objective of a SSB tax is to 

improve public health, we show that a calorie-based SSB tax is more efficient than an 

ounce-based SSB tax in the sense that the former is able to achieve a given SSB energy 

reduction target with smaller loss in consumer surplus. This result is intuitive. A food or 

beverage product is composed of a number of nutrients and characteristics, the levels of 

which may vary widely from one product to another. An optimal obesity-aimed food or 

beverage tax policy should directly target the ingredient(s) or nutrient(s) of concern. 

Because almost all calories in a SSB product come from added sugars, a calorie-based 

SSB tax is equivalent to a tax on sugars.  

We proposed a fully modified DM AIDS to quantify the efficiency gain in 

switching from an ounce-based tax to a calorie-based one. Like the conventional DM 

AIDS, the fully modified model is able to handle hundreds of differentiated products. In 

addition, the new model is shown to outperform the conventional DM AIDS in terms of 

goodness-of-fit and economic significance of predicted demand and consumer surplus 

changes caused by SSB taxes.  

In the empirical analysis of New York supermarket beverage sales, the fully 

modified DM AIDS estimated product-level demand for 178 beverage products covering 

well over 90% of total beverage sales in Nielsen ScanTrack scanner data. For every 1,000 

beverage calories reduced, the estimated consumer surplus loss due to a calorie-based tax 

is $0.29 lower than the loss caused by an ounce-based tax. A 0.04-cent per kcal SSB tax 
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is predicted to reduce beverage energy from ScanTrack supermarkets by 9.4%, compared 

to 9.0% from a half-cent per ounce tax. Applying this percentage change to beverages 

obtained from all sources and assuming comparable demand elasticities between 

beverages from supermarkets and other sources, we calculated that a 0.04-cent per kcal 

tax on SSBs will reduce total beverage energy by about 5,900 kcal per capita per year.
4
 

Relative to an ounce-based SSB tax that also achieves a 5,900 kcal reduction in beverage 

energy, the 0.04-cent per kcal SSB tax is estimated to save $1.71/year per capita in CV 

measure of consumer surplus.  

It is unlikely that there is a one-for-one relationship between reductions in 

beverage energy and in total dietary energy because of compensation. Zhen et al. (2013) 

found that about one-half of the reduction in SSB energy is compensated by increases in 

purchases of other untaxed foods. Because the energy contents of foods other than the six 

categories of beverage products (see table 1 for list) were not explicitly modeled by our 

demand model, we could not quantify the net effect of an SSB tax on overall energy 

intake. Nevertheless, at 50% compensation, an energy reduction of 2,950 kcal per capita 

per year would still substantially contribute to weight gain prevention at the population 

level.  

A rationale for ounce-based SSB taxes is their ease of implementation compared 

to the more sophisticated calorie-based tax. However, a calorie-based tax may incentivize 

beverage manufacturers to reformulate SSBs to contain less sugar, while an ounce-based 

tax is much less likely to have such an effect on product formulation. Modeling these 
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aspects of the beverage market is beyond the scope of this study but should be pursued in 

future research.   
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Table 1. Average Annual per Capita Purchases, 2007–2011 

 

Per capita 

 

Volume 

(oz/year) 

Energy 

(kcal/year) 

Expenditure 

($/year) 

Regular CSD 870 10,969 20.08 

Diet CSD 653 0 15.43 

Sports/energy drinks 106 654 4.44 

100% juice 435 6,142 21.17 

Fruit drinks 339 3,538 12.16 

Bottled water 840 0 10.04 

Total 3,243 21,303 83.31 

Notes: These data represent sales of the 178 brands that are included in the DM AIDS model, 

which account for 95%, 92%, and 94% of ScanTrack total nonalcoholic beverage sales in 

volume, dollars, and energy, respectively. The ScanTrack data we have exclude milk, bottled tea 

and coffee, and soft drink powder. Expenditures were deflated by the consumer price index using 

the 2007–2011 average as the base. 
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Table 2. First-Stage Demand Estimates 

Regressor 

I 

OLS 

II 

2SLS 

III 

OLS 

IV 

2SLS 

yht 0.090*** 0.089*** 0.085*** 0.090*** 

 

(0.020) (0.020) (0.020) (0.021) 

pht −6,050.1*** −5,601.6*** −5,281.8*** −6,150.3*** 

 

(1,098.4) (2,125.4) (1,020.1) (1,085.7) 

Mean income  

elasticity 

0.71 0.70 0.67 0.71 

Mean price  

elasticity 

−0.88 −0.82 −0.77 −0.90 

Notes: Asterisks (***) indicate statistical significance at the 1% level. Standard errors are in 

parentheses. All regressions include seasonal, year, and market fixed effects. pht in columns I and 

II (III and IV) is based on the Laspeyres (Stone) index. The instrument for pht in column II is the 

Laspeyres index with product prices from neighbor markets. In column IV, the Stone price-based 

pht is instrumented by the Laspeyres price index. 



40 

Table 3. Estimated Parameters for the Cross-Price Effects from the Second-Stage 

Demand 

Attributes 

Model 1 

dm 

Model 2 

dm 

Model 3 

dm 

Model 4 

dm dm,w 

BRAND_FAM −0.048*** −0.016 −0.020 −0.013 0.591 

 

(0.014) (0.016) (0.017) (0.019) (2.441) 

NAME_BRAND 0.657*** 0.348** 0.272* 0.876*** −82.901*** 

 

(0.197) (0.172) (0.150) (0.200) (16.443) 

MAJOR_PROD 0.717*** 0.867*** 0.927*** −0.198 136.230*** 

 

(0.114) (0.118) (0.128) (0.179) (21.836) 

PROD_CAT 0.150*** 0.185*** 0.208*** 0.039 7.502 

 

(0.046) (0.045) (0.045) (0.056) (6.205) 

ENERGY_CAT 0.432*** 0.464*** 0.567*** −0.142 119.942*** 

 

(0.080) (0.071) (0.086) (0.101) (8.816) 

CAFFEINE 0.798*** 0.908*** 0.911*** 0.085 −31.330*** 

 

(0.166) (0.124) (0.133) (0.177) (10.383) 

FLAVOR 0.222*** 0.283*** 0.281*** 0.007 48.277*** 

 

(0.033) (0.033) (0.033) (0.039) (4.715) 

PROD_CAT_C −0.922*** −0.819*** −0.840*** −0.437** −131.825*** 

 

(0.171) (0.156) (0.149) (0.197) (23.742) 

Total number of  

parameters 

720 720 720 728  
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adj GR
2
 0.4740 0.4760 0.4760 0.4840  

Notes: Asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 1% levels, 

respectively. Standard errors are in parentheses. All estimates and standard errors are multiplied 

by 100 for readability. The adj GR
2
 is the Pesaran and Smith (1994) generalized R

2
 for 

instrumental variables regressions and is adjusted for the number of explanatory variables. 
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Table 4. Summary Statistics for Estimated Unconditional Price Elasticities 

 

Model 1 Model 2 Model 3 Model 4 

Median own-price elasticity −1.954 −2.035 −2.041 −1.987 

Median cross-price elasticity −0.003 −0.001 −0.001 0.001 

% positive own-price 

elasticities 

3.9% 3.5% 3.3% 3.0% 

% negative cross-price 

elasticities 

57.7% 57.5% 57.4% 43.4% 
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Table 5. Simulated per Capita Effects of Ounce-Based and Calorie-Based SSB 

Taxes on Demand and Consumer Surplus  

 

Model 1 Model 2 Model 3 Model 4 

% change in beverage group price, ounce-based tax 

First-order effect
a
 7.56% 7.56% 7.56% 7.56% 

Second-order effect 0.10% 0.11% 0.19% 0.16% 

 (1.8) (2.0) (2.9) (2.1) 

% change in beverage group price, calorie-based tax 

First-order effect
a
 7.25% 7.25% 7.25% 7.25% 

Second-order effect  0.13% 0.13% 0.22% 0.18% 

  (2.3) (2.4) (3.4) (2.5) 

Reduction in energy intake from beverages (kcal/year) 

Ounce based 2,798 2,686 2,305 1,916 

 (57.6) (58.8) (55.4) (62.3) 

Calorie based 2,811 2,794 2,396 2,001 

 (57.4) (59.7) (56.2) (62.9) 

Compensating variation ($/year, absolute value) 

Ounce based 6.20 6.21 6.27 6.25 

 (68.4) (68.2) (66.6) (67.0) 

Calorie based 5.98 5.98 6.05 6.02 

 (68.3) (68.5) (66.9) (67.0) 

Tax burden ($/year) 
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Ounce based 5.03 5.10 5.21 5.40 

 (39.2) (39.9) (42.8) (47.6) 

Calorie based 4.85 4.88 5.01 5.17 

 (37.3) (38.8) (41.4) (45.5) 

Difference in CV per 1,000 kcal reduced ($) 

 0.0886 0.1727 0.1953 0.2923 

 (4.1) (3.9) (3.1) (2.8) 

Notes: Results are for the 178 products in ScanTrack accounted for by the DM AIDS model. The 

reported simulated effects and the associated t statistics (in parentheses) are averages over all 

markets and time periods.  

a
 The first-order effect is deterministic and based on baseline budget shares and after-tax retail 

prices. 



45 

 

 

Figure 1. Distribution of estimated unconditional own-price elasticities for the fully 

modified DM AIDS model 

Notes: The distribution is based on Model 4 elasticity estimates with the top and bottom 1% of 

the estimates trimmed. 
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Figure 2. Distribution of estimated unconditional cross-price elasticities for the fully 

modified DM AIDS model 

Notes: The distribution is based on Model 4 elasticity estimates with the top and bottom 1% of 

the estimates trimmed.   
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1
 Authors’ calculation based on Nielsen ScanTrack data on supermarket beverage sales 

and calorie information collected from manufacturers’ websites.  

2
 There are 100 kcal in 8 ounces of regular Coke. 

3
 Authors’ calculation based on dietary intake data from respondents ages 5 and above in 

the 2007–2008 National Health and Nutrition Examination Survey (NHANES).  

4
 Total energy intake from regular CSD, sports and energy drinks, fruit drinks, and 100% 

juice is about 63,000 kcal per capita per year for people ages 5 and above based on the 

2007–2008 NHANES. 


