The World's Largest Open Access Agricultural & Applied Economics Digital Library ## This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. Help ensure our sustainability. Give to AgEcon Search AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. # Hedging Canadian Wheat using U.S. Futures Markets Marjaneh Aghvami, Graduate Research Assistant Julieta Frank, Assistant Professor Department of Agribusiness and Agricultural Economics, University of Manitoba E-mail: aghvamim@cc.umanitoba.ca; Julieta_Frank@umanitoba.ca Selected Poster prepared for presentation at the Agricultural & Applied Economics Association's 2013 AAEA & CAES Joint Annual Meeting, Washington, DC, August 4-6, 2013. Copyright 2013 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. # Hedging Canadian Wheat Using U.S. Futures Markets # Marjaneh Aghvami¹, Julieta Frank² ¹Graduate Research Assistant, ²Assistant Professor, Department of Agribusiness and Agricultural Economics, University of Manitoba - Winnipeg, MB, Canada - R3T 2N2 (E-mail: aghvamim@cc.umanitoba.ca; Julieta_Frank@umanitoba.ca) # UNIVERSITY OF MANITOBA # Introduction - At the end of 2011 the government signed into law a bill which changed the Canadian Wheat Board's (CWB) role of sole buyer of wheat to a voluntary marketing option for Canadian wheat producers. - Wheat futures contracts trade in various exchanges worldwide, most noticeably in the Minneapolis Grain Exchange (MGEX), the Kansas City Board of Trade (KCBT), and the Chicago Mercantile Exchange Group (CME). - The relative performance of these contracts and their hedging effectiveness for Canadian market participants has not been fully explored. - Because of their higher liquidity and longer history, U.S. wheat futures contracts are attractive for Canadian hedgers. - The U.S. wheat future contracts are priced in U.S. dollars, which introduces an additional source of risk—currency risk (Frank, Brewin and Patiño 2011). The following graph shows how the currency changes over time. # Objectives - Examine existing U.S. futures contracts performance and their usefulness as a hedging tool, focusing on basis behaviour and management of basis and currency risk. - Examine the ex-ante basis risk in terms of forecastability. - Develop different hedging strategies to assess hedging effectiveness of all three wheat futures contracts. ## Data #### • Wheat foreign futures prices North American wheat futures contracts: | | GCME Group | MGEX | KANSAS CITY
BOARD OF TRADE | lice | |----------------------|---|---|---|---| | | Chicago
Mercantile
Exchange | Minneapolis
Grain Exchange | Kansas City
Board of Trade | ICE Futures
Canada | | Contract
Name | Soft Red Winter
Wheat Futures | Hard Red Spring
Wheat Futures | Hard Red Winter
Wheat Futures | Milling Wheat
Futures | | Launch of
Trading | 1898 | 1881 | 1876 | Jan 23, 2012 | | Contract Size | 5000 bushels | 5000 bushels | 5000 bushels | 100 metric tons
(3674 bushels) | | Delivery
Months | March, May, July,
September,
December | March, May,
July, September,
December | July, September,
December,
March, May | March, May,
July, October
,December | #### • Exchange rate Cash exchange rate is from the foreign exchange market. Future Exchange rates for March, July and December futures are from the International Monetary Market. ## Data (cont'd) Futures prices (FP) for U.S. markets and cash prices (CP) for the Canadian market for a 3-month forecast horizon, 2005-2011. #### • Wheat Canadian cash prices Daily Price Contract (DPC) and FlexPro as producer payment options (PPOs) for the period 2005-2011. ## Methods #### Price risk decomposition Producers make decisions based on price forecasts. The accuracy of the forecasts is assessed using the mean square error (Novak & Unterschultz 1996): $$MSE = \frac{\sum_{t=-j+1}^{T-j} (NP_{t+j} - N\tilde{P}_{t+j})^2}{T-1}$$ NP_{t+j} is the realized net price for period t+j $N\tilde{P}_{t+j}$ is the forecasted net price for period t+j T is the total number of periods j is the forecast horizon ### Hedging strategies We study three different hedging strategies: | No hedging | $NP_{t+j} = p_{t+j}$ | $MSE = \frac{\sum_{t=-j+1}^{T-j} [(f_{t+j}e_{t+j} - f_te_t) + (B_{t+j} - \tilde{B}_{t+j})]}{T-1}$ | |--|--|---| | Commodity
hedging only | $NP_{t+j} = p_{t+j} + (f_t - f_{t+j}) e_{t+j}$ | $MSE = \frac{\sum_{t=-j+1}^{T-j} [f_t(e_{t+j} - e_t) + (B_{t+j} - \tilde{B}_{t+j})]^2}{T-1}$ | | Combined
commodity-
currency hedging | $NP_{t+j} = p_{t+j} + (f_t - f_{t+j}) e_{t+j} + f_t (x_t - x_{t+j})$ | $MSE = \frac{\sum_{t=-j+1}^{T-j} [(B_{t+j} - \tilde{B}_{t+j})]^2}{T-1}$ | - t is the trading day when the hedge is placed, t+j is the trading day when the hedge is lifted, - p is the cash price; f is the futures price, - e is the currency spot rate, and x is the futures exchange rate B_{t+j} and \tilde{B}_{t+j} are the realized and forecast basis when the hedge is lifted ### Basis forecast The price difference (cash price – futures price) is known as the basis. Hedging decisions are usually driven by the predictability of the basis. The basis forecasting model used in this research is (Working 1953): Basis forecast $\Delta B_t = C_1 + C_2 B_t + C_3 D_t + \varepsilon_t$ $\Delta B_t = B_{t+j} - B_t \text{ is the change in the basis,}$ $B_t \text{ is the basis at the beginning of hedging period,}$ $D_t \text{ is a seasonal dummy variable.}$ $C_i, i = 1, 2, 3 \text{ are coefficients and } \varepsilon_t \text{ is a random error}$ #### Optimal hedging ratios Using mean-variance framework (Thompson & Bond 1987) the objective is specified as the maximization of: $$\Omega_{t} = E(NP_{t+j}) - \lambda V(NP_{t+j})$$ where λ is the decision maker's risk aversion coefficient and estimates of $E(NP_{t+j})$ and $V(NP_{t+j})$ are conditional on the information available to the decision maker at time t. $$NP_{t+j} = Q_t P_{t+j} + H_t (f_t - f_{t+j}) e_{t+j} + G_t (x_t - x_{t+j})$$ Q_t is the quantity of wheat sold in the local cash market H_t is the quantity of wheat futures contracts G_t is the quantity of currency future contracts Solving for H_t/Q_t yields the optimal commodity hedge ratio. ## Results • Calculated NPs and corresponding MSEs for 3-month forecast horizons using U.S. futures contracts: | Strategy | Chic | ago | Kan | isas | Minne | apolis | |----------------------------|---------|---------------------|---------|---------------------|---------|---------------------| | Strategy | Mean NP | MSE | Mean NP | MSE | Mean NP | MSE | | No hedging | 771.24 | 19194.79 | 738.80 | 22920.09 | 771.23 | 24867.36 | | Commodity
hedging | 775.68 | 6149.12
(67.96%) | 713.66 | 3088.45
(86.53%) | 722.57 | 7442.78
(70.07%) | | Commodity currency hedging | 779.51 | 5703.50
(70.29%) | 715.49 | 2784.31
(87.85%) | 726.28 | 5554.24
(77.66%) | Note: Numbers in parentheses indicate the percentage reduction in the MSE (price risk) with respect to the no hedging strategy. Basis forecast for 3-month forecast horizons for each U.S. futures contract: Optimal commodity hedge ratios for wheat using U.S. futures contracts and a combined commodity-currency strategy: | Strategy | Chicago | Kansas | Minneapolis | |--------------------------------|---------|--------|-------------| | H _t /O _t | 0.265 | 0.249 | 0.634 | ## Conclusions - Commodity hedges using U.S. futures contracts appear to be effective to reduce price risk. - Hedging wheat removes approximately 68%, 86% and 70% of the price risk for a 3-month hedging horizon using Chicago, Kansas and Minneapolis futures markets respectively. - Combined wheat and currency hedging removes approximately 70%, 87% and 77% of the risk for a 3-month hedging horizon using Chicago, Kansas and Minneapolis futures markets respectively. The remaining price risk is due to the basis variability. - Exposure to exchange rate risk has an effect on decisions to hedge commodity. ## References Frank, J., D. Brewin, and M. J. Patiño. 2011. "Marketing Strategies in the Canadian Beef Sector." *Proceedings of the NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.* Novak, F., and J. Unterschultz. 1996. "Simple Risk Measures when Hedging Commodities Using Foreign Markets: A Note." *Journal of Futures Markets* 16:211-217. Thompson, S., and G. Bond. 1987. "Offshore Commodity Hedging under Floating Exchange Rates." *American Journal of Agricultural Economics* 69:46-55. Working, H. 1953. "Hedging Reconsidered." *Journal of Farm Economics* 35:544-61.