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Trajectory of Maturity: An Empirical Analysis of US Biofuel Innovations 

 

 

 

 

Abstract: Employing the patent data over 1977-2011, this study explores the factors determining 

innovative activities in the US ethanol industry. We take into account both demand-side and 

supply-side factors, the latter of which is represented by constructed knowledge stocks, to 

quantify the effects of price- and policy-induced innovations. We quantify the citation generation 

process using patent citations and construct the simple and weighted stocks of knowledge with 

weights of patent productivity. We confirm that both the supply-the demand-side factors, such as 

knowledge stock, crude oil price and government R&D expenditure, have positive and 

statistically significant effects on the technological innovations of biofuels in the United States. 
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1. Introduction 

Finite and unequal distribution of fossil fuel resources, together with growing concerns on 

environment, has brought significant changes to world energy production and consumption. 

Countries worldwide facing the issues of energy security and low carbon economy have been 

stimulated to seek alternative energy resources to displace fossil fuel sources. Ethanol is one 

successful example, which is the most widely used biofuel in the world. It has been grabbing 

significant attention in some countries, especially US and Brazil. These two countries accounted 

for about 88% of worldwide ethanol production in 2010. 

The US ethanol production experienced rapid growth in the late 1970s when the subsidy 

established by the Energy Policy Act of 1978 launched the industry. Ethanol production has 

quadrupled from 3.9 billion gallons in 2005 to 13.9 billion gallons in 2011 (RFA 2012). Ethanol 

substituted about 10% of the U.S. gasoline supply in 2011, up from 1% in 2001. While ethanol 

production is expanding rapidly, however, there are also increasing concerns. For example, 

strong feedstock demand leads to higher crop price, intensive crop production and potentially 

significant land use changes as well as associated environmental impacts.  

The US ethanol industry has grown into an established and mature industry, which is 

largely accelerated by the support policies including blending mandate, tax credit, and import 

tariff provided by the federal and state governments. Between 1983 and 2005, production costs 

of corn ethanol in the US decreased by about 65% and industrial processing costs decreased by 

approximately 45% (Hettinga et al. 2009; Chen and Khanna 2012). Over the same period, we see 

similar trend in patent granting of ethanol-related innovations. There were massive applications 

of patents between late 1970s and early 1980s. After a quiet development period, a large number 

of technological innovations with applications of new patents emerged after 2005. 
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This study attempts to provide a rigorous empirical understanding on the technological 

innovations of the US ethanol industry using patent count and citation data. Several unique 

features of technological innovations in the U.S. ethanol industry distinguish the present study 

from the existing literature. First, the booms of ethanol-related innovations of late 1970’s  and 

after 2005 are largely stimulated by not only energy price, but also national and local 

government policies, which is not typical for other renewable energy sectors. Contrast to the 

finding in Pope (2002) that government energy R&D has weak and insignificant effect, we find 

strong and significant impact of government R&D expenditure on ethanol innovations.  

Second, as a mature industry, the development of US ethanol industry provides an 

interesting setting within which to examine the driving forces of innovative activities and to test 

the hypotheses of price- and policy- induced innovations, which is first proposed in Popp (2002). 

Insights into the ethanol industry will provide lessons on various aspects, e.g., capital investment 

and policy intervention, for the development of other renewable energy resources. Especially, 

technology evolution of ethanol should present valuable information on the mechanisms to 

stimulate renewable energy innovations in the future.  

Finally, utilization of patent data by itself should be interesting. Patent count and citation 

information provide not only the quantity but also the scientific value of innovative output. 

Patent citation indicates knowledge contribution by prior research, or in other words, the 

usefulness of existing knowledge to later inventors. Following the method developed in Popp 

(2002), we construct the stocks of knowledge measuring the level of currently available 

technological knowledge on ethanol. It turns out that incorporating the measure of existing 

knowledge is important for quantifying the price and policy effects on technological innovations.  
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Several interesting findings emerge from our research. First, similar to the demand for 

knowledge, the supply of knowledge is also proved to play an important role in the innovation 

process as ignoring the supply factor biases estimation results. Second, although the weighted 

knowledge stock captures the productivity of patents, the simple knowledge stock better reflects 

the existing knowledge of US ethanol as a significant number of patents generated during the 

recent ethanol boom after 2005 have not got much chance to be cited. Finally, the empirical 

analysis of the determinants of technological innovation finds that both demand-side and supply-

side factors, including the knowledge stock, crude oil price, and government R&D expenditure, 

positively and significantly affect ethanol innovations.  

The rest of paper is organized as follows. Section 2 reviews the existing literature. Patent 

data used in the study are discussed in Section 3. In Section 4 we describe the empirical models 

for constructing of the knowledge stocks and for quantifying the determinants of technological 

innovation. Section 5 analyzes the estimation results followed by some concluding comments in 

the final section.      

2. Literature review 

A number of studies employ patent data to analyze the driving forces of technological 

innovations in energy and renewable energy sectors. Popp (2002) is the first study proposing the 

concept of knowledge stock in studying energy-related technological innovations using patent 

data. The study shows that (i) both energy prices and existing knowledge stock have significant 

positive effects on energy-efficient innovation, and (ii) omitting the quality of knowledge biases 

the estimates. Accounting for both domestic and international knowledge flows, Verdolini and 

Galeotti (2011) construct internal and external knowledge stocks to study determinants of 

innovation in energy technologies. Using the data of 38 innovating countries from 1975-2000, 
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the authors find that higher geographical and technological distances are associated with lower 

probability of knowledge flow.  

Johnstone, Hascic and Popp (2008) examine the effects of policy incentives on the patent 

counts of a number of renewable energy technologies. Their sample includes 25 high-income 

countries that have adopted various support policies to encourage the development of renewable 

energies. While public policy plays a significant role in inducing innovations, the efficacy of 

alternative policy instruments varies by energy sources. De Freitas and Kaneko (2012) confirm a 

unidirectional relation from consumption to technological innovation of sugarcane ethanol in 

Brazil. 

The studies on the innovative activities and the determinants of US ethanol are sparse. 

Hettinga et al. (2009) investigate technological development of US ethanol production using an 

experience curve approach where technological learning is identified in two separate systems: 

corn production and ethanol processing. Main drivers behind large cost reductions include high 

ethanol yields and the introduction of ethanol-specific and automated technologies. Using data 

on US dry-mill ethanol processing costs of 1983-2005, Chen and Khanna (2012) investigate the 

reasons underlying the declining processing costs. They find that (i) US corn ethanol production 

exhibits decreasing return-to-scale, (ii) learning-by-doing plays an important role in cost 

reduction, and (iii) imports of sugarcane ethanol contribute to the increasing competitiveness of 

the industry. The most relevant to our work is Karmarkar-Deshmukh and Pray (2009). Their 

results indicate the significant positive effect of oil prices and federal research grants on ethanol-

related innovations. The study was conducted in 2008 and only 445 ethanol-related patents are 

identified and utilized. More importantly, they omit the effect of knowledge stock by assuming 

patents are equally important for later innovations. 
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3. Ethanol patent count data and descriptive evidence 

In this study technological innovations in ethanol industry are represented by the number of 

patents registered at the US Patent and Trademark Office (USPTO). To identify the ethanol-

related patents, we search the USPTO database and collect all the patents having the word 

“ethanol” in title or abstract. This initial search generated a total of 3,539 patents, applied over 

1975 to 2011 and granted over January 1976 to June 2012. Patent descriptions were then 

manually reviewed and screened for its direct relevance. In our study, we focus on the ethanol 

patents that are related to agriculture and industrial production of ethanol, including the usage of 

residuals ethanol production and combustion-related patents such as ethanol engine patents. The 

screening yields 1,090 ethanol patents over the sample period.  

Following de Freitas and Kaneko (2012), we classify the ethanol patents into five 

categories including agricultural feedstock production, ethanol production process, engine and 

ethanol combustion, ethanol by-product, and emission treatment.
1
 Figure 1 presents the annual 

patent counts by category sorted by the application year. There are a total of 1,090 ethanol 

patents registered at USPTO, 673 of which are granted to US assignees.
2
 We focus on US patents 

in this study.  

As shown in Figure 1, the trend of patenting activity is largely consistent with the 

development of ethanol industry. Patenting activities reached its peak in early 1980s. After that 

total patent applications declined to around 20 patents each year. Applications grew by more 

                                                           
1
 De Fretas and Kaneko (2012) classify ethanol-related patents into six categories. We exclude 

the category of “Transport and storage” as no relevant patents in our data.  
2
 An assignee and an inventor of a patent may be different in some cases because, for example, 

an employee could likely assign a patent to a company. But the distinction doesn’t affect the 

patent counts and our empirical results as we limit our attention to the US assignees.   
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than 20% per year since 2006, which was triggered by increasing domestic ethanol demand and 

high crude oil prices. Different from Brazil’s ethanol industry where agriculture-related patents 

experienced a major increase during the 2000s (de Freitas and Kaneko 2012), patenting activities 

are dominated by the innovations related to ethanol production followed by combustion patents 

in the United States.     

Figure 2 illustrates the trend of ethanol patents by U.S. assignee groups from 1975 to 

2011.
3
 There are three assignee groups including US government, university, and private 

company. Over the sample period, private companies led the ethanol-related technological 

innovations in the US followed by universities and the government. Comparing US government 

and universities, Figure 2 shows that the US government was more active in patenting than 

universities during early 1980s. However, universities are more contributing to current ethanol 

boom as shown by their patenting activities since 2005. We consider the total US patents in the 

empirical analysis in a latter section because that as we discussed above government policies 

play critical roles in the development of US ethanol industry and associated innovations. Not 

only private companies but also university and government related research organizations are 

affected by the support and contribute significantly to the ethanol booms. Inclusion of all groups 

should paint a more complete picture of the knowledge creation and accumulation processes. 

Table 1 summarizes the information on patent citations. We can see that the distribution 

of patent citations is highly skewed. About 38% of US patents received no citation over the 

whole period. 37% of the patents received between one and ten citations and 16% of patents 

                                                           
3
 Patents assigned to more than one assignee are counted more than once. This yields a total of 

1,090 patents by assignees.  
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received eleven to thirty citations. The only remaining 3% of patents received thirty or more 

citations. On average, a patent was cited approximately seven times over the sample period.  

4. Empirical methods 

In this section we turn to discuss the empirical methods for (i) constructing knowledge stocks, 

and (ii) analyzing driving factors of technological innovations. 

Knowledge Stock 

Knowledge stock is a commonly applied measure to proxy the existing stock of scientific 

knowledge (see, e.g., Jaffe and Trajtenberg 1996; Popp 2002). Higher level of available 

knowledge stock indicates better technological opportunity and should push for more innovative 

activities in the following period. Patent citations contain useful information for knowledge stock 

construction. Citation to a previous patent reflects the usefulness of knowledge contained in the 

earlier cited patent and its knowledge contribution to the new citing patent (Popp 2002). Hence, 

frequent citations suggest high quality of the patent and its relatively more important 

contribution to knowledge accumulation of the industry. 

Following Popp (2002), we use patent citations to estimate the parameters underlying the 

citation generation process after taking the relative importance of individual patents into account. 

The estimates are then combined with patent counts to construct the time-varying knowledge 

stocks of ethanol-related innovations.  

The probability that a patent applied in year T  cites a patent k  granted in year t  can be 

described by the following double-exponential function:
4
      

   1 2( , ) ( , )exp ( ) 1 exp( ( ))p k K k K T t T t         (1) 

                                                           
4
 Eqn. (5), p. 168, Popp (2002). 
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where knowledge becomes obsolete at the rate of 1  and diffuses by the rate of 2 . ( , )k K  

denotes the parameters capturing attributes of the citing or cited patents that may influence the 

probability of citation. The probability of citation ( , )p k K , which is also referred as citation 

frequency, is defined as a function of the citation lag ( )T t  and the parameters. 

The number of citations in a cited-citing years pair is denoted as ,k Kc , cited patents 

granted in year t  as tn , and citing patents applied in year T  as Tn . Then eqn. (1) can be 

rewritten as:
 5,6

         

   ,

, 0 1 2exp ( ) 1 exp( ( )
k K

k K t T

t T

c
p T t T t

n n
            (2) 

where the probability of citation is , ,k K k K t Tp c n n  and ( , )k K  incorporates the constant 0 , 

cited year effect t , and citing year effect T . The cited year effect t  indicates the usefulness 

of the cited patents and therefore the likelihood of being cited. Hence, higher cited year effect 

indicates higher probability of being cited and thus reflects the relative importance of the patent.  

Two types of knowledge stocks, simple knowledge stock ( simple

tK ) and weighted 

knowledge stock ( weighted

tK ), for year t  are constructed using the estimated parameters in (2) and 

US patent counts as follows:  

   1 2

1980

exp ( ) 1 exp( ( ))
t

simple

t s

s

K Pat t s t s 


       (3) 

   1 2

1980

exp ( ) 1 exp( ( ))
t

weighted

t s s

s

K Pat t s t s  


        (4) 

                                                           
5
 We excluded the observations at t T as such citation pairs are rare in our sample.   

6
 Eqn. (6), P. 169, Popp (2002). 
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where sPat  represents the number of patents granted in year s , s  is the estimate of the cited 

year effect, 1  and 2  represent the estimated decay and diffusion rates, respectively. Here 

simple

tK  provides a measure of knowledge accumulation of ethanol related innovations using 

annual patent counts. weighted

tK  quantifies the knowledge stock after incorporating patents’ 

relative usefulness by using the cited year effect as a multiplicative factor. The knowledge stocks 

are constructed over the period of 1977-2010. 

Determinants of Innovation 

We proceed to analyze the determinants of technological innovations. In general, technological 

innovation is affected by both demand and supply factors (see Verholini and Galeotti 2011 for a 

more detailed discussion). The demand-side determinants are factors that make technological 

innovations more or less profitable for a given level of supply. Crude oil prices, public R&D and 

government policy indicators are considered to be the demand-side factors here.  

Record high fossil fuel prices provide economic incentives to invest in renewable energy 

sources including biofuel.  Also, the US government has been playing an important role in 

stimulating biofuel development in recent years by providing significant amount of R&D 

funding and strong policy incentives. However, the effect of government policies on 

technological innovations is found to be unclear in the literature. For example, in studying the 

innovations related to biomass for electricity, Johnstone, Hascic and Popp (2008) find that 

government R&D spending has a negative and significant effect on patent applications, implying 

that government R&D funding crowds out private spending. For US corn ethanol, Karmarkar-

Deshmukh and Pray (2009) show that the research funding provided by the federal government 

has a positive and significant effect on technological innovations. But they also show that the tax 
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credit has a negative and significant effect on ethanol innovations, while the effect of mandate 

policy was a negative but not significant.   

In the current study, the ethanol-related US patents applied in year t , tPat , are 

determined as: 

 
1 1 2 3 4exp &E

t t t t t tPat K P R D Policy    
        (5) 

where 1tK   is one-year lagged simple (or weighted) knowledge stock of year 1t  . E

tP  is annual 

imported crude oil price deflated by consumer price index. & tR D  denotes the real expenditure 

(in 2005 dollars) for renewables R&D conducted by the US Department of Energy. Policy  is the 

policy indicator for federal government ethanol policy, mainly the Renewable Fuel Standard 

(RFS), and t  stands for unobservable errors with mean zero. We use the two policy proxy 

variables: (i) a dummy variable that takes the value of one since 2006 indicating the presence of 

RFS (named “EPA Dummy”), and (ii) annual renewable fuel volume mandate under the RFS 

since 2006 (named “RFS Quantity”).  

5. Analysis of the results 

First, we discuss the results on citation generation process specified in eqn. (2) and the 

knowledge stock construction in eqns. (3) and (4). We use data on ethanol patents granted over 

1977-2010 for the cited patents ( k ). The citing patents ( K ) are the patents that cite patents in the 

set of k  and are sorted by application year over 1978-2011. A total of 6,989 pairs are included 

after sorted by cited-citing year pairs. Eqn. (2) is then estimated using nonlinear least squares 

method. As it is difficult for the estimates to converge with separate t  and T  for each cited-
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citing year, we group the cited-citing years into 2-2 year intervals assuming that t and T  are 

constant over the intervals, but different across the intervals. 

Table 2 shows the estimation results where the cited and citing years are grouped into 2-2 

year intervals, respectively. When we normalize 1977 1978
ˆ 6.54t     to one, the interpretation of 

estimated values of ˆ
t  becomes relative to the base years. For example, the estimate of 

1981 1982
ˆ 4.47 6.54 0.68t      means that the likelihood for a patent issued in 1981-1982 to 

receive a citation is about 32% lower than that of a patent issued in 1977-1978.  In Table 2, the 

cited year effects ˆ
t  is decreasing over 1977-2010, while the citing year effects ˆ

T  is increasing 

over 1978-2011. This is intuitively reasonable in that the earlier patents are granted, the higher 

chances patents have to be cited. Likewise, the later patents are applied, the higher chance 

patents cite other patents. This is also consistent with the probability of citation , ,k K k K t Tp c n n , 

presented in Figure 3 where ,k Kp  is high before 1980, stable between 1980 and 2005, and 

increasing quickly after 2005. The higher probability of citation before 1980 is captured by 

higher cited year effects, and the higher probability of citation after 2005 is reflected into higher 

citing year effects.  

Figure 4 plots the constructed simple and weighted stocks over the period of 1977-2010. 

Both simple and weighted knowledge stock reached the peak in mid-1980s. While weighted 

knowledge stock has declined after that, simple knowledge stock shows upward trend since 2005, 

reflecting the current increasing number of ethanol patent application. As pointed out in Popp 

(2002), the falling value of the citation-weighted knowledge stock suggests the deteriorating 

quality of knowledge represented by the patents over time, or decreasing rate of return of 

obsolete patents. Given the fact that the recent ethanol-related innovation boom happened after 
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2005, in such a short period newly granted patents don’t have much chance to be cited. We argue 

that the simple knowledge stock provides a better and more complete picture of the existing 

knowledge of ethanol industry.
7
  

Time series of the variables included in the determinants estimations are presented in 

Figure 5 and the corresponding descriptive statistics are reported in Table 3. Except the concave 

shape of weighted knowledge stock, real crude oil prices and government R&D expenditure 

show consistent evolution with the patenting activities over time. Peaks of patent application 

appeared during the periods of around 1980 and after 2005, together with relatively high crude 

oil prices and government expenditure on renewable energy research. Eqn. (5) is estimated using 

a Negative Binomial (NB) model as the evidence of over-dispersion of patent counts by the 

Lagrange Multiplier (LM) test rejects a Poisson model. 

Government R&D expenditure is considered to be endogenous as it could be determined 

by some factors influencing patenting activities. We seek valid instrument variables (IVs) to deal 

with the endogeneity issue, which should influence R&D but be independent of the patent 

generation. Following the literature (e.g., Jaffe 1986; Barro 1998), we instrument the government 

R&D with GDP growth rate because that R&D expenditure should respond to exogenous 

productivity growth. Figure 5 indicates a clear relationship between government R&D and GDP 

growth rate that in both early 1980s and after 2005, high government R&D responded to low 

GDP growth rate and they were all stable over a long period before 2005.  

To address the endogeneity concern of knowledge stock, we applied the method in Popp 

(2002) by using the time trend, lagged GDP and lagged oil price as instrumental variables for 

                                                           
7
 This is also reflected by the empirical analysis of innovation determinants, which we will 

discuss in a latter section. 
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both simple and weighted knowledge stocks. In the estimation of the NB regression, we explore 

a two-stage procedure where the government R&D and knowledge stock variables are 

instrumented. In the first stage, endogenous variables are regressed on chosen IVs. The predicted 

values of the first stage regression are then used as regressors in a second stage of NB model. 

The standard errors are obtained using bootstrapping method. The first stage regression results 

are summarized in the lower panel of Table 4. 

The upper panel of Table 4 presents the estimation results of eqn. (5) where the 

coefficient estimates are reported as incidence rate ratios.
8
 Specifications with simple knowledge 

stock (Columns I and II) are the best fitted models indicated by the high log likelihood values 

and 
2  test statistics. The results show positive and statistically significant effects of one-year 

lagged simple knowledge stock, crude oil prices, and government R&D expenditure on the 

technological innovations of US ethanol industry.  Specifically, one unit increase in the simple 

knowledge stock is associated with about 2.5%-2.6% increase of number of ethanol patents; one 

unit increase in the crude oil price increases the probability of innovation by about 2.3%-2.5%; 

one unit increase in the government R&D increases the probability of innovation by 0.9%. Both 

policy proxies (EPA dummy and RFS volume mandate) have positive impact on patenting 

activities but not significant. This is reasonable because that (i) the policies are implemented 

after 2005, which shares the same upward trend with crude oil price and government R&D 

                                                           
8
 The estimates are transformed from ̂  to ˆexp( )  together with standard errors. ̂  can be 

interpreted as the estimated rate ratio for a one unit increase in the explanatory variable ˆX


 

holding the other variables constant. In other words, if the level of ˆX


 increases by one unit, the 

rate for patents would be expected to change by a factor of ̂  (increases if ˆ 1   or decreases if 

ˆ 1  ) (Stata Corporation 2001). 
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expenditure, and (ii) the policy effects are largely captured by the government renewable energy 

R&D expenditure although it is not clear to us the structure of that expenditure. 

Columns III-IV report NB regression results using weighted knowledge stock. The 

knowledge stock and policy variables are not found to be an important technology-push factor. It 

is not surprising because that as we discussed above weighted knowledge stock declined over the 

sample period, which is dominated by the decreasing return to innovation and failed to capture 

the recent ethanol boom since 2005. The last two columns present the results omitting the 

knowledge stock variable. Most of the results are similar to the first two columns except the 

negative impact (estimated coefficient less than one) of RFS mandate.    

6. Conclusion 

Employing the patent counts and citations data of ethanol-related technologies, this study 

extends the analysis of technological innovation to the US ethanol industry, which has grown to 

a matured industry with intensive government support through federal and state policies as well 

as R&D funding.  

Following the literature, this study incorporates the effect of knowledge accumulation by 

quantifying the citation generation process and constructing the knowledge stocks of existing 

technology. The empirical analysis of the determinants of technological innovation finds that 

both supply- and demand-side factors, including simple knowledge stock, crude oil price, and 

government R&D funding, positively and significantly affect ethanol innovations. The policy 

effect is not significant after controlling the factors listed above.  

Our research suggests the need for future research in the following areas. First, 

availability of more satisfactory variables to proxy the demand-side factors such as policies and 

private R&D expenditure would further strengthen the results in the paper. Second, it would be 
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interesting to examine how the geographic characteristics of patent counts and citations differ 

significantly across assignee groups. Third, as Brazil is the second largest ethanol producing 

country in the world, it would generate meaningful policy discussion if we can extend the study 

to the sugarcane ethanol innovations in Brazil.  
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Table 1. Ethanol patents granted to US assignees, January 1976-June 2012. 

Total US Patents 673 

Citations # (%) 

0  255(38%) 

1-10  252(37%) 

11-20 105(16%) 

21-30 38(6%) 

>30 23(3%) 

Max 91 

Cited patents 418 (62%) 

Average citation/patent 7.07 
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Table 2. Regression result for probability of being cited for US patents 

(Standard errors are in the parentheses) 

Variable Estimates Variable Estimates 

Cited Year Effects t   Citing Year Effects T    

1977-1978 6.54*** 

(0.72) 
1978-1979 

0.69 

(0.70) 

1979-1980 6.52*** 

(0.40) 
1980-1981 

0.39 

(0.37) 

1981-1982 4.47*** 

(0.43) 
1982-1983 

0.25 

(0.22) 

1983-1984 3.76*** 

(0.53) 
1984-1985 

0.25 

(0.21) 

1985-1986 2.72*** 

(0.55) 
1986-1987 

0.31 

(0.24) 

1987-1988 1.85*** 

(0.49) 
1988-1989 

0.38 

(0.26) 

1989-1990 1.35*** 

(0.44) 
1990-1991 

0.57 

(0.36) 

1991-1992 0.85** 

(0.33) 
1992-1993 

0.80* 

(0.45) 

1993-1994 0.59** 

(0.27) 
1994-1995 

1.17** 

(0.59) 

1995-1996 0.47* 

(0.25) 
1996-1997 

1.92** 

(0.83) 

1997-1998 0.33 

(0.20) 

1998-1999 1.94*** 

(0.73) 

1999-2000 0.25 

(0.17) 

2000-2001 2.47*** 

(0.78) 

2001-2002 0.16 

(0.12) 

2002-2003 3.26*** 

(0.85) 

2003-2004 0.13 

(0.11) 

2004-2005 4.49*** 

(0.91) 

2005-2006 0.10 

(0.08) 

2006-2007 6.48*** 

(0.97) 

2007-2008 0.05 

(0.05) 

2008-2009 8.80*** 

(1.08) 

2009-2010 0.09 

(0.09) 

2010-2011 15.74*** 

(1.28) 

Decay ( 1 )  
0.24*** 

(0.03) 

 

Diffusion ( 2 )  
8.98*** 

(0.004) 

 

Constant ( 0 )  
0.001 

(0.001) 

 

Note: Single (*), double (**), and triple (***) asterisks denote significance at the 0.10, 0.05, and 

0.01 levels, respectively. 
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Table 3. Descriptive statistics 

Variable Observations Mean Std. Dev. Min Max 

Patents 33 20.67 15.74 3 58 

Weighted Stock 33 16.11 16.65 1.23 54.12 

Simple Stock 33 46.76 19.69 2.37 83.64 

GDP (billion $) 33 92.63 25.89 56.73 132.06 

GDP Growth Rate (%) 33 2.75 2.09 -3.07 7.19 

Oil Price ($/barrel) 33 48.16 23.72 16.97 98.61 

Government R&D (hundred millions $) 33 58.92 53.29 19.28 219.06 
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 Table 4. Regression results for determinants of innovation 

(Bootstrapping standard errors are in the parentheses) 

Variable I II III IV V VI 

Lagged Simple Stock  1.026*** 

(0.005) 

1.025*** 

(0.004) 
    

Lagged Weighted Stock  
  

1.008 

(0.01) 

1.004 

(0.008) 
  

Oil Price  1.023*** 

(0.005) 

1.025*** 

(0.003) 

1.025*** 

(0.007) 

1.028*** 

(0.006) 

1.024*** 

(0.004) 

1.025*** 

(0.004) 

Government R&D  1.009*** 

(0.004) 

1.009*** 

(0.003) 

1.026*** 

(0.005) 

1.024*** 

(0.004) 

1.020*** 

(0.004) 

1.020*** 

(0.004) 

EPA dummy 1.264 

(0.35) 
 

1.158 

(0.57) 

 1.060 

(0.24) 

 

 

RFS quantity  1.005 

(0.02) 

 0.985 

(0.05) 

 

 

0.974 

(0.03) 

Log likelihood -104.51 -105.17 -117.95 -117.94 -104.58 -104.21 
2  1712.43 1743.06 468.72 480.84 946.18 545.98 

First stage regression 
R&D Simple 

Stock 

Weighted 

Stock 

   

GDP Growth Rate -9.83** 

(4.21) 

     

Time trend 
 

7.16** 

(2.76) 

2.88 

(1.79) 

   

Lagged GDP 
 

-2.55** 

(1.01) 

-1.53** 

(0.66) 

   

Lagged Oil Price 
 

0.19 

(0.15) 

0.14 

(0.10) 

   

Constant 85.94*** 

(14.48) 

-14011.97** 

(5409.45) 

-5602.76 

(3512.80) 

   

R-squared 0.15 0.20 0.60    

F statistics 5.44 2.32 13.77    

Note: Single (*), double (**), and triple (***) asterisks denote significance at the 0.10, 0.05, and 

0.01 levels, respectively. 
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Figure 1. Annual Ethanol Patent Counts by Category, 1975-2011. 
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Figure 2. Annual U.S. Ethanol Patent by Assignee, 1975-2011.  
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Figure 3. Average probability of being cited by patent grant year, 1977-2010 
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Figure 4. Knowledge Stocks, 1977-2010 
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Figure 5. Time series of variables, 1978-2010. 


