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SUMMARY 

Optimal control methods are employed to derive irrigation management 
schemes accounting both for the dynamic response of the biomass yield 
to soil moisture and for the cost of irrigation water.  Moisture dynamics 
depend on the irrigation rate and on the current biomass and moisture 
states.  We find that the optimal irrigation policy has turnpike 
characteristics: soil moisture in the root zone should be brought to some 
optimal target level as rapidly as possible and kept at that level until 
some time prior to harvest, when irrigation should be ceased.  The target 
moisture level and the stopping time vary across crops, soil types, 
climatic conditions and economic (price) factors, but the turnpike 
structure of the optimal irrigation policy persists under general 
circumstances.  An empirical example demonstrates that the optimal 
scheme significantly outperforms the policy of yield maximization in 
actual practice.  
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1.  INTRODUCTION 

 The notion that technological progress in agricultural production is the main vehicle to 

avoid the threats of Malthusian starvation is well established.  Part of this progress is due to 

the development of high-yield varieties that are resistant to pests and diseases.  Equally 

important are efficient production technologies that save on costly inputs such as labor, land, 

water, nutrients and pesticides by adjusting carefully the timing and quantities in which inputs 

are applied to the needs of each particular crop.  Among these inputs, irrigation water plays an 

increasingly important role, as limitations on the quality and quantity of water are hampering 

growth in many areas around the globe.  The amount of water applied, then, is an important 

consideration in evaluating agricultural production procedures. 

Efficient irrigation management requires the understanding of the relation between 

water input and crop yield.  Consequently, a considerable amount of research has been 

devoted to elucidate this relation.  The two basic approaches to this problem can be classified 

as either static or dynamic.  The static approach considers the total amount of water available 

during the growing period and ignores intra-seasonal variations [1,2].  Irrigation management 

in this approach entails allocating the total amount of irrigation water without specifying how 

this amount is to be distributed during the growing period.  A dynamic framework, on the 

other hand, accounts for intra-seasonal variations in the irrigation profile [3].  Dynamic 

irrigation management entails allocating irrigation water at each point of time or at various 

stages of the crop growth [4-6].  

The present effort adopts the second (dynamic) approach.  Unlike previous dynamic 

irrigation management models in this vein that rely on numerical algorithms applied 

specifically to each particular case, we apply Optimal Control methods to identify and 

characterize an irrigation policy that is optimal for many crops and under a wide range of 

circumstances.  Underlying the irrigation management model is a dynamic yield production 
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process in which the plant converts biomass into marketable yield (when the biomass itself 

constitutes yield, the conversion reduces to identity).  The biomass, in turn, grows from 

emergence to harvest at a rate that depends, inter alia, on climatic and soil conditions as well 

as on the current state of the plant’s biomass.  Soil moisture (water content) in the root zone is 

a key factor affecting biomass growth and is the focus of interest when irrigation management 

is under consideration.  The harvested yield is thus an outcome of a growth process that 

involves two state variables—soil moisture and plant biomass—and one control—irrigation 

rate.  

The ensuing optimal irrigation policy consists of the following basic rule: bring the 

soil moisture in the root zone to some optimal target level  (the turnpike) as rapidly as 

possible, keep it constant on the turnpike until some time prior to harvest, and then cease 

irrigation.  The optimal policy is thus specified in terms of two parameters, namely the 

turnpike moisture level and the irrigation stopping time.  Both can vary across crops, soil and 

climatic conditions, as well as across economic (price) specifications.  Nonetheless, the 

turnpike structure persists under general conditions.  Characterizing the optimal irrigation 

policy in each circumstance boils down to determining these two parameters; implementing 

the ensuing policy is then straightforward.   

θ̂

Similar finite-horizon turnpike policies are obtained for a wide variety of economic 

and management problems (see, e.g.  [7]  pp. 195-205 for  the Vidal-Wolfe [8] advertising 

model and [7] pp. 295-298 or [9] for an epidemic control problem).  Our model differs from 

these simple examples by the presence of two inter-dependent state variables (note that the 

biomass keeps on growing while moisture remains on the turnpike), and by the lack of end-

constraints that fix these variables at some specified end-values.  Instead, the final states are 

determined indirectly via appropriate transversality conditions.  The analysis yielding this 

policy is, therefore, of interest on its own. 
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As is often the case, maximizing profit turns out to be quite different from maximizing 

yield.  This is particularly true when one of the inputs (e.g. irrigation water in arid or semi-

arid regions) contributes significantly to production expenses.  In fact, for the empirical 

example presented in this work we find that the maximal yield policy inflicts a loss whereas 

the optimal policy gives rise to a positive profit.  

 The next section specifies the problem and characterizes the optimal irrigation policy.  

In Section 3 we apply the model to sunflower growth in the Arava Valley, Israel.  Section 4 

considers several extensions and establishes the robustness of the turnpike policy.  Finally, 

Section 5 concludes and the Appendix contains the technical derivations.   

2.  OPTIMAL IRRIGATION MANAGEMENT 

Let m(t) represent the plant biomass at time t ∈ [0,T], where T denotes the length of 

the growing period (or time from emergence to harvest).  Marketable yield is derived from the 

biomass according to the yield function y(m).  If yield and biomass are the same, then 

y(m) = m.  Often, however, y(m) is small for m below some critical level but above this level it 

increases at a rate that exceeds that of the biomass.  At each point of time the biomass grows 

at a rate that depends on the current biomass state (the accumulated growth up to this time) as 

well as on a host of factors including availability of water and nutrients in the root zone, 

sunlight intensity, day length and ambient temperature.  Some of these factors (e.g., water 

content) can be controlled by the growers via input application and are denoted by θ(t).   

The plant biomass rate of growth depends on θ(t) and m(t) according to  

))(())(()()( tmhtgtm
dt

tdm θ=≡ & . (2.1)

Implicit in (2.1) is the assumption that the biomass growth rate can be factored to terms 

depending on θ and m separately.  The functions g and h are assumed to be strictly concave in 

their respective arguments, and g obtains a maximum at some input value θmax (too much 
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moisture harms growth).  The specification of these functions in any particular context is 

based on empirical evidence or physiological crop models.  

Focusing attention on irrigation management, θ(t) in this work represents the water 

content in the root zone.  Mass conservation implies that the change in θ(t) at each point of 

time must equal water input through irrigation (x) minus losses due to evapotranspiration (ET) 

and drainage (D).  (Rainfall can also be incorporated in this framework, but to focus on 

irrigation management we assume no rainfall.)   

Evapotranspiration rate is specified as   

)()(),( mfgmET θβθ ⋅=  (2.2)

where the coefficient β depends only on climatic conditions and is independent of m and θ 

and 0 ≤  f(m) ≤ 1 is a crop scale factor representing the degree of leaves exposure to solar 

radiation [10].  The use of the same moisture function g(θ) in (2.1) and (2.2) is based on the 

linear relation between biomass production and evapotranspiration, suggested by deWit [11] 

and established for a variety of climates and crops [12].  

The rate of water drainage D(θ) is assumed to be positive, increasing and convex for 

the relevant soil moisture range.  When all the flow rates are measured in mm⋅day−1 and θ is a 

dimensionless water concentration, the soil water balance can be specified as   

))(())(())(()()( tDtmftgtxtZ θθβθ −−=& , (2.3)

where Z is the root depth and Zθ(t) measures the total amount of water in the root zone (mm). 

Let P and W denote the crop (output) and water (input) prices, respectively, assumed 

fixed throughout the growing season.  The grower pays for the total amount of water input at 

harvest time T, at which time he also receives the revenue Py(m(T)).  For a growing season 

that lasts a few months we can ignore discounting, and the return to water (not including 

expenses on other inputs) is  
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∫−
T

dttxWTmPy
0

)())(( . (2.4)

The irrigation management problem entails finding the irrigation policy {x(t), 0 ≤ t ≤T} that 

maximizes (2.4) subject to (2.1), (2.3), m(0) = m0, θ(0) = θ0 and xtx ≤≤ )(0 , where m0 and 

θ0 are the initial biomass and soil moisture levels and  is an upper bound on the feasible 

irrigation rate, reflecting physical constraints on irrigation equipment or on soil water 

absorption capacity.  The formulation, thus, involves one control variable (the irrigation rate 

x) and two state variables (the biomass m and the water content θ). 

x

The derivation of the optimal policy is detailed in the Appendix.   It uses Optimal 

Control techniques to characterize the optimal trajectories of the control, x(t), and of the state 

variables θ(t) and m(t) during the course of the growing period.  The ensuing optimal policy 

itself turns out to be straightforward:  It is defined in terms of two parameters: a turnpike soil 

water content  and a date t2 < T, such that the optimal soil water process, θ*(t), must be 

brought from its initial level θ0 to the turnpike  as rapidly as possible and maintained at that 

level until t2, at which time irrigation ceases.  The termination of irrigation prior to harvest is 

because the gain from the contribution to yield that could have resulted from maintaining the 

soil water content at  during the remaining period is not sufficient to cover the cost of the 

water needed for this purpose. 

θ̂

θ̂

θ̂

θθ ˆ
0 ≤

The optimal soil water and biomass processes, denoted θ*(t) and m*(t), are derived 

from (2.1) and (2.3), given θ0 and m0 and the policy parameters  and t2.  Noting (2.3), the 

corresponding optimal irrigation policy when  is given by  

θ̂
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)ˆ())(()ˆ()( θθβ  (2.5)
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where t1 is the time the soil water process reaches .  If , then x*(t) vanishes also 

during the first stage.  The derivation of  and of t2 is presented in the Appendix.  

θ̂ θθ ˆ
0 >

θ̂

θθ ˆ
0 >

Equation (2.5) reveals that the optimal policy consists of three stages:  in the first 

stage, θ*(t) is brought to the turnpike  as rapidly as possible; during the second (singular) 

stage, θ*(t) is maintained on the turnpike and during the third stage irrigation ceases.  

Normally, all three stages are implemented sequentially.  It is possible, however, that t1 = t2, 

in which case irrigation is applied at a full capacity until t2 and then ceases (i.e. there is no 

time for the singular stage).  It is also possible that t2 = 0, which occurs when irrigation is not 

profitable hence never applied.  Finally, when the initial water content is high enough (i.e., 

) it pays to let the soil dry up to the turnpike and then begin irrigating at the singular 

rate until t2. 

θ̂

3.  AN EMPIRICAL EXAMPLE 

We illustrate the performance of the optimal policy by applying it to control the 

growth of Ornamental sunflower (Helianthus annuus var dwarf yellow) in the Arava Valley in 

Israel.  Lack of precipitation throughout the growing period and deep groundwater (120 m 

below soil surface) ensure that irrigation is the only source of water.  Biomass growth has 

been modeled specifying a quadratic function for g(θ) and a logistic function for h(m) [13], 

with parameters estimated via a field experiment under local conditions with high frequency 

drip irrigation.  The drainage function is estimated using the hydraulic model of Brooks and 

Corey [14]:  D(θ) = KS[(θ  − θR)/(θS − θR)]η, with the numerical values of the saturated 

hydraulic conductivity KS, the residual and saturated water contents θR and θS and the 

exponent η fitted to local soil properties.  Finally, Based on recommended extension service 

practices, the crop factor function is specified as f(m) = m(1 − m/785.6)/196.4 . 
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Inserting the numerical parameter estimates, the equations of motion (2.1) and (2.3) 

are specified as  

)491/1()71.121.1( 2 mmm −Θ−Θ=&  (3.1)

and 

600/]3600)6.785/1()71.121.1(19.0[ 73.52
dmmx Θ−−Θ−Θ−=θ&  (3.2)

where Θ 31.0/)09.0( −= θ  and  .36.0/)04.0( −=Θ θd

 In this experiment, marketable yield was obtained only at biomass levels above 350 

g⋅m−2.  At the maximal biomass (m = 491 g⋅m−2), the yield comprises 80 percent of the 

biomass.  Assuming a linear increase, this implies the following yield function: 







⋅≥+−
⋅<= −

−

2

2

mg350if7925976
mg350if0

mm..
m)m(y  (3.3)

The initial soil water and biomass levels were taken at θ0 = 0.1 (just above water 

content at the wilting point θ = 0.09 where Θ and the growth rate vanish) and m0 = 10 g⋅m−2 

(about 2% of the maximal obtainable biomass).  The maximal feasible irrigation rate is 

x = 41.8 mm⋅day−1.  Water prices in the Arava vary around $0.2-0.4⋅m−3 and the price of 

sunflower seeds received by the farmers after the growing period of T = 45 days is about 

$1⋅kg−1.  We therefore consider the optimal policy using the cost ratio w ≡ W/P = 0.3 kg⋅m−3.    

Results and discussion 

 A numerical implementation of the optimal policy based on the above specifications gave 

rise to the following optimal parameters:   

θ̂  = 0.148 (about 74% of θmax
 = 0.2), 

t2 = 42.2 days. 

It is of interest to compare the results of the optimal irrigation policy with the outcome of an ad hoc 

policy that aims at maximum yield (by raising the water content to θmax  as rapidly as possible and 
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maintaining this maximal growth moisture level until harvest).  Trajectories for θ(t), m(t), x(t), 

ET(t) and D(t) under the optimal and maximal yield policies are presented in Figures 1-5.  With 

maximal irrigation rate of x = 41.8 mm⋅day−1 (Figure 3), it takes about 0.7 day to bring the soil 

water content from its initial level θ0 = 0.1 to the turnpike level =0.148 (Figure 1), and about two 

days to elevate the water content to θmax.  As soon as the soil moisture under the optimal policy 

reaches the turnpike (at t1 = 0.7 day), irrigation is tuned so as to maintain the soil water content at 

 until t2.  The singular stage on the turnpike extends, therefore, over the major part of the 

growing period of T = 45 days.  During the last 2.8 days irrigation is avoided because the gain in 

yield due to continued irrigation is not sufficient to cover the cost of the water needed to maintain 

the high soil water content.  Thus, at harvest time, the water content is decreased back to about 60 

percent of θmax.   

θ̂

θ̂

Biomass growth and the corresponding yield are depicted in Figure 2 for both the optimal and 

the maximal yield policies.   It is evident from Figure 2 that the main effect of reducing irrigation 

rate and thus water content in the root zone is in slowing down growth rate, causing the plant to 

produce seeds and add biomass during a longer period.  The corresponding harvested yield is 350.6 

g⋅m−2 for the optimal policy—about 10% below the maximal attainable yield.  The irrigation level 

required to maintain water content in the root zone for maximal yield is about four times higher 

than the irrigation needed for optimal policy.  Most of the added irrigation is wasted as a result of 

the higher drainage rate (see Figure 5) rather than higher evapotranspiration (Figure 4).   

With irrigation costs of $1020 ha−1 (about half of which is due to drainage), the net income 

(excluding labor and other inputs) from the optimal policy amounts to $2480 ha−1.  Under the ad 

hoc maximal yield policy, irrigation cost is significantly higher and amounts to $5380 ha−1, over 

80% of which is due to drainage, entailing a net loss of $1500 ha−1.  The optimal policy is thus 

seen to represent an advantageous compromise of the tradeoffs between high yield and saving on 
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the water bill.  Indeed, when the relation describing drainage losses involves a high exponent, as in 

the case of the sandy loam soil considered here, adjusting the water content to the proper level is of 

prime importance. 

4.  EXTENSIONS 

The analysis above is based on some restrictive assumptions such as given harvest time, 

unchanging climatic conditions and no constraint on the available amount of water.  It turns out that the 

turnpike nature of the optimal policy is preserved also when these assumptions are relaxed.  We discuss 

below the modifications associated with each of these three extensions. 

Endogenous harvest time:  In some cases it may be desirable to adjust the harvest time to changing 

market conditions, such as a favorable crop price for early marketing.  In such situations, T is treated as a 

choice variable, while the revenue is redefined as R(m(T),T) = y(m(T))P(T), where y is the yield function 

and P is the output price that depends on the harvest time.  Early marketing is advantageous when ∂R/∂T 

< 0.  Inspecting the derivation in the Appendix, we see that none of the conclusions is affected, except 

that the fixed harvest date is replaced by an additional transversality condition H* + ∂R(m(T),T)/∂T = 0.  

Thus, the optimal θ−process preserves its turnpike structure, although the values of θ̂  and of the 

associated transition dates must be modified to account for the new transversality condition. 

 Limited water quota:  When water resources are scarce, the irrigation policy may be 

limited not only by the price of water but also by restrictions imposed on water use by some 

regulatory agency in order to account for the limited availability.  Suppose that the total 

amount of water available to the grower until harvest time is .Q   This situation can be 

modeled by defining the remaining quota dsQ  as an additional state variable 

and adding the constraints .0)( ≥TQand)0(, =−= QQx&Q  Denoting the corresponding 

costate variable by κ, we see that the Hamiltonian (see A4 in the Appendix) should be 

supplemented by the additional term −κx.   Since the Hamiltonian is independent of Q, κ is 

∫−=
t

sxQt
0

)()(
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constant, and it must be non- negative to meet the slackness conditions associated with the 

constraint on Q(T) ≥ 0.  We see that the imposed water quota implies the effective price w+κ, 

which accounts also for the opportunity (or scarcity) cost of water κ.  Of course, if the water 

price w is such that it does not pay to consume all the quota (i.e. it is optimal to leave Q(T) 

strictly positive), then κ vanishes and we are back with the original problem.  However, if the 

entire quota is to be used, the opportunity cost obtains a positive value and the analysis must 

account for the full effective price of water.  In such a case, it is easy to verify that the 

irrigation problem is equivalent (in the sense of yielding the same optimal policy) to a 

problem without water quantity constraint but with a higher water price that equals the 

minimal price under which the water quota would be unbinding, (i.e., under which it pays to 

use exactly the water allotment).  The rest of the analysis, and the classification derived 

thereof, are not affected.  

 Time-dependent climatic conditions:  Another extension of the model allows the climatic 

conditions (represented here by the evapotranspiration coefficient β) to change in time.  For 

example, if β(t) increases (due to rising ambient temperature, or to a change in the wind regime), 

equation (A4) in the Appendix implies that the Hamiltonian decreases with time, although (A9) 

ensures that it is positive at all times.  It follows that the turnpike θ̂ , defined by (A11), turns into a 

decreasing process  to be followed by the optimal θ-process during the singular stage.  Indeed, 

the decreasing turnpike reflects the reduced profitability associated with each moisture level 

because of the enhanced rate of water loss.  This feature is similar to the Non-Standard Most Rapid 

Approach policy derived by Tsur and Zemel [15,16] in a different context.  Apart from this change, 

the reasoning behind the turnpike characterization under a constant β remains unaltered. 

)(ˆ tθ

 

5.  CONCLUDING COMMENTS 
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 In an increasingly large portion of the Globe the pressure on available water resources 

renders efficient irrigation essential for viable agriculture.  This observation applies not only 

to physical irrigation technologies and to water quality differentiation, but also to the intra-

seasonal distribution of water applied during the growing period.  In fact, irrigating at a rate 

that exceeds the immediate needs of the plant implies increased drainage losses.  Given the 

relative prices of water and yield, the tradeoff between biomass growth and the need to save 

on water losses entails an optimal (turnpike) moisture level in the root zone.  The optimal 

policy established in this work is to drive the water content towards the turnpike as rapidly as 

possible, and then to irrigate at the (variable) rate required to maintain the soil water content 

at that level.  Towards the harvest date, however, keeping this moisture level is no longer 

advantageous because the additional growth during this last period cannot compensate for the 

irrigation cost.  Therefore, after a certain date the optimal policy requires to cease irrigation 

and let the plant grow on the remaining moisture in the soil until the harvest.  Evidently, this 

policy does not provide the maximum possible yield.  However, by carefully accounting for 

the irrigation cost, it gives rise to a positive profit also under price specifications in which the 

policy that maximizes yield would entail a significant loss to the farmers. 

 The optimal policy has been derived under conditions that are quite rigid:  The 

climatic conditions (represented by the evapotranspiration coefficient β) are assumed to be 

constant during the growing period and the length of the growing period (from emergence to 

harvest) is assumed exogenously given.  We further assume that the yield price is fixed, and 

the farmers' revenues depend only on the final yield.  In fact, none of these assumptions is 

essential for the derivation.  As demonstrated in Section 4, treating the harvest time T as an 

additional decision variable, to be determined mainly according to time variation of the yield 

price, the same optimal policy is obtained (although the numerical values of the turnpike 

water content and of the irrigation stopping date may vary).  Similarly, considering time 
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dependent climatic conditions merely transforms the constant turnpike into a time-dependent 

process, to be followed by the optimal water content process until the irrigation stopping date.  

Otherwise, the characteristics of the optimal policy remain unaltered.  The main features of 

the turnpike policy, therefore, are robust under a wide variety of agricultural, climatic and 

economic conditions. 

 

APPENDIX:  DERIVATION OF THE OPTIMAL POLICY 

The irrigation management problem (2.4) is formulated in terms of the relative cost of water 

w = W/P as  

{ }))(()(),(
0)}({00 TmydttwxMaxPmV
T

tx +−⋅= ∫θ  (A1)

subject to  

))(())(()(/)( tmhtgtmdttdm θ=≡ & , (A2)

ZtDtmftgtxt /))](())(())(()([)( θθβθ −−=& , (A3)

xtx ≤≤ )(0  and m0 and θ0 given (c.f. 2.1 and 2.3).   

It is assumed that θ0 lies in the interval (θmin,θmax) where g(θmin) = 0, g′(θmax) = 0, g′(θ) > 0 in 

(θmin,θmax) and g″(θ) < 0 for all θ.  We further assume that D(θ), D′(θ) and D″(θ) are all positive in 

(θmin,θmax) and that the upper bound x  exceeds the water loss terms of (A3) throughout the 

relevant ranges of m and θ, so θ is increasing when .  The yield function y(m) is assumed to 

increase with m.  

xx =

Preliminaries:  Let λ and ρ represent the co-state variables of m and θ, respectively and 

µ = ρ/Z.  Ignoring the constant term P in front of the objective of  (A1), we obtain the Hamiltonian  

)()]()()[(][),,,,( θµλβµθµµλθ DmhmfgxwxmH −−−−=  (A4)

(To simplify notation, the time argument t is suppressed from m, θ, x, λ and µ when no confusion 

arises.  All quantities below refer to optimal processes.)  Note that the Hamiltonian does not 
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depend explicitly on time hence its value along the optimal policy is constant [17,  p. 190]; we 

denote this constant by H*.  The necessary conditions for optimum include:  x(t) maximizes H, 

implying  





<
>

=
wtif
wtifx

tx
)(0
)(

)(
µ
µ

, (A5)

 (the singular x(t) process when µ(t) = w, is derived below), 

mH ∂−∂= /λ&  and , giving  θµ ∂−∂= /HZ &

)](')(')[( mhmfg λβµθλ −=&  (A6)

and  

)(')]()()[(' θµλβµθµ DmhmfgZ +−=& , (A7)

and the transversality conditions 

))((')( TmyT =λ   and  . (A8)0)( =Tµ

Using (A8), (A5) and (A4), the Hamiltonian at the harvest time T is evaluated as   

.0))(())(())(('* ≥= TmhTgTmyH θ  (A9)

It is expedient to introduce the function  

)()(/)(')()( θθθθθξ DgDg −′= . (A10)

The derivative )](/)()(/)()][(/)(')([)( θθθθθθθθξ ggDDgDg ′′′−′′′′=′  is positive over (θmin,θmax).  

Moreover, ξ(θmin) < 0 while ξ(θmax) diverges, hence the equation ξ(θ) = c has a unique solution in 

(θmin,θmax) for any non-negative constant c. 

The singular path:  According to (A5), the optimal θ-process is classified as increasing 

( xtx =)( ), decreasing (x(t) = 0) or singular, depending on whether µ exceeds, falls short or equals 

w, respectively.  The singular path occurs when µ(t) = w holds during a time interval (the 

specification of x(t) when µ(t) = w for an isolated point of time is inconsequential.)  During this 
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interval µ(t) is constant, and (A7) implies that λh(m) − βwf(m) = wD′(θ) / g′(θ).  Using (A4) and 

(A10) we find  

),()()]()()[(* θξθβλθ wwDmwfmhgH =−−=  (A11)

which possesses a unique root θ̂  in (θmin,θmax).  It follows that along the singular path 

which is the (constant) solution of ξ(θ) = H*/w.  We refer to  as the turnpike.  According 

to (A3), the corresponding irrigation rate is   

θθ ˆ)( =t θ̂

)ˆ())(()ˆ()( θθβ Dtmfgtx += , (A12)

where the time dependence of x(t) on the turnpike is due to the growth of the biomass m(t). 

We see from (A5) and (A12) that at each point of time the optimal process θ(t) must either increase 

as rapidly as possible ( xtx =)( ), decrease as rapidly as possible (x(t) = 0) or remain fixed on the 

turnpike  (x(t) given in A12).  This appears to permit many possible optimal processes that switch back 

and forth among these decreasing, increasing and singular stages.  It turns out, as verified in Claims 1-2 

below, that  µ(t) cannot cross w more than once.  This, in turn, implies that the irrigation policy can have 

at most three stages: (i) a rapid approach to the turnpike level ; (ii) a singular stage during which θ(t) is 

maintained at ; and (iii) a final stage during which irrigation ceases.  Of these three stages, only the 

third (no irrigation) must always be implemented (see A8); whether or not the other two are 

implemented depends on the parameters of the problem, particularly the initial soil moisture θ0, the 

length of the growing period T and the relative water price w.  When irrigation is not profitable, only the 

third stage is implemented.  If irrigation is profitable, the system normally begins with the first stage of 

rapid approach to , which may be increasing (when θ0 < ) or decreasing (when θ0 > ).  The second 

(singular) stage is implemented only if there is enough time to reach  before the third stage is entered.  

If the initial soil moisture level equals the turnpike (θ0 = ), the first stage is skipped and the system 

immediately enters the second stage.     

θ̂

θ̂

θ̂

θ̂ θ̂ θ̂

θ̂

θ̂
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Accounting for all possible cases, the optimal policy must assume one of the following four types:  

Type 1: x(t) = 0 for all t (i.e., irrigation is not profitable and only stage (iii) is implemented). 

Type 2: Initially x(t) = 0 and θ(t) decreases until some time t1 when θ(t1) = ; x(t) is then tuned so as to 

maintain  during a singular time interval of duration τ, (with t2 = t1+τ < T), following which 

irrigation ceases (all three stages are implemented). 

θ̂

θθ ˆ)( =t

Type 3: The same as Type 2 except that x(t) = x  and θ(t) increases during the initial period t ∈ [0,t1]  

(all three stages are implemented). 

Type 4: Initially x(t) = x  and θ(t) increases until some time t2 < T, at which time irrigation ceases (only 

stages (i) and (iii) are implemented). 

Remark:  Processes of Types 2 or 3 allow also for vanishing initial periods (i.e. t1 = 0) so that the process 

is initially singular (when θ0 = ) and the first stage is skipped. θ̂

The above classification is a result of the property that the optimal µ-process cannot attain (or 

cross) w more than once, as established in Claims 1-2 below.   

Claim 1:  If at some date t′,  and µ(t′) > w, then from time t′ on the process µ(t) cannot decrease 

back and approach w from above. 

θθ ˆ)'( >t

Proof:  Since xtx =)(  while µ(t) > w, θ(t) remains above   Suppose that .θ̂ < 0  so that (A7) 

implies  

µ&

.0)(')]()()[(' >>− θµβµλθ Dmfmhg  (A13)

Since the optimal Hamiltonian )()]()()[(][* θµλβµθµ DmhmfgxwH −−−−=  is non-negative and the 

first term of H* falls short of the third term when µ is close enough to w, it must be that 

  It follows from (A13) that g′(θ) > 0 and ).(/)()()( θθµβµλ g′′D>mfmh −   Thus,  .0)()( >− mfmh βµλ

),()()]()()[()ˆ()ˆ( * θµξθµβµλθθξθµξ >−−>=> DmfmhgHw   

contradicting the assumption that    .θ̂θ >
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The claim immediately implies 

corollary 1:  θ(t) must decrease while . θθ ˆ>

Proof:   cannot support a singular policy.  If θ(t) increases, it must be that µ(t) > w and the process 

µ(t), according to claim 1, cannot fall short of w at a later date, violating the transversality condition 

µ(T) = 0 (cf. A8).  

θθ ˆ≠

For µ(t) below w we have 

Claim 2:  If at some date t′,  and µ(t′) < w, then from time t′ on the process µ(t) cannot increase 

to approach w from below. 

θθ ˆ)'t( <

Proof:  Since x(t) = 0 while µ(t) < w, θ(t) must remain below   If .θ̂  then (A7) implies  0)( >tµ&

).(')]()()[(' θµβµλθ Dmfmhg <−  (A14)

When , g′(θ) > 0 and (A14) implies θθ ˆ< ).(/)()()( θθ gDmfmh ′′   With vanishing x(t), 

, contradicting our assumption that 

  

)()()]()()[( θµξθµβµλθ <−−= Dmfmhg)ˆ)ˆ( *θθµξ = H

.θ̂θ <

(ξ< w

µβµλ <−

 It is now straightforward to verify that the optimal policy must assume one of the four Types 

listed above.  Consider the value of H* as defined in (A9) and the corresponding state  obtained using 

(A11).  Then, 

θ̂

corollary 2:  When initiated at  the θ−process is either of Type 1 or Type 2. ,θ̂θ >0

Proof:  Above ,θ̂  the θ−process must decrease.  Arriving at  it can go on decreasing (with µ(t) < w), 

which implies, according to Claim 2, that it must decrease throughout, yielding a Type 1 process.  

Alternatively, the process might switch to a singular stage.  To satisfy (A8), µ(t) = w cannot be 

maintained until T, and the singular stage must end prior to T.  Corollary 1 forbids an increasing stage, 

and Claim 2 ensures that once the decreasing stage starts, the process must continue decreasing until T, 

yielding a Type 2 process.  

,θ̂
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Remark: Initiated at  the θ−process behaves according to Corollary 2, except that the initial 

decreasing stage leading to  is omitted. 

,θ̂θ =0

θ̂

θ̂

,

Corollary 3: Initiated at  the θ−process must be of Type 1, Type 3 or Type 4. ,θ̂θ <0

Proof:  If the θ−process is initially decreasing, then, according to Claim 2 it must continue decreasing 

until T, yielding a process of Type 1.  If the process is initially increasing, it must stop increasing at or 

prior to arriving at   Suppose that the optimal θ-process arrives at the turnpike .  According to 

Corollary 1, the process cannot increase any further.  It can, however, stay constant at that level for a 

while and then decrease, yielding a Type 3 process.  Alternatively, it can decrease promptly upon arrival 

at 

.θ̂

 yielding a Type 4 process.  Suppose now that the optimal process ceases to increase below .  In 

this case, a singular stage cannot be supported and the process must decrease promptly until the harvest 

time; a Type 4 process is again obtained.  

θ̂ θ̂

 It is noted that the value H* of the Hamiltonian (or equivalently, the turnpike ), is not 

a-priori given.  In actual implementations, this parameter, together with the duration of the 

various stages, must be adjusted so as to satisfy the transversality conditions (A8).  This task 

is readily carried out via a numerical integration scheme for any specification of the model 

functions.   

θ̂
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Figure 1: Soil moisture θ(t) as a function of time (days from planting) under the optimal and 
the maximal yield policies.  
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Figure 2:  Biomass m(t) (solid lines) and marketable yield (dashed lines) as functions of time 
(days from planting) under the optimal and the maximal yield policies. 

 



 22

 

 

Time (days)

0 5 10 15 20 25 30 35 40 45

Irr
ig

at
io

n 
ra

te
 x

 (m
m

 d
ay

-1
)

0

10

20

30

40

50

maximum yield policy

optimal policy

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Irrigation rate x(t) as a function of time (days from planting) under the optimal and 
the maximal yield policies. 
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Figure 4: Evapotranspiration rate ET(t) as a function of time (days from planting) under the 
optimal and the maximal yield policies. 
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Figure 5: Drainage rate D(t) as a function of time (days from planting) under the optimal and 
the  maximal yield policies.   
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