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Designing cost-efficient surveillance strategies for early detection of invasive species 

Abstract  

Wood borers and bark beetles are among the most serious forest pests worldwide. Many such 

species have become successful invaders, often causing substantial, costly damages to forests. 

Here we design and evaluate the cost-efficiency of a trap-based surveillance program for early 

detection of wood borers and bark beetles at risk of establishing in New Zealand. Though 

costly, a surveillance program could lead to earlier detection of newly established forest pests, 

thereby increasing the likelihood of successful eradication and reducing control costs and 

damages from future invasions. We develop a mechanistic bioeconomic model that relates 

surveillance intensity (i.e., trap density) and invasion size to probabilities of detection and 

control; it captures the dynamics of invasive species establishment, spread, and damages to 

urban and plantation forests. We employ the model to design surveillance programs that 

provide the greatest net present benefits. Our findings suggest that implementing a surveillance 

trapping program for invasive wood borers and bark beetles would provide positive net 

benefits under all scenarios considered. The economically optimal trapping strategy calls for a 

very high investment in surveillance: about 10,000 traps in each year of the 30-year 

surveillance program, at a present value cost of US$54 million. This strategy provides a 39% 

reduction in costs compared with no surveillance, corresponding to an expected net present 

benefit of approximately US$300 million. Although surveillance may provide the greatest net 

benefits when implemented at relatively high levels, our findings also show that even low 

levels of surveillance are worthwhile: the economic benefits from surveillance more than offset 

the rising costs associated with increasing trapping density. Our results also show that the cost-

efficiency of surveillance varies across target regions because of differences in pest 

introduction and damage accumulation rates across locales, with greater surveillance warranted 
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in areas closer to at-risk high-value resources and in areas that receive more imported goods 

that serve as an invasion pathway.  

Key words: Biological invasions, cost-efficient, detection, eradication, monitoring, pest 

management, risk management, optimal, search, bioeconomic model 

 



 Epanchin-Niell et al. 

 

 4 

INTRODUCTION 

Invasive species cause significant ecological and economic harm to natural and human systems 

worldwide, affecting biodiversity and ecosystem services, agriculture, industry, and human 

health and incurring significant expenditures for control (Aukema et al. 2011, Olson 2006, 

Pimentel et al. 2005). The costs from invasive species introductions are predicted to continue to 

rise as new invasions occur and spread, facilitated by increasing human travel, trade, and 

climate change (Simberloff 2000, Liebhold et al. 2012). Resources for reducing invasion 

damages can be invested at various stages—to prevent new introductions, eradicate established 

invaders, or reduce the spread or damages from established invaders. 

International trade is an important pathway for invasive species introductions, and prevention 

along this pathway often includes inspection or treatment of imports (Liebhold et al. 2012). 

However, such efforts cannot effectively prevent all new introductions. When prevention does 

not succeed, early detection of new invasions can increase the likelihood of control and reduce 

control costs and damages (Epanchin-Niell and Hastings 2010). However, early detection 

requires investment in surveillance efforts that can be quite costly, and thus involves inherent 

economic trade-offs. This trade-off among surveillance costs and invasion costs and damages 

is inherent to this decision context but rarely is considered explicitly in actual management 

planning. 

Past research on designing cost-efficient surveillance for locating established invaders has 

taken various approaches, generally focusing on identifying the optimal level of surveillance to 

implement for locating populations of an invader for which eradication or control, when 

attempted, is certain (e.g., Mehta et al. 2007, Bogich et al. 2008, Hauser and McCarthy 2009, 

Homans and Horie 2011, Epanchin-Niell et al. 2012, Horie et al. 2013). Some studies have also 

considered the optimal location of these efforts (e.g., Cacho and Hester 2011, Hauser and 

McCarthy 2009, Homans and Horie 2011, Epanchin-Niell et al. 2012, Horie et al. 2013). Each 



 Epanchin-Niell et al. 

 

 5 

study has relaxed particular assumptions of previous studies to increase the realism and 

applicability of the modeling approach for designing surveillance programs. 

In this study we extend the existing literature on designing cost-effective invasive species 

surveillance programs in four ways that allow for practical and general application of our 

approach. First, we consider surveillance efforts that target detection of new populations of 

multiple pest species simultaneously, rather than considering a single species program. Second, 

we account for the possibility that eradication may not be feasible or may fail, such that an 

invasion may continue to spread and cause damages despite the investment in eradication 

efforts. Third, we assume that managers attempt eradication only if the investment is expected 

to provide positive net benefits despite the potential for failure. In this way, we account for the 

endogeneity of the eradication decision in the design of the surveillance system (e.g., Homans 

and Horie 2011). Fourth, we employ a mechanistic approach to estimating spatially varying 

damages from invasions based on the likely establishment locations and spread patterns of 

invaders and the location of susceptible resources across the landscape. 

We apply our approach to designing and evaluating the cost-effectiveness of surveillance for 

wood borers and bark beetles arriving in New Zealand. These species are among the most 

serious forest pests worldwide, and many have become successful invaders beyond their native 

range (e.g., Brockerhoff et al. 2006a, Haack 2006, Aukema et al. 2011). Bark beetles can be 

detected through visual inspections (for the insects themselves or the damage they cause) and 

approaches that use specific beetle attractant traps to sample species. New Zealand has well-

developed forest health and high-risk site surveillance programs that rely on visual insect and 

damage detection (Stevens 2008), but currently no trap-based surveillance program. Here we 

develop a novel modeling approach for designing cost-effective surveillance for detecting 

populations of potential new invaders across multiple regions. We apply the model to evaluate 
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the cost-efficiency of surveillance trapping for early detection of invasive wood borer and bark 

beetles that may establish in New Zealand. 

METHODS 

We first introduce a general modeling framework and then parameterize the model to 

specifically consider surveillance and management of wood borers and bark beetles in New 

Zealand. We use the model to determine the optimal investment in surveillance, in terms of the 

numbers and distributions of traps, to minimize the total expected costs of wood borer and bark 

beetle invasion in New Zealand, including the costs of surveillance, invasion control, and 

damages. 

The model 

We begin by developing a model to optimize surveillance for a single location (e.g., a single 

port region in which invasions may establish) and for a single type of invader (e.g., a single 

species of wood borer). We then expand the model to consider multiple surveillance locations 

and multiple potential invaders (e.g., a general suite of wood borer and bark beetle species 

arriving across multiple port regions). For our application we focus on surveillance using trap 

samples baited with insect attractants, but surveillance could alternatively employ visual 

surveys or other sampling techniques at discrete locations. We define surveillance intensity as 

the density of traps deployed in a region. 

Consider a region in which new populations of a nonnative pest are establishing. The rate at 

which new populations establish is assumed to be constant, but the actual arrival of new 

populations in that region is random in space and time, such that the number, size, and location 

of populations in the region at any point in time are unknown prior to detection. We assume 

that each new population that establishes occupies a circular area that grows radially at a given 

rate. To find populations, surveillance is conducted annually with traps distributed at random 



 Epanchin-Niell et al. 

 

 7 

within the specified region and with cost dependent on the number of traps. For each trap that 

intercepts a circular population, the population may be detected with a probability that depends 

on the sensitivity of the trap. When a population is detected, eradication can be attempted with 

some probability of success and a cost that depends on the population’s area. If no traps 

intercept a particular population or if all intercepting traps fail to detect it in a particular year, 

the population is undetected and continues to grow. Populations also continue to grow if 

eradication is either not attempted or unsuccessful. Established populations cause damages 

(e.g., to plantation and urban forests), the magnitude of which depends on the population’s 

location, size, and the time that has passed since its establishment. The choice of whether to 

attempt eradication of a detected population depends on the expected net benefit of eradication 

efforts, which depends on the anticipated success of eradication, the anticipated costs of 

eradication, and the expected damages from the invader if it is not eradicated. We assume that 

eradication success and costs depend on population area. 

This model can be expanded to consider multiple regions and multiple invader types that differ 

in their anticipated damages and spread rate. The expected long-term costs and damages 

associated with any surveillance strategy (i.e., trapping density) can be calculated by 

employing estimates of rates of population establishment and growth, the probabilities of 

detecting and eradicating populations, the costs of control, and the damages caused by the 

invasions. In turn, this framework can be used either to determine the long-term trap densities 

that minimize the total expected costs of surveillance, eradication, and damages over time, or 

to evaluate the cost-effectiveness of a proposed strategy. The mathematical details of this 

framework are described next. 

Population establishment, growth and detection. We define S as the set of population size 

(age) classes, S = {1,2,…,Smax}, where we consider damages accrued over the first Smax years of 

an invasion. We define x
s
(t) as the expected number of undetected populations of size class s  
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S on the landscape at time t and z
s
(t) as the expected number of detected populations for which 

eradication was either unsuccessful or not attempted. If new invaders establish at an average 

rate b, then the expected number of undetected populations of size class s = 1 at any time t 

equals b. In each time period, undetected populations of size class s will transition to size class 

s+1 if undetected. Supposing that the probability of detection of populations of size class s is 

pdetect(s), then a size class model for undetected populations can be specified as 

maxdetect

ss Sssptxtx

tbtx

,...,2for                                           ))1(1)(()1(

)()1(

1

1






  (1) 

Similarly, in each time period, populations of size class s that have been detected but not 

eradicated will transition to detected populations of size class s+1 in the next time period. Thus 

a size class model for extant, detected populations can be specified as
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where perad(s) is the probability that eradication is successful if attempted, and erad(s) indicates 

whether eradication is attempted when a population of size class s is detected; erad(s) equals 

one if eradication is attempted and zero otherwise. The probability pdetect(s) of detecting each 

population on the landscape increases with surveillance trap density d, population size 

(measured as areal extent) a(s), and trap sensitivity y, and can be rewritten as pdetect(d,s). We 

define trap sensitivity y as the probability that a trap will detect a population when located 

within the population’s boundaries. If we assume that both trap placement and population 

establishment are random in space within the region, then the probability that at least one trap 

will fall within a population and detect that population can be approximated by one minus the 

zero term of the Poisson distribution with mean da(s)y (Epanchin-Niell et al. 2012). Thus we 

assume that the probability pdetect(d,s) that one or more traps lie within and detect the 
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population equals 1 – exp(–da(s)y) for all populations whose area is less than or equal to the 

area (A) of the surveyed region, and equals 1 – exp(–dAy) for populations larger than the 

surveyed region. Note that this approximation relies on the mean being small, as it almost 

always will be for most biosecurity surveillance systems. Alternatively, a binomial expression 

can be used, which is slightly more complex and requires greater computational time. We 

compared results from both approaches and found negligible difference, and thus we present 

results from the Poisson approximation. 

Costs, damages, and identification of optimal surveillance. We assume that surveillance costs 

Cs(d, A) depend on the density of traps and the area A over which traps are distributed. We 

assume that the size and damage costs from an invasion depend on the time since its 

establishment. We define Cd(s) as the total damage costs (e.g., damages to plantation and urban 

forests) in a single time period from a population of size class s, including the costs of any 

control efforts to reduce damages.  

Following detection, eradication of a population can be attempted at a cost that increases with 

the population’s size, Ce (a(s)). The probability of eradication success, perad(a(s)), decreases 

with the population’s size. We assume that eradication will be attempted only if the expected 

costs and damages from attempting eradication are less than the expected costs of the 

population remaining on the landscape and continuing to grow. The expected cost of the 

population remaining on the landscape, (s)ENPVn o era d , equals the discounted future stream of 

all costs and damages associated with a population of size class s:  




 

sS

t
t

d

noerad

max stC
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where damages are summed across the remaining time periods until the invasion reaches age 

class Smax, accounting for population growth over time and a discount rate δ. Thus, eradication 

is attempted (i.e., erad=1) if 

Ce (a(s))+(1- perad(a(s)) * ENPVnoerad (s) < ENPVnoerad (s)    (4) 

Otherwise eradication is not attempted (i.e., erad=0). 

The objective of management is to choose a trapping density to minimize the total net present 

value of expected future costs from surveillance, invasion damages, and control costs. We 

consider application of a constant surveillance strategy (i.e., a constant trap density) over a 

fixed time horizon (T) and evaluate the total net present value of costs and damages associated 

with that strategy, including damages resulting from all populations that establish during the 

course of the surveillance program or that were present on the landscape (but not yet detected) 

prior to the start of the program. 

We assume that in the absence of surveillance trapping, populations remain undetected for a 

fixed time horizon, f, at which time they are detected perfectly. We assume that populations 

were arriving at a background rate prior to the start of the surveillance program. Thus, at the 

start of the program the expected number of undetected populations already on the landscape 

equals x
s
(t=1)=b for all s≤f (from Equation 1).  

For all time periods of surveillance program implementation, the number of undetected 

populations of each age class on the landscape can be determined recursively, using Equation 

1, with pdetect(s)= pdetect(d,s). Recognizing that x
s
(t) and z

s
(t) are also functions of d, they can be 

written x
s
(t,d) and z

s
(t,d). 
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The net present value of total expected costs and damages for a surveillance program lasting T 

years, including the costs and damages associated with all undetected populations at the start of 

the program and all populations establishing during the program, equals 
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where the terms in the summation are surveillance costs, damages from undetected 

populations, damages from detected populations, and eradication costs, discounted at a rate δ. 

The final cost term is the net present value of all populations remaining on the landscape at the 

end of the surveillance program. To determine the optimal surveillance intensity, we minimize 

this function with respect to d, thereby choosing the trapping density that minimizes the total 

expected costs of surveillance, eradication, and invasion damages. 

Consideration of multiple invaders and regions. We now expand this approach to multiple 

invaders and invader types by summing the expected costs and damages (Equation 5) across 

multiple potential invaders that can be detected by the same surveillance mechanisms (e.g., 

traps). In Equations 1, 2, and 5, TC(d), x, Cd, z, b, pdetect, and Ce, each can be indexed by invader 

type i, where },...,2,1{ Ii  and I is the total number of potential invader types distinguished by 

a combination of urban and plantation damage intensity and spread rate. In Equation 1, the 

arrival rate b
i
 for each invader type is then calculated as the arrival rate b for the region 

multiplied by the probability of a new invader being of type i. The total expected cost 

(Equation 5) of all new invaders over the long term with trapping density d thus equals 




I

i

i dTCdTC
1

)(=)(

         (6)
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We can also optimize surveillance across multiple subregions (e.g., ports). Consider a total 

survey area composed of N subregions, with each subregion indexed by },...,2,1{ Nn . We 

then choose the optimal sample density dn for each subregion to minimize the total expected 

costs and damages (Eqn. 6) across all subregions:  

 },...,2,1{
)(

min

Nn nn

n

dTC
d

        (7) 

where all parameters are indexed by subregion n. If a region-wide budget constrains 

surveillance efforts, the following constraint applies: 

BAdC
Nn nn

n
s   }, . . . ,2,1{

),(         (8) 

where B is the total annual surveillance budget. Optimizing this problem (Equations 7 and 8) 

finds the distribution and density of trap samples across regions that minimize the total 

expected costs from surveillance, eradication, and invasion damages, given any budget 

constraints.  

The expected net present benefits of implementing the optimal surveillance program or any 

other potential surveillance program (as defined by trap densities dn) relative to doing nothing, 

is calculated as the difference in total costs (Equation 7) under the specified program and when 

all dn=0. 

 

Model parameterization 

We apply our approach to designing a trapping surveillance program for bark beetles and wood 

borers in four major centers of trade in New Zealand: Auckland, Tauranga, Wellington, and 

Christchurch (Lyttelton) (Figure. 1). These places are the most likely entry points for new 

wood borers and bark beetles into New Zealand based on trade volume, as described below. 

We focus on two important types of damages that wood borers and bark beetles cause: damage 
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to plantation forests, since timber export is an important industry for New Zealand, and damage 

to urban forests and trees, since this can be among the highest damage costs caused by this 

guild of invasive species (Aukema et al. 2011, Turner et al. 2004). 

Application of our model requires information about expected establishment rates of new 

invaders in the focal regions, the likelihood of different “types” of invaders (as defined by the 

damages they cause and their spread rate), the chances of detecting and of eradicating 

populations of different sizes, the costs of surveillance and eradication, and the population 

spread rates and damage functions. Data for estimating these parameters and functions are 

quite limited for wood borer and bark beetle invasions in New Zealand, as they are for many 

systems and invasion management contexts. Thus, parameterizing our model requires making 

many assumptions that represent our best guesses about the dynamics and characteristics of the 

system. We therefore test the influence of these uncertain assumptions on the conclusions 

drawn from our results using sensitivity analyses and by comparing the expected net benefits of 

surveillance under various assumptions and our baseline parameters. 

Parameter estimates for the analysis were obtained from data held in Scion’s Forest Biosecurity 

databases, the Global Eradication and Response Database (GERDA) (Kean et al. 2012), a 

review of the literature (e.g., Bulman et al. 1999, Liebhold and Tobin 2008, Craighead 2009, 

Brockerhoff 2009, Haack and Brockerhoff 2011), and experts’ input. We describe these 

estimates next. We use 2011 U.S. dollars as the base currency for our analyses and employ the 

long-term average exchange rate of 1.0 NZD equalling 0.65 USD as needed 

(http://www.rbnz.govt.nz/statistics/exandint/B1/data.html).  

Potential invader types. We do not know exactly which species of wood borer or bark beetle 

may establish in New Zealand in the future. Therefore we delineate 18 potential invader types 

(i.e., I =18), as defined by anticipated damages to urban forests, damages to plantation forests, 

http://www.rbnz.govt.nz/statistics/exandint/B1/data.html
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and spread rate, to represent the potential array of future invaders. Each potential invader type 

is characterized as causing high, medium, or low damage to plantation and to urban forests, and 

as slow or fast spreading. We assume that the damage subtypes and spread rate subtypes are 

independent, such that the probability of each invader type is the product of the probability of 

each damage subtype (p
U
 and p

P
) and spread rate type (p

s
).  

The vast majority of new invaders cause low damages, with a smaller proportion causing 

medium damages, and the smallest fraction causing the largest damages (Aukema et al. 2011). 

Thus we assume probabilities of 80%, 15%, and 5% for low, medium, and high damages, 

respectively, for urban and plantation forests. We assume that 50% of new invaders spread 

quickly (asymptotic rate of spread equals 50 km per year) and 50% spread more slowly (10 km 

per year). We conduct two sensitivity analyses on the fraction of fast- versus slow-spreading 

invaders, considering scenarios where 75% of invaders spread slowly and where 25% spread 

slowly. 

Establishment rates. New wood borer and bark beetle species arrive and establish in New 

Zealand at an average background rate, b. Historically, establishments in New Zealand of wood 

borers and bark beetles occurred at a rate of about 0.4 species per year (i.e., 40 introductions in 

the past 100 years) (see Table 1 and Figure 3 in Brockerhoff 2009). However, not all of these 

species would be of concern to New Zealand’s plantation forests or urban trees. Furthermore, 

the rate of wood borer and bark beetle establishments appears to have declined in recent 

decades. For this analysis, we assume that the recent rate of 0.065 introductions per year is the 

baseline establishment rate. For sensitivity analyses, we consider establishment rates of 0.18 

and 0.032 introductions per year.  

Our analyses focus on surveillance trapping within four major trade and urban centers: 

Auckland, Tauranga, Wellington, and Christchurch (Lyttelton) (Figure 1). Collectively, these 

receive approximately 90% of the trade volume that poses the greatest risk for invasions of 
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wood borers and bark beetles. We estimate the relative invasion risk across the four focal ports 

based on the flow of trade that is likely to use wood packing material, which is probably the 

most common introduction pathway for borers (Haack and Petrice 2009, see also Brockerhoff 

et al. 2006b). We estimate that 48.7%, 23.0%, 8.1%, and 9.3% of wood borer and bark beetle 

establishments will occur via introduction into Auckland, Tauranga, Wellington, and 

Christchurch, respectively, and thus apportion our nationwide estimated invasion establishment 

rate, b, proportionately across the four port regions. We further apportion these establishment 

rates across the 18 identified invader types based on the probability of each invader type.  

Areal extent of regions and proportions of invasion introductions in sampled areas. The total 

urban areas of Auckland, Tauranga, Wellington, and Christchurch used for our analysis are 

1086 km
2
, 168 km

2
, 444 km

2
, and 450 km

2
, respectively. For our baseline analysis we assume 

that trapping efforts are targeted at only 20% of the urban area in each of the four focal regions, 

thereby focusing surveillance on the highest-risk sites. Furthermore, we assume that 80% of 

future invaders arriving in a port region establish within that 20% area. The remaining 20% of 

establishment via each port is not captured by the targeted surveillance system considered here. 

These values represent the best understanding of the system but are uncertain. For sensitivity 

analysis we consider four other combinations of trapped area and percentages of establishments 

occurring within those limited areas. Specifically, we consider trapping of 10% of each port 

region, which we assume encompasses 60% of establishments; 20% of each port region, 

encompassing 60% of establishments; 30% of each port region, encompassing 80% of 

establishments; and 100% of each port region, encompassing 95% of the establishments into 

those areas. 

Cost of surveillance trapping program. The costs of surveillance, Cs, include both fixed and 

variable costs, where variable costs depend on trap density and the total area surveyed. These 

costs were estimated using expert opinion. Fixed costs, which include the costs of design, 
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planning and management of the trapping program, data analysis, and writing of reports, are 

estimated at US$16,250 per year. The estimated per trap variable costs associated with trapping 

include the costs of traps, attractants, trap deployment and maintenance, sample collection, 

shipping, and identification; the costs decrease with increasing total trap number and range 

from US$633 to $328 per trap. 

Sensitivity of traps. The sensitivity of traps (y) is the likelihood that a trap will detect a 

population (i.e., of an invader’s being caught and identified as such) when a trap intersects the 

invader population. This sensitivity is likely to vary across species and is highly uncertain. 

Thus, we assume a baseline sensitivity of 60% and do a sensitivity analysis for y=30% and 

y=90%.   

Invader population growth. We assume that each invasion begins near a port and spreads 

radially according to a growth function such that it occupies an increasingly large circular area 

over time. We model the spatial expansion of populations using a sigmoid function that allows 

for an initially accelerating rate of radial population growth that eventually asymptotes at a rate 

g (e.g., Epanchin-Niell et al. 2012). Under this assumption the annual change in the radius of a 

population is given by 
   

     
, where s is the size class (or equivalently the age) of the 

population, g is the asymptotic radial rate of population growth, m is a shape parameter, and h 

is the time at which half the asymptotic rate of growth is achieved. We employ a shape 

parameter m=5 and half time value h=10. We consider h=20 for our sensitivity analyses. We 

consider two asymptotic radial rates of spread to represent the two potential spread types of 

invaders: 10 km and 50 km per year. 

Damages to plantation forests. We assume that invaders reduce plantation forest harvest 

values at a location by a proportion that depends on the invader damage type i and how long 

the invader has been present at the location. Our baseline damage assumptions are maximal 

harvest value reductions of 1%, 10%, and 50% for low-, medium-, and high-damage plantation 
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pests, respectively. For sensitivity analyses we consider damages of 1%, 5%, and 20% and 1%, 

15%, and 75% for low-, medium-, and high-damage plantation forest pests, respectively. 

We assume that damages accrue only to forests located within the area occupied by an invader, 

and thus the amount of forest affected at any given time depends on the age, growth function, 

and establishment location of the invader, as well as the distribution of plantation forests within 

New Zealand. New areas of plantation forest are affected over time as an invasive species 

population spreads. We assume a five-year delay before damages begin accruing in a newly 

invaded plantation forest, to account for initially low population densities. Following the five-

year delay, we assume that damages increase linearly in those areas over the next five years to 

reach their maximum reduction in harvest value in the tenth year following the arrival of the 

invader. Maximal reductions in harvest value continue for a fixed time horizon, Smax, following 

the arrival of the invader in New Zealand or until the population is eradicated. 

The location and extent of plantation forests within New Zealand were derived from the Land 

Cover Database 2 (LCDB2) geospatial data (based on 2001–2002 imagery) for New Zealand 

(Ministry for the Environment 2004). The distribution of plantation forest from these data is 

illustrated in Figure 1a. 

The value of future annual plantation harvests for New Zealand was estimated from forecasts 

of New Zealand wood availability by region from 2012 to 2040 (e.g., MAF 2009), which 

suggest a total annual harvest value for New Zealand of approximately US$1,154 million from 

2015 onward. We employ this value as our estimate of total annual harvest value in the absence 

of any new invasions. We assume that this value is distributed in proportion to the area of 

plantation forest (Figure 1a). 

Damages to urban forests. We assume that invaders affect a fraction of urban trees that 

depends on the invader damage type i and time since invasion arrival at a location. Because 

there are no data on the distribution and number of urban trees in New Zealand, we follow 
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Turner et al. (2004) by assuming that 20 million urban trees are distributed proportionally with 

human population density across New Zealand. We also assume that each tree affected by 

invasion incurs a one-time average cost of US$2,283, which is an estimated average cost of 

tree removal and replacement (Turner et al. 2004, Haight et al. 2011) but could capture other 

damages or control costs. 

As with plantation forests, we assume that each invasion begins near a port, grows radially, and 

causes damage to urban forests within the occupied area. Following invasion arrival at a 

particular location on the landscape, there is a five-year delay before damages begin to accrue, 

after which one-fifth of susceptible trees are affected in each of the following five years. Ten 

years following the arrival of the invader at a location, the damages to urban forest at that 

location cease because all susceptible trees have been removed and replaced. We assume that a 

total of 1%, 5%, and 20% of urban trees at any location are susceptible to low-, medium-, and 

high-damage urban forest pests, respectively. We conduct three sensitivity analyses in which 

we assume 1%, 2%, and 5%; 1%, 3%, and 10%; and 1%, 10%, and 50%, of trees are 

susceptible to low-, medium-, and high-damage urban forest pests, respectively.  

Eradication cost and probability of successful eradication. Relationships between infested 

area and the cost and probability of eradication were estimated from values recorded for past 

eradication programs against wood-boring insects (Kean et al. 2012). 

To estimate the costs of eradication, we include only eradications for which costs are known 

(n=25). The effect of log10(invasion size) on log10(cost) was fitted using linear regression, 

where costs were measured in millions of 2011 U.S. dollars and area was measured as km
2
. We 

use this estimated cost function as our baseline costs and use the upper and lower confidence 

interval for the fitted line for sensitivity. 
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The probability of eradication was estimated from programs whose outcomes are known 

(n=34). Outcomes were classified as either successful (value 1) or unsuccessful (0). Thirteen of 

the 34 programs were successful (Kean et al. 2012). The relationship between the log invaded 

area (km
2
) and probability of eradication was estimated by logistic regression. For sensitivity 

analysis, we employ the upper and lower 95% confidence intervals for predicted success. 

Discount rate and time horizons. We use a baseline discount rate equal to 5% and consider 

10% and 1% rates for sensitivity analyses. We consider a baseline time horizon, Smax, of 75 

years over which damages accrue from an invader following its establishment and conduct 

sensitivity analyses using time horizons of 50 and 100 years. We consider a baseline 

surveillance program of 30 years but also examine 10 and 50 year programs. 

Model application 

We evaluate a range of surveillance scenarios using the parameterized modeling framework. 

Using the baseline parameters, we evaluate the total expected costs and damages under 10 

surveillance scenarios. The first 5 scenarios do not optimize trapping across the ports (Equation 

6). These scenarios include no trapping (scenario 1) and deployment of four levels of numbers 

of traps (50, 200, 400, and 1,000 traps) at equal densities across the four ports (scenarios 2–5). 

The next four scenarios optimize the distribution of a fixed number of traps (50, 200, 400, and 

1,000 traps) across the ports, which is equivalent to optimizing under four budget constraints 

(Equations 7 and 8). The final scenario (scenario 10) identifies the optimal number and 

distribution of traps across the four ports without any surveillance budget constraints (Equation 

7). We evaluate each of the trapping scenarios (scenarios 2–10) against the no-trapping 

alternative (scenario 1) to identify the expected net benefits from implementing each trapping 

strategy. 
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We also conduct parameterization sensitivity analyses by changing one component of the 

baseline parameterization at a time. For each sensitivity analysis we solve for optimal trapping 

intensity and expected costs and damages for surveillance scenarios 6–10. We also evaluate the 

no-trapping alternative (scenario 1). In addition, to see how well the trapping strategies 

designed as optimal under the baseline parameterization perform if the sensitivity 

parameterizations are correct, we evaluate the expected costs, damages, and net benefits of 

implementing the surveillance strategies identified as optimal under the baseline 

parameterization (scenarios 6–10) when employing the sensitivity analysis parameterizations. 

The complexity of the modeling approach prevents derivation of analytical solutions, so we 

solve for optimal trap densities numerically as a constrained optimization using the “fmincon” 

solver in Matlab R2010b (The MathWorks, Inc.). 

RESULTS AND DISCUSSION 

Some background findings 

The net present value of expected damages from a potential wood borer or bark beetle that 

invades New Zealand is shown in Figure 2. The left panel shows the present value of the 

expected damages from a single pest establishing in each port. Damages across ports vary 

because of the port locations’ differing proximity to plantation and urban forests. The middle 

panel shows the present value of expected damages from a single pest arriving in New Zealand, 

where damages associated with arrival in each port are weighted by the likelihood of that port’s 

being the arrival location for the pest. The total expected damages from the arrival of a new 

pest into New Zealand, if it is not detected and eradicated, is the sum of the four columns. The 

right panel shows the present value of expected damages associated with pest arrival in a single 

year, where damages are weighted by the likelihood of pest arrival in each year and port, 

assuming the baseline establishment rate. The total expected damages from the arrival of pests 
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into New Zealand in a single year, if not detected and eradicated, are the sum of the four 

columns. These panels do not consider the small probability of arrival outside the main four 

ports. 

Surveillance scenario results 

Figure 3 shows how total and component costs and damages vary with trap density for each of 

four port regions. Surveillance costs increase with trap density, as per definition. Damages to 

urban and plantation forests decrease with trap density because earlier detection increases the 

likelihood of eradication by decreasing eradication costs and increasing the probability of 

success. Expected eradication costs are very low and increase and then decrease with trap 

density. At low trap densities eradication costs are low because populations are detected too 

late to be worth eradicating. At moderate trap densities total expected eradication costs are 

higher because more populations are detected when small enough to make attempted 

eradication worthwhile. At very high trap densities total eradication costs are lower because 

populations are smaller and thus less costly to eradicate when detected. The generally convex 

shape of the total cost curve, which is the sum of the four component costs, reflects the trade-

off between surveillance expenditures and damage costs. 

Optimal trap density occurs at the minimum of the total cost curve (Figure 3, open blue circle). 

The optimal trap density is highest for Tauranga, followed by Auckland; Christchurch and 

Wellington have much lower optimal trap densities (Figure 3, Table 1). The total expected 

costs and damages are highest for Auckland, followed by Tauranga, with the total expected 

costs of invasions being much lower for Christchurch and Wellington (Figure 3). The 

differences across the four regions result from different establishment rates, rates of damage 

accumulation, and size (i.e., sampling area). For example, Tauranga has the highest optimal 

trapping density across the four ports even though the annual expected damage from pest 

establishment is only half that of Auckland, due to lower introduction rates in Tauranga (Figure 
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2b). The reason for this unintuitive result is that the Tauranga port region is only about one 

tenth the size of the Auckland region and therefore has about five times more expected 

damages per unit area, thus warranting a greater density of traps. However, the optimal number 

of traps is higher in Auckland. 

The optimal surveillance strategy calls for a very high investment in traps (just over 10,000 

traps deployed annually for 30 years, at a present value cost of US$54 million) (Figure 3, 

Tables 1 and 2). This strategy provides an expected net present benefit of about US$300 

million by reducing the present value of total expected control costs and damages from 

US$776 million without surveillance trapping to US$476 million with optimal surveillance 

trapping (Tables 2 and 3). This represents an approximate 39% reduction in expected costs and 

damages (Table 3). 

The expected net present value of benefits from optimally deploying a fixed number of traps 

across the four port regions is shown in Figure 4. The net benefits increase steeply with initial 

investments in surveillance, but increase less steeply for surveillance intensity greater than 

about 4,000 total traps deployed. The maximal expected net benefits are achieved from 

deploying about 10,000 traps. Deploying more than this number of traps leads to decreasing net 

benefits, as the marginal costs of additional trapping are greater than the marginal benefits 

from reduced eradication and damage costs. 

Although the optimal trap density provides the greatest expected net benefits, there are 

substantial net benefits from even low (suboptimal) trapping densities (Figure 4, Table 3). All 

the surveillance scenarios with fixed numbers of traps (scenarios 2–9) show substantial 

expected net benefits, ranging from US$69 million to $227 million. The gains from 

surveillance increase with trap density across the scenarios considered. Within these fixed-trap-

number (i.e., budget-constrained) scenarios, the total expected costs and damages are lower 
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when traps are distributed optimally across the port regions rather than at a fixed density 

(Tables 2 and 3). 

For our sensitivity analyses, we find that implementation of a trapping surveillance program is 

beneficial (i.e., provides positive net benefits) across all parameter specifications evaluated. 

For all sensitivity analyses, the greatest net benefits arise from deploying more than 1,000 total 

traps (i.e., more traps than in our highest fixed-effort trapping scenario). The optimal trap 

densities and total expected costs are most sensitive to the specification of discount rate, with 

lower discount rates demanding much higher surveillance effort. 

The expected net benefits of implementing the surveillance strategies identified as optimal 

under the baseline parameterization (scenarios 6–10 in Table 1) for each sensitivity analysis 

parameter specification are positive across all sensitivity analysis parameterizations. Thus, 

even when accounting for uncertainty in individual model parameters, the surveillance 

programs identified as optimal in our baseline parameterization are cost-effective. 

CONCLUSIONS 

Our findings show that implementing a surveillance trapping program for invasive wood borers 

and bark beetles in New Zealand would be clearly beneficial, for all scenarios considered. The 

optimal 30-year surveillance strategy is expected to provide a net present benefit (i.e., a net 

present value savings) of about US$300 million. Sensitivity analyses indicate that our findings 

of positive net benefits of trap-based surveillance for wood borers and bark beetles in New 

Zealand are robust to our choice of parameters. In addition, although we did not include 

potential damages to native forests in our analyses, consideration of these damages would 

increase the returns from surveillance and increase the optimal surveillance intensity. 

Our results indicate that surveillance will provide the greatest net benefits when it is 

implemented at quite high levels. However, our findings also suggest that even low levels of 
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surveillance are worthwhile. We find that the greatest payoffs from surveillance occur for 

programs in areas that receive large amounts of imports and in areas where damages will 

accrue most quickly (because of the proximity to high-value, at-risk resources). 

Based on our analyses, we recommend that a trap-based surveillance program for wood borers 

and bark beetles be implemented in New Zealand. The program’s level of surveillance intensity 

could be scaled to the available funds, and our model can be used to determine the optimal 

surveillance strategy, in terms of trap numbers and locations, in relation to the funds available, 

as well as the expected benefits of augmenting funds allocated to surveillance. Future analyses 

could focus on identifying optimal surveillance efforts outside core establishment areas (i.e., 

outside the four port regions) and identifying the distribution of trap locations within each 

region. 

Beyond our specific findings of positive net benefits of implementing a trap-based surveillance 

program for wood borers and bark beetles in New Zealand, this research outlines a framework 

for designing surveillance programs across a much broader range of contexts. Our approach is 

applicable across regions and to single or multiple pest species and specific or general suites of 

species. Parameterization is likely the greatest challenge to its implementation. However, we 

have illustrated one strategy for parameterizing and implementing the model for an application 

that addresses a practical and specific management need. Our results also support the general 

guidance that investments in surveillance are likely to be most cost-effective in areas that 

receive high amounts of imports and that are near to high-value, at-risk resources. 
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Table 1. Numbers of traps and trap density (traps/km
2
) for various trapping scenarios using 

baseline parameters. The first five rows (scenarios 1–5) distribute a fixed number of traps at a 

constant density across the four sites. The next four rows (scenarios 6–9) optimize the 

distribution of a fixed number of traps across the four sites. The final row (scenario 10) shows 

the optimal number and distribution of traps without a budget constraint on total trapping 

effort. 

 Total Auckland Tauranga Wellington Christchurch 

Trapping scenario traps traps density traps density traps density traps density 

No traps 0 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 

Equal trap density          

   50 traps total 50 25.3 0.12 3.9 0.12 10.3 0.12 10.5 0.12 

   200 traps total 200 101.1 0.47 15.6 0.47 41.3 0.47 41.9 0.47 

   400 traps total 400 202.2 0.93 31.3 0.93 82.7 0.93 83.8 0.93 

   1,000 traps total 1000 505.6 2.33 78.2 2.33 206.7 2.33 209.5 2.33 

Optimized trap density          

   50 traps total  50 27.4 0.13 19.0 0.57 2.0 0.02 1.6 0.02 

   200 traps total 200 113.6 0.52 66.3 1.97 10.9 0.12 9.3 0.10 

   400 traps total 400 251.8 1.16 105.0 3.13 23.0 0.26 20.1 0.22 

   1,000 traps total 1000 610.0 2.81 219.0 6.52 90.9 1.02 80.1 0.89 

Optimal trapping 10185 6811.4 31.36 2149.2 63.96 650.9 7.33 573.5 6.37 
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Table 2. Total costs and damages for various trapping scenarios using baseline parameters. 

The first five rows (scenarios 1–5) distribute a fixed number of traps at a constant density 

across the four sites. The next four rows (scenarios 6–9) optimize the distribution of a fixed 

number of traps across the four sites. The final row (scenario 10) represents optimal trapping in 

terms of numbers and distribution of traps in the absence of a budget constraint on trapping.  

 Present value of expected costs (millions USD) 

Trapping scenario Total Surveillance  Eradication 

Urban 

forest 

damage  

Plantation 

forest 

damage 

No traps 776.03 0.00 0.62 404.65 370.76 

Equal trap density      

   50 traps total 706.85 0.73 1.46 365.25 339.41 

   200 traps total 651.70 1.68 1.00 333.47 315.54 

   400 traps total 615.24 2.57 0.86 312.32 299.49 

   1,000 traps total 561.39 5.56 0.70 280.20 274.93 

Optimized trap density      

   50 traps total  693.94 0.73 1.37 358.84 333.00 

   200 traps total 634.28 1.68 1.01 324.66 306.93 

   400 traps total 597.62 2.57 0.85 303.15 291.05 

   1,000 traps total 549.37 5.56 0.69 273.86 269.25 

Optimal trapping 476.36 54.23 0.51 204.80 216.82 

  



 Epanchin-Niell et al. 

 

 31 

Table 3. Return on investment for various trapping scenarios using baseline parameters. The 

expected net benefits are the difference in total expected costs under the specified trapping 

scenario relative to no trapping (scenario 1). The percentage reduction in total costs also is 

relative to no surveillance. The first four rows (scenarios 2–5) distribute a fixed number of 

traps at a constant density across the four sites. The next four rows (scenarios 6–9) optimize the 

distribution of a fixed number of traps across the four sites. The final row (scenario 10) shows 

the optimal number and distribution of traps if there is not a budget constraint on total trapping 

effort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Return on Investment Relative to  

No Trapping 

Trapping scenario 

Expected net benefits 

(millions USD) 

Percentage reduction in 

total costs (%)  

Equal trap density   

   50 traps total 69.18 8.9 

   200 traps total 124.33 16.0 

   400 traps total 160.79 20.7 

   1,000 traps total 214.64 27.7 

Optimized trap density   

   50 traps total  82.09 10.6 

   200 traps total 141.75 18.3 

   400 traps total 178.41 23.0 

   1,000 traps total 226.66 29.2 

Optimal trapping 299.67 38.6 



 Epanchin-Niell et al. 

 

 32 

Figure Captions 

Figure 1. Distribution of a) plantation forest (shaded areas), and b) human population density. 

Urban trees are assumed to be distributed in proportion to human population density. 

Figure 2. Expected damages from pest arrival, by port, if pest is not eradicated. The values are 

probability-weighted damages across the 18 potential invader types. 

Figure 3. Expected management costs as function of trap density, by port. The costs are the net 

present value of expected costs and damages from a 30-year surveillance program. The dashed 

lines represent the component management and damage costs, and the solid line is the total 

cost. Open blue circles indicate optimal trap density, where net present value of total costs is 

minimized. Open triangles indicate expected costs in the absence of a surveillance trapping 

program. Note different y-axis scales. 

Figure 4. Expected net benefits of trapping, by total number of traps deployed. In the analysis 

for this figure, the total number of traps (x-axis) is distributed optimally across the four port 

regions (Equations 7 and 8). The expected net benefits are the difference in total costs and 

damages with versus without surveillance trapping, and include surveillance costs, eradication 

costs, and invasion damages. The circle shows the optimal total number of traps.  
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