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Abstract:  We study optimal management of groundwater resources under risk of 

occurrence of undesirable events.  The analysis is carried out within a unified 

framework, accommodating various types of events that differ in the source of 

uncertainty regarding their occurrence conditions and in the damage they inflict.  

Characterizing the optimal policy for each type, we find that the presence of event 

uncertainty has profound effects.  In some cases the isolated steady states, 

characterizing the optimal exploitation policies of many renewable resource problems, 

become equilibrium intervals.  Other situations support isolated equilibria, but the 

degree of prudence they imply is sensitive to the nature of the event risk.   
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1.  Introduction 
 

Overexploitation of groundwater resources—when pumping exceeds 

recharge—is pervasive worldwide (Postel, 1999).  Such a situation involves shrinking 

groundwater stocks, which may lead to one of the following outcomes:  i) The 

extraction cost increases to a point where it is no longer beneficial to pump above 

recharge and the aquifer settles at a steady state.  ii)  The groundwater stock is 

depleted, and from that time onward only the recharge can be pumped.  iii)  An event 

that adversely affects future exploitation benefits is triggered, e.g., seawater intrusion 

or the penetration of polluted water from nearby sources.  The theory of groundwater 

management under the first two scenarios is well developed (see Burt, 1964; Gisser 

and Sanchez, 1980; Feinerman and Knapp, 1983; and Tsur and Graham-Tomasi, 

1991, among many others), but the effects of the third type of outcome are not fully 

explored.  This paper undertakes to characterize optimal groundwater management 

under the threat of occurrence of adverse environmental events.   

An example in mind is the exploitation of a coastal aquifer.  Excessive 

extraction, over and above natural recharge, leads to a decline in the groundwater 

head, which, in turn, may result in seawater intrusion.  If seawater intrusion is a 

gradual process that can be monitored and controlled by adjusting extraction rates, the 

associated damage can be avoided.  Often, however, seawater intrusion occurs 

abruptly as soon as the fresh water head declines below some threshold level, 

inflicting a severe damage or rendering the aquifer useless for a long time.  In such 

cases, seawater intrusion can be treated as a discrete event.  When the threshold level 

that triggers the event is known with certainty, it is easy to avoid the damage by 

ensuring that the threshold level is never reached.  In most cases, however, the 

threshold is only partially known, due, e.g., to lacking information regarding 



 3

subsurface flows.  Moreover, the occurrence conditions may be affected also by 

stochastic environmental conditions that are not within the managers' control.  

Accounting for this kind of events, we enter the realm of event uncertainty.   

Impacts of event uncertainty on optimal exploitation policies have been 

studied in a variety of resource management problems, including pollution-induced 

events (Cropper, 1976, Clarke and Reed, 1994, Tsur and Zemel, 1996, 1998b), forest 

fires (Reed, 1984, Yin and Newman, 1996), species extinction (Reed, 1989, Tsur and 

Zemel, 1994), seawater intrusion into coastal aquifers (Tsur and Zemel, 1995), and 

political crises (Long, 1975, Tsur and Zemel, 1998a).  Typically, occurrence risk 

implies prudence, and the exploitation policies are more conservative than those 

obtained under certainty.  In some cases, however, event uncertainty encourages more 

vigorous extraction policies in order to derive maximal benefit prior to occurrence.  

Tsur and Zemel (1998b) trace these apparently conflicting results to differences in the 

occurrence conditions and the damage inflicted by the events and consequetnly 

classify events as reversible or irreversible, and endogenous or exogenous.   

In the context of groundwater, irreversible events are those that, once 

occurred, render the aquifer obsolete.  Reversible events, on the other hand, entail a 

heavy penalty (e.g. the cleaning cost of a polluted aquifer) but otherwise do not 

prevent further exploitation of the resource.  The adjective 'endogenous' signifies 

events whose occurrence is determined solely by the exploitation policy, although 

some essential information (e.g., the exact threshold level for seawater intrusion) is 

not a-priori known.  In contrast, exogenous events are triggered also by stochastic 

environmental conditions (the expansion of a nearby source of pollution), which are 

outside the managers' control.   
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It turns out that the distinction among the different types of event uncertainty 

bears profound consequences for optimal management policies and often alters 

properties that are considered standard.  For example, in a renewable resource context, 

the optimal stock process typically approaches an isolated equilibrium (steady) state.  

This feature, it turns out, no longer holds under endogenous event uncertainty:  The 

unique equilibrium state expands into an equilibrium interval and the eventual steady 

state depends on the initial stock.   

In this paper we present the problem of the optimal management of 

groundwater resources under event uncertainty in a unified framework that 

accommodates all the above-mentioned types of events.  We begin, in the next 

section, by characterizing the optimal extraction policy under certainty.  First we 

analyze the standard reference case of the nonevent problem, in which no event can 

ever interrupt the extraction plan, and then add certain events that occur when the 

groundwater stock shrinks to a known critical level.  Since we show that under these 

conditions it is never optimal to trigger the event, it follows that the optimal policy is 

insensitive to the nature of the event (reversible or irreversible) or to the amount of 

damage it inflicts.  This insensitivity, however, disappears when we deal (Section 3) 

with uncertain situations.  We show that under endogenous uncertainty the optimal 

policy is to drive the stock process to the nearest edge of an equilibrium interval.  The 

size of this equilibrium interval (which measures the degree of prudence implied by 

the events) turns out to depend on the expected damage from immediate occurrence.  

Under exogenous uncertainty, on the other hand, no extraction policy is perfectly safe 

and the equilibria are confined to isolated states.  The effect of exogenous uncertainty 

is measured by the shift of these equilibrium states (relative to the nonevent 

counterpart) and is sensitive to the hazard and penalty associated with the events. 
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2.  Groundwater management under certainty 

 We consider first the management of a confined groundwater basin (aquifer) 

under full certainty.  Let St denote the groundwater stock level at time t and R(St) the 

natural recharge rate (net water inflow excluding extraction), assumed decreasing and 

concave with 0)( =SR  where S  is the aquifer's capacity.  Thus, recharge attains a 

maximal rate at an empty aquifer, diminishes with S at an increasing rate and vanishes 

when the aquifer is at a full capacity S .  With xt representing groundwater extraction, 

the aquifer's stock evolves with time according to   

tttt xSRSdtdS −=≡ )(/ & . (2.1) 

The benefit derived from consuming water at the rate x is Y(x), where Y is 

increasing and strictly concave with Y(0) = 0.  The cost of extracting at the rate x 

while the stock level is S is C(S)x, where the unit cost C(S) is nonincreasing and 

convex.  The instantaneous net benefit is then given by Y(x) − C(S)x.  It is assumed 

that )()0( SCY >′ , so that some extraction is worthwhile under the most favorable 

conditions. 

2.1. Nonevent:  When no event can interrupt groundwater extraction, the 

optimal plan is obtained by solving  

∫
∞ −−=

0}{0 ])()([max)( dtexSCxYSV rt
tttx

ne
t

 (2.2) 

subject to (2.1), xt ≥ 0; St ≥ 0 and S0 given.  The optimal processes associated with the 

nonevent problem (2.2) will be indicated with an ne superscript.  This standard 

problem has been treated by a variety of optimization methods (see, e.g., Tsur and 

Graham-Tomasi, 1991; Tsur and Zemel, 1994, 1995) and we summarize the main 

findings below.   
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We note first that because problem (2.2) is autonomous, (time enters explicitly 

only through the discount factor), the optimal stock process ne
tS  evolves 

monotonically in time (Tsur and Zemel, 1994).  Since ne
tS  is bounded in ],0[ S  it 

must approach a steady state in this interval.  Using the variational method of Tsur 

and Zemel (2001), possible steady states are located by means of a simple function 

L(S) of the state variable, denoted the evolution function (see Appendix).  In 

particular, an internal state S ∈ (0, S ) can qualify as an optimal steady state only if it 

is a root of L, i.e L(S) = 0, while the corners 0 or S  can be optimal steady states only 

if L(0) ≤ 0 or ,0)( ≥SL  respectively.  

For the case at hand, the evolution function corresponding to (2.2) is given by 

(see (A.3)): 









−−
−

−′−= )]())(('[
)('

)()('))(()( SCSRY
SRr

SRSCSRrSL . (2.3) 

The properties of the functions Y, R and C imply that the term inside the curly 

brackets is decreasing while r − R'(S) > 0.  Moreover, the assumption that some 

exploitation is profitable at a full aquifer, i.e.,  Y ′(0) > C( S ), implies that 

0))0()())((()( <′−′−= YSCSRrSL .  Thus, either L(0) ≥ 0, in which case L(S) has a 

unique root in [0, S ] or L(0) < 0.  Let Ŝ  represent the root of L(S) if L(0) ≥ 0 and 

Ŝ  = 0 otherwise .  We have, therefore established: 

Property 1:  Ŝ  is the unique steady state to which the optimal stock process ne
tS  

converges monotonically from any initial state.   

The vanishing of the evolution function at an internal steady state represents the 

tradeoffs associated with groundwater exploitation.  A steady state is optimal if any 
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diversion from it inflicts a loss.  Consider a variation on the steady state policy 

x = )ˆ(SR  in which extraction is increased during a short (infinitesimal) time period dt 

by a small (infinitesimal) rate dx above )ˆ(SR  and retains the recharge rate thereafter.  

This policy yields the additional benefit .))ˆ())ˆ((( dxdtSCSRY −′   But it also decreases 

the groundwater stock by dS = −dxdt, which, in turn, increases the unit extraction cost 

by dSSC )ˆ('  and the extraction cost by dSSCSR )ˆ()ˆ( ′ .  The present value of this 

permanent flow of added cost is given by )).ˆ(/()ˆ()ˆ( SRrdSSCSR ′−′ 1  At the root of L, 

these marginal benefit and cost just balance, yielding an optimal equilibrium state.  

The state of depletion S = 0 can be a steady state also when L(0) < 0, or equivalently 

when )]0('/[)0()0(')0())0((' RrRCCRY −−>− .  This is the case when the marginal 

benefit exceeds the added extraction cost even when the latter is at its maximum.   

While Property 1 implies that the stock process must approach Ŝ , the time to 

enter the steady state remains a free choice variable.  Using the conditions for an 

optimal entry time, we establish in the Appendix that the optimal extraction rate ne
tx  

smoothly approaches the steady state recharge rate )ˆ(SR and the approach of ne
tS  

towards the steady state Ŝ  is asymptotic, i.e.,  

Property 2:  Initiated away from Ŝ , the optimal stock process ne
tS  will not reach Ŝ  

at a finite time. 

Since problem (2.2) is autonomous, the optimal extraction can be expressed in 

terms of the state S alone.  Let xne(S) denote optimal extraction when the stock is S.  

The necessary conditions for optimum give rise to the following first order, nonlinear 

differential equation for xne(S) (see Appendix) 
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)]()())[(("
)())](('))((')][('[)('

SxSRSxY
SLSRYSxYSRrSx nene

ne
ne

−
−−−= . (2.4) 

with the boundary condition )ˆ()ˆ( SRSxne = , implied by the smooth transition to the 

steady state.  To allow the use of (2.4) as the basis for a numerical solution, one can 

remove the singularity at Ŝ  and obtain (see Appendix)  

2))ˆ(("
)ˆ('

4
)ˆ(')ˆ('

2 r
SRY

SLrSRSxne −++= , (2.5) 

which serves as the starting step for the integration scheme.   

Given xne(S), the optimal stock process ne
tS  is determined by integrating (2.1)  

∫ −
=

ne
tS

S
ne SxSR

dSt
0

)()(
, (2.6) 

and the value function is obtained from the Dynamic Programming equation (see, e.g., 

Kamien and Schwartz, 1981, p.242) 

)]())((')][()([)()())(()( SCSxYSxSRSxSCSxYSrV nenenenene −−+−=  (2.7) 

Moreover, it is shown in the Appendix that )( ne
t

nene
t Sxx =  is also monotonous in time:  

Property 3:  ne
tx  decreases with time while SS ne

t
ˆ>  and increases with time when 

.ŜS ne
t <  

Observe that the decrease in the extraction rate when the groundwater stock is 

above the steady state takes place even though the natural rate of recharge increases as 

the stock declines.  Thus, the two flow processes that drive the stock dynamics 

(extraction and recharge) work together to slow down the rate of approach to the 

eventual steady state.  

2.2. Irreversible Events:  Suppose now that driving the stock to some critical 

level Sc triggers the occurrence of some catastrophic event, e.g., the intrusion of saline 
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water into the reservoir, rendering the groundwater useless thereafter and ceasing 

extraction activities.  We refer to such occurrence as an irreversible event.  

Obviously, if SSc
ˆ<  the event risk has no bearing on the optimal policy, because 

extraction falls short of the recharge rate for all SS ˆ<  even without the event risk 

(Property 1), hence the critical level will never be approached.  We consider, 

therefore, the case SSS c
ˆ

0 >> . 

Let T denote the event occurrence time (T = ∞ if the stock never shrinks to Sc 

to trigger the event).  The certainty problem with irreversible event risk is formulated 

as  

,])()([max)(
0},{0 ∫ −−= T rt

tttxT
ci dtexSCxYSV

t
 (2.8) 

subject to (2.1), xt ≥ 0; St ≥ 0; ST = Sc and S0 > Sc given.  Problem (2.8) differs from the 

nonevent problem (2.2) by the additional decision variable T and the additional 

constraint ST = Sc.  Optimal processes corresponding to (2.8) are indicated with a ci 

superscript (c for certainty, i for irreversible).   

The event occurrence is evidently undesirable, since just above Sc it is 

preferable to extract at the recharge rate and enjoy the benefit flow associated with it 

rather than extract above recharge, trigger the event and lose all future benefits.  Thus, 

the event should be avoided:  

Property 4:  When the critical level Sc is known, c
ci
t SS >  for all t and T = ∞. 

The certainty-irreversible event problem, thus, obtains the same form as the 

non-event problem (2.2), but with the additional constraint St > Sc.  The evolution 

function (2.3), therefore, applies to this problem as well, but only roots in the range 

[Sc, S ] (rather than [0, S ]) can be feasible steady states.  Being monotonous and 
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bounded, the optimal stock process ci
tS  must approach a steady state.  However, with 

SSc
ˆ>  the function L(S) is negative in the feasible interval ],[ SSc , hence no internal 

steady state can be optimal.  The only remaining possibility is the critical level Sc, 

because the negative value of L(Sc) does not exclude this corner state.  We have, 

therefore, established  

Property 5:  When the critical level Sc corresponding to an irreversible event is 

known and lies above Ŝ , the optimal stock process ci
tS  converges monotonically to a 

steady state at Sc. 

According to this property, in the long run ci
tS  must lie above its nonevent 

counterpart ne
tS .  It turns out that this relation holds for the complete duration of the 

process, as stated in  

Property 6:  ne
t

ci
t SS >  for all t > 0. 

Both processes depart from the same initial stock S0 at t = 0.  According to 

Property 6, cine xx 00 >  and the policy under event risk is always more conservative, in 

the sense of leaving more water in the aquifer.  To see why, suppose that cine SS ττ =  at 

some time τ > 0.  Then, ci
t

ne
t SS =  must hold during the entire time interval [0,τ] hence 

the extraction rates must also coincide during this period.  This, in turn, implies, (see 

(2.4)) that the two stock processes must evolve together also from τ  onwards, 

violating Properties 1 and 5.   

In fact, the extra caution due to the event risk is manifest also by the optimal 

extraction rates:  

Property 7:  )()( SxSx neci <  for any S > Sc.   
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The property follows directly from Property 6, when we consider the two 

optimization problems initiated at S0 = S.   

2.3. Reversible events: Assume now that the damage inflicted by the event can 

be cured at some cost.  For example, in some cases it may be possible to drive back 

the saline water by introducing large quantities of freshwater from other sources into 

the reservoir.  Under such circumstances we refer to the event as reversible and 

specify the post-event value as φ(Sc) = W(Sc) − ψ, where  

W(S) = [Y(R(S)) − C(S)R(S)]/r  (2.9) 

is the steady state value derived from keeping the extraction rate at the natural 

recharge rate R(S), and the penalty ψ > 0 is the (once and for all) curing cost.  The 

post-event value φ, thus, accounts both for the fact that the stock cannot be further 

decreased (to avoid a second occurrence) and for the curing cost. The aquifer 

management problem under reversible events is modified to   

)(])()([max)(
0},{0 T

rTT rt
tttxT

cr SedtexSCxYSV
t

φ−− +−= ∫  (2.10) 

subject to (2.1), xt ≥ 0; St ≥ 0; ST = Sc and S0 > Sc given.  Optimal processes associated 

with (2.10) are indicated with a cr superscript.  

Observe that (2.8) and (2.10) differ only in the post-event value.  It follows 

that an irreversible event is a special case of reversible events with a penalty that 

equals the steady state value W(Sc).  Not surprisingly, the optimal policies for the two 

types of event turn out to be the same.  To see this, note first that just as it is not 

desirable to trigger an irreversible event, it is also not desirable to do so with a 

reversible event because the post-event value is smaller than the steady state value 

that can be secured by avoiding the event occurrence:  
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Property 8:  When the critical level corresponding to a reversible event with any 

positive penalty is known, the optimal stock process c
cr
t SS >  and T = ∞. 

Note that the reversible event may not be as harmful as the irreversible event 

(since the penalty may be smaller than W(Sc)).  Nonetheless, for both types of events, 

the penalty is never realized (Properties 4 and 8) and its exact value (so long as it is 

positive) is irrelevant.  It follows that the certainty policies do not depend on the 

nature of the event nor on the penalty it inflicts:  

Property 9:  When the critical stock level at which the event is triggered is known, 

the optimal policies under reversible and irreversible events are the same.  

The lack of sensitivity of the optimal policy to the details of the catastrophic 

event is evidently due to the ability to avoid the event occurrence altogether.  This 

may not be feasible (or optimal) when the critical stock level is not a-priory known.  

The optimal policy may, in this case, lead to unintentional occurrence, whose exact 

consequences must be accounted for in advance.  We turn, in the following section, to 

analyze the effect of uncertain catastrophic events on groundwater management 

policies. 

3.  Uncertain Events 

 Often the conditions that lead to the event occurrence are imperfectly known, 

or are subject to environmental uncertainty outside the planner's control.  In some 

cases the critical level is a priori unknown, to be revealed only by the event 

occurrence.  Alternatively, the event may be triggered at any time by external effects 

(such as subsurface flows of fresh and saline water) with a probability that depends on 

the current aquifer state.  We refer to the former type of uncertainty—that due to the 

planner's ignorance regarding the conditions that trigger the event—as endogenous 
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uncertainty (signifying that the event occurrence is solely due to the exploitation 

decisions) and to the latter as exogenous uncertainty.  It turns out that the optimal 

policies under the two types of uncertainty are quite different.  These policies are 

characterized below. 

3.1  Endogenous events:  We consider events that occur as soon as the 

groundwater stock reaches some critical level Sc, which is imperfectly known.  The 

uncertainty regarding the occurrence conditions, thus, is entirely due to the planner's 

ignorance concerning the critical level rather than to the influence of exogenous 

environmental effects.  Let  F(S) = Pr{Sc ≤ S} and  f(S) = dF/dS  be the probability 

distribution and the probability density associated with the critical level Sc.  The 

hazard function, measuring the conditional density of occurrence due to a small stock 

decrease given that the event has not occurred by the time the state S was reached, is 

defined by  

h(S) = f(S)/F(S).  (3.1) 

We assume that h(S) does not vanish in the relevant range, hence no state below the 

initial stock can be considered a-priori safe.   

The event occurrence time T is also uncertain, with a distribution that is 

induced by the distribution of Sc and depends on the extraction plan.  Upon 

occurrence, the penalty ψ is inflicted and a further decrease in stock is forbidden, 

leaving the post-event value φ(S) = W(S)−ψ.  For irreversible events, the post-event 

value φ vanishes.  Given that the event has not occurred by the initial time, i.e., that 

T > 0, we seek the extraction plan that maximizes the expected benefit  

{ }0)(])()([)(
0}{0 >+−= ∫ −− TSedtexSCxYEMaxSV
T

T
rTrt

tttTx
en

t
φ  (3.2) 
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subject to (2.1), xt ≥ 0; St ≥ 0 and S0 given.  ET in (3.2) represents expectation with 

respect to the distribution of T.  Optimal processes corresponding to the endogenous 

uncertainty problem (3.2) are denoted by the superscript en.  

 As the stock process evolves in time, the managers' assessment of the 

distributions of Sc and T can be modified since at time t they know that Sc must lie 

below },{0 ττ SMin t≤≤  for otherwise the event would have occurred at some time prior 

to t.  Thus, the expected benefit in the objective of (3.2) involves },{0 ττ SMin t≤≤  i.e., 

the entire history up to time t, complicating the optimization task.  The evaluation of 

the expectation in (3.2) is simplified when the stock process evolves monotonically in 

time, since then 00 }{ SSMin t =≤≤ ττ  if the process is nondecreasing (and no information 

relevant to the distribution of Sc is revealed) and tt SSMin =≤≤ }{0 ττ  if the process is 

nonincreasing (and all the relevant information is given by the current stock St).  It 

turns out that  

Property 10:   The optimal stock process en
tS  evolves monotonically with time.2 

Property 10 allows to confine attention to monotonic processes.  Roughly speaking, 

the property is based on the idea that if the process reaches the same state at two 

different times, and no new information on the critical level is revealed during that 

period, then the planner faces the same optimization problem at both times.  This rules 

out the possibility of a local maximum for the process, because }{0 ττ SMin t≤≤ remains 

constant around the maximum, yet the conflicting decisions to increase the stock 

(before the maximum) and decrease it (after the maximum) are taken at the same 

stock levels.  A local minimum can also be ruled out even though the decreasing 

process modifies }{0 ττ SMin t≤≤  and adds information on Sc.  However,  it cannot be 

optimal to decrease the stock under risk (before the minimum) and then increase it 
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(with safety, after the minimum) from the same state.  In fact, at any state along the 

optimal process, non-occurrence of the event cannot modify earlier decisions.  

Therefore, prior to occurrence no need ever arises to update the original plan, and the 

open- and closed-loop solutions are the same (see Tsur and Zemel, 1994, for a 

complete proof).   

For nondecreasing stock processes it is known with certainty that the event 

will never occur and the uncertainty problem (3.2) reduces to the nonevent problem 

(2.2).  When the stock process decreases, the distribution of T is obtained from the 

distribution of Sc as follows:  

1 − FT(t) ≡ Pr{T > t|T > 0} = Pr{Sc < St|Sc < S0} = F(St)/F(S0). (3.3) 

The corresponding density and hazard-rate functions are also expressed in terms of 

the critical stock distribution: 

(a)   )(/)]()[(/)()( 0SFSRxSfdttdFtf tttTT −== ,  

(b)   )]()[(
)(1

)()( ttt
T

T
T SRxSh

tF
tfth −=

−
= . 

(3.4) 

Let I(⋅) denote the indicator function that obtains the value one when its 

argument is true and zero otherwise, and observe that ET{I(T > t)|T > 0} = 1 − FT(t) = 

F(St)/F(S0).  Writing the objective of (3.2) as 

{ }0)()(])()([
0

>+>− −∞ −∫ TSedtetTIxSCxYE T
rTrt

tttT φ , the expectation for 

decreasing processes is readily evaluated, yielding 









−+−= ∫
∞ −

0
0

}{0 )(
)()}()]()[()()({max)( dte

SF
SFSSRxShxSCxYSV rtt

tttttttx
aux

t
φ  (3.5) 

subject to (2.1), xt ≥ 0; SSt
ˆ≥  and S0 given.  The allocation problem for which (3.5) is 

the objective is referred to as the auxiliary problem, and optimal processes 

corresponding to this problem are denoted by the superscript aux.  It turns out that the 
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auxiliary problem is relevant only for stock levels above Ŝ , hence Ŝ replaces the 

depletion level (S=0) as the lowest feasible stock for this problem.  In similarity with 

the previously defined problems, the optimal stock process associated with the 

auxiliary problem evolves monotonically with time.  Notice that at this stage it is not 

clear whether the uncertainty problem (3.2) reduces to the nonevent problem or to the 

auxiliary problem, since it is not a priori known whether en
tS  decreases with time.  

We shall return to this question soon after the optimal auxiliary processes are 

characterized. 

 Using (A.3), we obtain the evolution function corresponding to the auxiliary 

problem (3.5)  

Laux(S) = [L(S) + h(S)rψ]F(S)/F(S0). (3.6) 

In (3.6), L(S) is the evolution function for the nonevent problem, defined in (2.3), and 

h(S) is the hazard function, defined in (3.1).  Occurrence of the event inflicts an 

instantaneous penalty ψ (or equivalently, a permanent loss flow at the rate rψ) that 

could have been avoided by keeping the stock at the level S.  The second term in the 

square brackets of (3.6) gives the expected loss due to an infinitesimal decrease in 

stock.  Moreover, this term is positive at the lower bound ,Ŝ  while 0)ˆ( =SL , hence 

0)ˆ( >SLaux , implying that Ŝ  cannot be an optimal equilibrium for the auxiliary 

problem.  Whether or not the auxiliary evolution function has a root in ),ˆ( SS  (where 

L(S) < 0) depends on the size of the expected loss: for moderate losses, Laux vanishes 

at some stock level auxŜ  in the interval ),ˆ( SS , which is the optimal steady state for 

the auxiliary problem.  We assume that the root auxŜ  is unique3.  Higher expected 
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losses ensure that Laux > 0 throughout, and the auxiliary process converges to a steady 

state at the upper bound .ˆ SS aux =   It follows that 

Property 11:  auxŜ  is the unique steady state to which the optimal stock process aux
tS  

converges monotonically from any initial state in ].,ˆ[ SS    

 Events for which φ(S) = W(S) − ψ = 0 are denoted irreversible.  Noting (2.9) 

and 0)( =SR , we see that 0)( =SW , while 0)( <SL .  Thus, for irreversible events 

.0)( <SLaux   It follows that the auxiliary evolution function must have a root in the 

interval ),,ˆ( SS  and the auxiliary equilibrium level for irreversible events must be an 

internal state. 

 We apply these results to characterize the optimal extraction plan for the 

endogenous uncertainty problem (3.2).  A detailed analysis is presented in Tsur and 

Zemel (1995).  Here we outline the main considerations: 

(i)  When ,ˆ
0 SS <  the optimal nonevent stock process ne

tS  increases in time.  

With event risk, it is possible to secure the nonevent value by applying the nonevent 

policy, since an endogenous event can occur only when the stock decreases.  The 

introduction of occurrence risk cannot increase the value function, hence en
tS  must 

increase.  This implies that the uncertainty and nonevent processes coincide, 

ne
t

en
t SS =  for all t, and increase monotonically towards the steady state .Ŝ  

(ii)  When ,ˆˆ
0 SSS aux >>  both ne

tS  and aux
tS  decrease in time.  If en

tS  is 

increasing, it must coincide with the nonevent process ne
tS , contradicting the 

decreasing trend of the latter.  A similar argument rules out a steady state policy.  
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Thus, en
tS  must decrease, coinciding with the auxiliary process aux

tS  and converging 

with it to the auxiliary steady state .ˆ auxS    

(iii)  When ,ˆˆ
0 SSS aux ≥≥  the nonevent stock process ne

tS  decreases (or 

remains constant if SS ˆ
0 = ) and the auxiliary stock process aux

tS  increases (or remains 

constant if auxSS ˆ
0 = ).  If en

tS  increases, it must coincide with ne
tS , and if it decreases 

it must coincide with aux
tS , leading to a contradiction in both cases.  The only 

remaining possibility is the steady state policy 0SS en
t =  at all t. 

 We summarize these considerations in   

Property 12:   (a)  en
tS  increases at stock levels below .Ŝ  

(b)  en
tS  decreases at stock levels above .ˆ auxS  

(c) All stock levels in ]ˆ,ˆ[ auxSS  are equilibrium states of en
tS . 

 The various possibilities are illustrated in Figure 1.  The equilibrium interval 

of Property 12(c) is unique to optimal stock processes under endogenous uncertainty.  

Its boundary points attract any process initiated outside the interval, (as indicated by 

the direction of the arrows in the Figure), while processes initiated within it must 

remain constant.  This feature is evidently related to the splitting of the endogenous 

uncertainty problem into two distinct optimization problems depending on the initial 

trend of the optimal stock process.  At ,ˆ auxS  the expected loss due to occurrence 

(represented by the second term of (3.6)) is so large that entering the interval by 

reducing the stock cannot be optimal even if under certainty extracting above the 

recharge rate would yield a higher benefit.  Within the equilibrium interval, the 

planner can take advantage of the possibility to eliminate the occurrence risk 

altogether by not reducing the stock below its current level.  As we shall see below, 
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this possibility is not available under exogenous uncertainty, hence the corresponding 

management problem does not give rise to equilibrium intervals. 

 
 
Figure 1:  The evolution functions L(S) (Eq. 2.3) and Laux(S
to the nonevent and auxiliary problems, respectively.  The a
direction in which the optimal process en

tS  evolves.  ˆ,ˆ[ auSS
interval for this process. 
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Figure 2:  A comparison between the optimal processes ne

tS  (corresp

nonevent problem) and en
tS  (corresponding to endogenous uncertainty

process is interrupted by the event at time T and the rest of the proces
the dashed-line process aux

tS ) is never realized. 
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the equilibrium interval, the condition for an optimal entry time to the steady state 

implies that extraction converges smoothly to the recharge rate and the planned steady 

state will not be entered at a finite time.  Thus, Property 8 extends also to endogenous 

uncertainty.  It follows that when the critical level actually lies below ,ˆ auxS  

uncertainty will never be resolved and the planner will never know that the adopted 

policy of approaching auxŜ  is indeed safe.  Of course, in the less fortunate case in 

which the critical level lies above the steady state, the event will occur, resolving 

uncertainty at a finite time (see Figure 2).  

3.2  Exogenous events:  Random catastrophic events can be triggered by 

exogenous environmental conditions that are not within the resource managers' 

control.  The current groundwater stock level can affect the hazard of immediate 

occurrence, but whether the latter will actually take place is determined by stochastic 

exogenous conditions.  This type of event uncertainty was introduced by Cropper 

(1976) and analyzed by Clarke and Reed (1994) and by Tsur and Zemel (1998b) in 

the context of environmental pollution control.  Here we consider the implications of 

this kind of uncertainty on groundwater resource management.  Under exogenous 

uncertainty, the knowledge that a certain stock level has been reached in the past 

without triggering the event is not a safeguard from occurrence at the same stock level 

sometime in the future, lest the exogenous conditions turn out to be less favorable.  

Therefore, the mechanism that gives rise to the safe equilibrium intervals under 

endogenous uncertainty does not work here, and we shall show below that such 

intervals do not characterize the optimal processes under exogenous uncertainty.  

 As above, the post-event value is denoted by φ(S), which vanishes identically 

for all S under irreversible events.  The expected value from an extraction plan that 

can be interrupted by an event at time T is again given by the objective of (3.2), but 
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for exogenous events the probability distribution of T, F(t) = Pr{T≤t}, is defined in 

terms of a stock-dependent hazard rate h(St) = f(t)/[1−F(t)] as  

})(exp{1)(
0∫−−= t dShtF ττ . 

(3.7) 

We assume that no stock level is completely safe, hence h does not vanish and the 

integral in (3.7) diverges for any feasible process as t→∞.  We further assume that 

h(S) is decreasing, i.e., filling the aquifer reduces the occurrence hazard.    

 Using (3.7) to evaluate the expected value derived from any feasible process 

we obtain the exogenous uncertainty problem:  

dTSedtexSCxYdtShShMaxSV T
rT

T
rt

ttt

T

tTx

ex

t

)}(])()([{])(exp[)()(
00 0

}(0 φ−−
∞

+−= ∫∫ ∫  (3.8) 

subject to (2.1), xt ≥ 0; St ≥ 0 and S0 given.  Unlike the auxiliary problem (3.5) for 

endogenous events, (3.8) provides the correct formulation for the exogenous 

uncertainty problem regardless of whether the stock process decreases or increases.   

To characterize the steady state, we need to specify the value Wex(S) associated 

with the steady state policy xex = R(S).  Exogenous events may interrupt this policy, 

hence Wex(S) differs from the value function W(S) of (2.5) obtained from the steady 

state policy under certainty or endogenous uncertainty.  An occurrence inflicts the 

penalty, but does not affect the hazard of future events.  The post-event policy, then, is 

to remain at the steady state and receive the post-event value Wex(S) − ψ.  Under the 

steady state policy, (3.7) reduces to the exponential distribution F(t) = 1 − exp(−h(S)t), 

yielding the expected value Wex(S) = W(S) − [W(S)−Wex(S)+ψ]h(S)/[r+h(S)].  Solving 

for Wex(S), we find  

Wex(S) = W(S) − ψh(S)/r, (3.9) 
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where the second term represents the expected loss over an infinite time horizon.  The 

explicit time dependence of the distribution F(t) of (3.7) does not allow to present the 

optimization problem (3.8) in an autonomous form.  Nevertheless, the argument for 

the monotonicity of the optimal stock process ex
tS  holds, and the associated evolution 

function can be derived (Tsur and Zemel, 1998b), yielding  

Lex(S) = L(S) − d[ψ(S)h(S)]/dS. (3.10) 

For reversible events with a fixed penalty and decreasing hazard one finds that 

Lex(S) > L(S).  Since L(S) is positive below Ŝ , so must Lex(S) be, precluding any 

steady state below Ŝ .  Thus, the root exŜ  of Lex(S) must lie above the nonevent 

equilibrium, implying  

Property 13:   The optimal stock process under exogenous uncertainty converges 

monotonically to the root exŜ .  When the hazard-rate function h(S) is decreasing, 

SS ex ˆˆ >  and the extraction policy is more conservative than its nonevent counterpart. 

 Property 13 is due to the second term of (3.10) which measures the marginal 

expected loss due to a decrease in stock.  The latter implies a higher occurrence risk, 

which in turn calls for a more prudent extraction policy.  Indeed, if the hazard is state- 

independent, the second term of (3.10) vanishes, implying that the evolution functions 

of the nonevent and exogenous uncertain event problems are the same and so are their 

steady states.  In this case, extraction activities have no effect on the expected loss 

hence the tradeoffs that determine the optimal equilibrium need not account for the 

penalty, no matter how large it may be.  For a decreasing hazard, however, the degree 

of prudence (measured by the shift SS ex ˆˆ −  in the equilibrium state) increases with ψ 

and the sensitivity to the penalty size is regained. 
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 For irreversible events, ψ = Wex(S) and (3.9) implies that ψ = rW(S)/(r+h(S)), 

hence the second term of (3.10) becomes −[h(S)rW(S)/(r+h(S))]' which is usually of 

indefinite sign because W(S) can increase with S at low stock levels.  The case of a 

constant hazard, (h(S)=h>0) is of particular interest.  In this case, we use (2.3) and 

(2.9) to reduce (3.10) to  

 Lex(S) = L(S) − W '(S)hr/(r+h) = {L(S) − h[Y '(R(S))−C(S)]}r/(r+h). (3.11) 

It follows that the steady state cannot lie at or above Ŝ :  In this range, L(S) ≤ 0, 

implying that Y '(R(S))−C(S) ≥ −C '(S)R(S)/(r−R'(S)) > 0.  Thus, both terms in the curly 

brackets of (3.11) are negative and Lex(S) < 0, excluding a steady state.  Therefore, 

SS ex ˆˆ <  and the uncertainty policy is less conservative than its nonevent counterpart.  

Property 14:   When the hazard of irreversible exogenous events is constant, the 

optimal steady state exŜ  lies below Ŝ , and uncertainty induces higher extraction 

rates. 

 The intuition behind Property 14 is clear: with a stock-independent hazard 

rate, the extraction policy does not affect the occurrence probability.  However, since 

the post-event value vanishes, the planners wish to accumulate as much benefit as 

possible prior to occurrence, speeding up the extraction activities and reducing the 

equilibrium stock.  In terms of (3.10), we see that the penalty ψ = Wex(S) increases 

with the stock, hence reducing the latter is equivalent to reducing the expected loss, 

encouraging vigorous extraction.  Similar results have been derived by Clarke and 

Reed (1994) for catastrophic environmental pollution. 

 The results presented in this section highlight the sensitivity of the optimal 

uncertainty processes to the details of an interrupting event.  The type of uncertainty 

determines the equilibrium structure: endogenous uncertainty gives rise to equilibrium 
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intervals while exogenous uncertainty implies isolated equilibrium states.  In most 

cases, the expected loss due to occurrence encourages prudent extraction policies, but 

the opposite behavior is optimal under constant hazard of irreversible exogenous 

events.   

4.  Concluding comments 
 

While it is widely recognized that uncertainty may have profound effects on 

groundwater management, the precise manner in which the optimal extraction rules 

should be modified is often ambiguous.  In this work we concentrate on a particular 

type of uncertainty, namely event uncertainty, under which the occurrence date of 

some catastrophe cannot be predicted in advance.  The occurrence of the catastrophic 

event, which significantly reduces the value of the resource, might be advanced by the 

extraction activities.  Event uncertainty, therefore, renders intertemporal 

considerations particularly relevant to the design of optimal extraction rules:  Unlike 

other sources of uncertainty (time-varying costs and demand, stochastic recharge 

processes, etc.) under which the extraction policy can be updated along the process to 

respond to changing conditions, event uncertainty is resolved only by occurrence, 

when policy changes can no longer be useful.  Thus, the expected loss due to the 

catastrophic threats must be fully accounted for prior to occurrence, and the resulting 

policy rules are significantly modified.  

In this work we study optimal groundwater extraction under the threat of 

events that differ in the damage they inflict and the conditions that trigger occurrence.  

We demonstrate the sensitivity of the optimal management policy to the details of the 

hazard and damage specifications.  The analysis is presented here in the context of 

groundwater resources but has wide application in a variety of resource situations 

involving event uncertainty. 
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Appendix 

A1:  The evolution function 

Tsur and Zemel (2001) consider possible equilibrium states for general infinite 

horizon optimization problems of the form  

∫
∞ −=
0}{0 ),(max)( dtexSBSV rt

ttxt
 (A.1) 

subject to ,,),,( xxxSSSxSgS tttt ≤≤≤≤=&  S0 given, assuming that the steady 

state policy is feasible, i.e. there exists a "recharge" function xSRx ≤≤ )(  such that 

setting x = R(S) in g yields g(S,R(S)) = 0.  B in (A.1) is the benefit flow, and g 

determines the state dynamics, while some of the inequality constraints can be relaxed 

by assigning infinite values to the corresponding bounds.  The steady state policy 

x = R(S), then, yields the value  

W(S) = B(S,R(S))/r. (A.2) 

 For the nonevent problem (2.2), (A.2) reduces to (2.9).  The optimality of the 

steady state policy for a given state S is tested by comparing W(S) with the value 

obtained from a slight variation on this policy.  It is established that an interior state S 

can be an optimal steady state only if it is a root (zero) of the evolution function, 

defined as   






 ′+
∂∂
∂∂= )(

/))(,(
/))(,()( SW

xSRSg
xSRSBrSL . (A.3) 

If L(S) does not vanish, a feasible variation on the steady state policy yielding a value 

larger than W(S) can be found, hence S is not an optimal steady state.  Corner states 

make an exception by the possibility to qualify as optimal steady states without being 

roots of  L(S), depending on the sign obtained by the evolution function at these states.  
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In particular, the lower bound S  can be an optimal steady state if ,0)( <SL  while the 

upper bound can be an optimal steady state if .0)( >SL  

 Specializing (A.3) to the nonevent and auxiliary problems (2.2) and (3.5), we 

obtain the corresponding evolution functions (2.3) and (3.6). 

A2:  The dynamics of the nonevent processes 

 We assume below that the nonevent steady state Ŝ  is internal and suppress, 

for brevity, the superscript ne from the associated optimal processes.  Let T denote the 

time at which the optimal nonevent stock process St enters the steady state .Ŝ   The 

nonevent problem (2.2) is recast in the form  

)(])()([max)(
0},{0 T

rTT rt
tttxT

ne SWedtexSCxYSV
t

−− +−= ∫  (A.4) 

subject to (2.1), xt ≥ 0; St ≥ 0; SST
ˆ=  and S0  given.  Denoting the current-value 

costate variable by λt, we obtain the current-value Hamiltonian  

])([)()(),,( xSRxSCxYxSH −+−= λλ . (A.5) 

Necessary conditions for optimum include  

,0)()( =−−′ λSCxY  (A.6) 

and  

).()(/ SRxSCSHr ′−′=∂−∂=− λλλ&  (A.7) 

The transversality condition associated with the free choice of the entry time T is  

,0)ˆ(),,ˆ( =− SrWxSH TT λ  or, noting (A.6) and (2.9) 

),ˆ()ˆ())ˆ((])ˆ()][ˆ()([)ˆ()( SRSCSRYxSRSCxYxSCxY TTTT −=−−′+−  giving   

)].ˆ()[())ˆ(()( SRxxYSRYxY TTT −′=−  (A.8) 

Recalling the concavity of Y, (A.8) implies  
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)ˆ(SRxT = , (A.9) 

 hence the transition to the steady state extraction rate must be smooth. 

 Taking the time derivative of (A.6) we obtain ].)()[()( xSRSCxxY −′−′′= &&λ   

Comparing with (A.7), we can eliminate the co-state variable and its time derivative  

).())](()()][([
)()()]()()][([)(

SLSRYxYSRr
SRSCSCxYSRrxxY

−′−′′−
=′+−′′−=′′ &

 (A.10) 

For an autonomous problem, the optimal extraction is a function of the state S 

alone, xt = x(St) hence ].)()[( xSRSxx −′=&   Therefore, (A.10) reduces to a first order 

differential equation for x(S):  

)]()())[(("
)())](('))((')][('[)('

SxSRSxY
SLSRYSxYSRrSx

−
−−−= . (A.11) 

with the boundary condition )ˆ()ˆ( SRSx = , representing the smooth transition to the 

steady state established by (A.9).   When Ŝ  is internal, both numerator and 

denominator of (A.11) vanish at this state.  Nevertheless, the equation can be reduced, 

using l'Hopital's rule, to a quadratic equation in the difference )ˆ()ˆ( SRSx ′−′ , yielding 

(2.5) (see Tsur and Zemel, 1994). 

 Once the solution x(S) of (A.11) is given, (2.1) is readily integrated, yielding 

(2.6).  Since (2.5) ensures that the difference )ˆ()ˆ( SRSx ′−′  is finite, the singularity of 

(2.6) at the steady state implies that the integral diverges when its upper limit is set at 

,Ŝ  giving T = ∞ and establishing Property 2.   The derivation of Properties 4 and 8, 

corresponding to known critical stocks, is simpler: the transversality condition 

associated with the free choice of the entry time T, ,0)(),,( =− cTTc SrxSH φλ  is 

written in the form (c.f. the derivation of (A.8))  

,0)]()[())(()( <−=−′−− ψrSRxxYSRYxY cTTcT  (A.12) 
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and the concavity of Y implies that (A.12) cannot be solved with xT ≥ R(Sc).  Thus, the 

transversality condition cannot be satisfied in finite time and the event is never 

triggered. 

 Consider now the decreasing function  J(S) = −C'(S)R(S)/[r−R'(S)].  From 

(A.7) we deduce that .)ˆ( ∞= λSJ   For finite times, we use (2.1) and write (A.7) as 

,)()]()][([)()]([ tttttttttt SSCSJSRrxSCSRr && ′−−′−=′+′−= λλλ  or  

)]()][([/)]([ ttttt SJSRrdtSCd −′−=+ λλ . (A.13) 

When the stock process St lies above ,Ŝ  it decreases, hence both C(St) and J(St) must 

increase.  Suppose that J(St) > λt.  According to (A.13), the process λt + C(St), hence 

λt itself, must decrease with time.  It follows that the difference J(St) − λt increases in 

time, violating the end condition .)ˆ( ∞= λSJ   Thus,  

 J(St) < λt     for all .ŜSt >  (A.14) 

According to (A.6),  λt + C(St) = Y'(xt) hence (A.13) and (A.14) imply that Y'(xt) 

increases and xt decreases with time whenever .ŜSt >   The same considerations show 

that xt increases with time when the stock process lies below ,Ŝ  establishing Property 

3.  In fact, the extraction and stock processes always show the same trend, hence the 

function  x(S) of (A.11) must increase. 
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Endnotes: 

                                                 
1 The effective discount rate equals the market rate r minus the marginal recharge rate 
R′ because by reducing the stock by a marginal unit and depositing the proceeds at the 
bank the resource owner gains the market interest rate r plus the additional recharge 
rate −R′ (see Pindyck 1984).   
2 For degenerate problems that allow multiple optima, the property ensures that at 
least one optimal plan is monotonic. 
3 The case of multiple roots is discussed in Tsur and Zemel (2001).  The possibility of 
more than one root entails some ambiguity on the identification of the steady state but 
contributes no further insight. 




