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1.  Introduction 

 Knowledge spillovers lead to market failure in human capital investment.  

This paper investigates possible consequences of this market failure for knowledge-

based economic growth and offers a remedy.  We find that knowledge spillovers can 

lead to substantial differences in growth patterns under private and social learning 

regimes.  Aiming at a mechanism that implements the socially optimal outcome, we 

design a simple incentive scheme consisting of flat learning subsidy and taxes.  The 

scheme is self-financed, in that the tax proceeds cover exactly the subsidy payments at 

each instant of time, so that no lump sum transfers are needed.   

 The literature on knowledge-based economic growth can be traced back to 

Arrow's (1962) learning-by-doing model and Shell's (1966, 1967, 1973) treatment of 

knowledge assets as an additional sector subject to policy decisions – both were early 

attempts to endogenize Solow's (1956, 1957) technical change process.  The recent 

literature follows Lucas (1988) who assumed that knowledge accumulation (learning) 

is a time-consuming activity and incorporated external (spillover) effects (see Barro 

and Sala-i-Martin 2004, Chapter 5).  Here we adopt Shell's approach, which treats 

learning as an income-consuming activity, and incorporate external knowledge 

effects.  Our formulation enables a complete dynamic characterization of the 

endogenous growth processes and facilitates the design of an optimal learning 

mechanism.   

The dynamic characterization is based on a necessary condition for sustained 

growth expressed in terms of the marginal productivity of human and physical capital.  

An economy that satisfies the growth condition needs also sufficient capital-

knowledge endowment to realize its growth potential.  The optimal growth processes 

exhibit a turnpike property (Samuelson 1965, Cass 1966), in that they reach a certain 
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path (the turnpike) as rapidly as possible (in a sense precisely defined in the text) and 

proceed along it thereafter. Other growth models that behave in this fashion are 

discussed in Barro and Sala-i-Martin (op cit.); Tsur and Zemel (2002) found a similar 

growth pattern in a model of growth under resource scarcity.  

The proposed incentive scheme consists of a learning subsidy and income or 

consumption taxes to finance the subsidy expense without distorting household 

decisions.  The learning subsidy is applied at a constant rate along the turnpike and 

may be implemented also during the transitional phase (the most-rapid-approach to 

the turnpike) if capital endowment is large enough.  The flat income tax (levied at the 

same rate for both capital and labor income) is used temporarily during the 

transitional phase to cover the subsidy payments.  Once the turnpike has been 

reached, the distorting nature of income tax rules out its further use and a flat 

consumption tax is used instead to finance the subsidy.  An attractive feature of this 

mechanism is that its budget is balanced at each instant of time without a resort to 

lump sum transfers. 

 Similar properties have been obtained by Rebelo (1991) who studied tax 

policies in an extended Lucas framework without external effects and identified the 

conditions under which consumption or income taxes are neutral to growth.  

Empirical evidence on the growth effects of taxes seems to depend on the formulation 

and calibration of the specific model considered, as, e.g., in Lucas 1990, Jones et al. 

1993, 1997, Pecorino 1994, Stokey and Rebelo 1995, Glomm and Ravikumar 1998, 

and Judd 1999.  These works study a broad set of issues relating to short- and long-

run growth effects of fiscal policy under various political and public spending 

restrictions, but pay little attention to the external effects of knowledge.  Yet, there is 

ample evidence to suggest the existence of substantial social benefits to education that 
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are not privately captured (Haveman and Wolfe 1984, Acemoglu 1996, Lochner and 

Moretti 2001, Wolfe and Haveman 2002).  In this work we focus on these social 

effects, and providing private learning incentives that account for them is the primary 

purpose of our mechanism. 

 The paper proceeds as follows:  The economic environment – the underlying 

market conditions and decisions made by firms and households – is presented in 

Section 2; although fairly standard by now, this section lays down the model 

equations for the analysis that follows and serves to highlight the external effects of 

human capital and the difference between private and social processes.  A complete 

dynamic characterization of the optimal private and social growth processes is given 

in Section 3.  These processes are compared in Section 4 to evaluate the inefficiency 

associated with private learning under Cobb-Douglas production technology and iso-

elastic consumption preferences.  Section 5 describes the learning policy and shows 

how it achieves the socially optimal outcome.  Section 6 concludes and the 

appendices contain technical derivations.   

2.  The economy  

 The economy consists of a large number of identical households and a large 

number of identical firms.  Households own labor, human capital (knowledge) and 

asset capital (saving).  Firms hire these factors to produce a composite good, 

operating in a competitive environment to maximize profit at each point of time while 

taking the factor prices as given.  Identical rational firms facing the same market 

conditions will make the same production decisions.  A similar remark holds for the 

households, which determine the accumulation of human and asset capital in order to 

maximize the present value of a stream of consumption utilities subject to budget 

constraints.  In equilibrium, the factor prices clear the spot labor and capital markets 
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at each point of time.  To focus attention on endogenous growth, population is 

assumed constant and exogenous technical change is assumed away.  The 

considerations governing the behavior of all agents are now summarized. 

Firms:  Firm i employs Ki units of physical capital and Li workers to produce 

the output Yi = F(Ki,A(h)Li)B(H), where h represents individual (intrafirm) worker's 

level of human capital, A(h) is a labor-augmenting productivity function, B(H) is an 

inter-firm technology index that depends on aggregate knowledge H = Lh, and L = 

ΣiLi is aggregate labor.  The productivity index B represents the state of technology 

adopted by the economy up to the present time and incorporates the external effects of 

knowledge (Lucas, 1988).  It is specified as output augmenting but could enter as 

labor augmenting (as, for example, in Bils and Klenow 2000) without changing the 

nature of the results.   

The production function F is assumed to be linearly homogenous, thus can be 

expressed as F(Ki,A(h)Li) = Li A(h) f(ki/A(h)), where ki = Ki/Li is firm i's capital per 

worker and f is assumed increasing and strictly concave over (0,∞) with f(0) = 0, 

f(∞) = ∞,  f '(0) = ∞ and f ′(∞) = 0.   

 At each point of time, firms observe the aggregate stock of human capital, the 

wage rate w and the capital rental rate r and demand the capital per worker that 

maximizes profit per worker A(h) f(ki/A(h))B(H) – rki – w, obtaining the first order 

condition 

f ′(ki/A(h))B(H) = r. (2.1)

The labor market clearing wage rate w coresponds to a vanishing profit, yielding, in 

view of (2.1),   

[A(h)f(ki/A(h)) − kif ′(ki/A(h))]B(H) = w. (2.2)
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Multiplying (2.1) by Ki and (2.2) by Li, adding the results and summing over all firms 

gives   

rK + wL = LA(h)f(k/A(h))B(H) = Y,  

where Y = ΣiYi is aggregate output.  Dividing through by L, we find  

rk + w = A(h)f(k/A(h))B(H) ≡ y(k,h,H).  (2.3)

Equation (2.3) relates household income (on the left-hand side) to the current levels of 

physical and human capital.  

Households:  Households decide on the evolution of their asset holdings 

(saving), human capital and consumption.  With identical households, no lending-

borrowing takes place and households' assets coincide with the capital available to the 

firms.  Following Shell (1966, 1967, 1973), we assume that learning is an income-

consuming activity so that knowledge accumulation is proportional to learning 

outlays.  Households, then, allocate income between consumption (c), saving (  = 

investment in physical capital) and learning (  = investment in human capital).  In 

view of (2.3), the representative household budget constraint is   

At each point of time, the household decides on the fraction αt of income devoted to 

learning, such that   

k&

h+ &

h&

ckHhky += &),,( .

),,( ttttt Hhkyh α=& .  (2.4)

The remaining income is allocated between consumption and saving, so that 

tttttt cHhkyk −−= ),,()1( α& . (2.5)

Depreciation of both types of capital is ignored for convenience.  Implicit in (2.5) is 

the assumption that investment in physical capital is reversible (i.e., consumption can 

derive from the stock of capital at no extra cost).  
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The representative household derives utility from consumption according to an 

increasing and concave utility function u(c).  Time preferences are represented by the 

positive utility discount rate ρ.  A plan is a continuum of consumption-investment 

decisions (ct,αt), t ≥ 0, generating the value   

∫
∞

−

0
)( dtecu t

t
ρ . (2.6)

A feasible plan satisfies (2.4), (2.5), ht ≥ 0, kt ≥ 0, ct ≥ 0 and 0 ≤ αt ≤ 1 for all 

t ≥ 0, given capital-knowledge endowment k0 and h0.  (The upper bound on αt entails 

investing all income in learning.  Alternative exogenous bounds can be assumed at no 

extra complication.)  The optimal plan is the feasible plan that maximizes (2.6).  We 

denote by V(k0,h0) the value of (2.6) under the optimal plan.   

In solving the optimization problem, the household treats aggregate 

knowledge H as exogenously given when evaluating the marginal effects of changes 

in his own knowledge level h, even though it is recognized that in equilibrium 

Ht = Lht.  A social planner, on the other hand, would account for these spillover 

effects of knowledge.  The household, in fact, could be made better off by doing the 

same.  Nonetheless, if everyone else accounts for the external effects of learning, an 

individual household can improve his position by ignoring the contribution of his own 

learning to the aggregate knowledge stock, which excludes the socially optimal policy 

from the set of Nash equilibrium policies.  We shall refer to a plan that ignores the 

external effects of knowledge as private; a plan that that accounts for these effects is 

called social.  In the following section we characterize the optimal private and social 

plans.  The extent of inefficiency of the former is analyzed in Section 4 and Section 5 

offers a self-financed learning mechanism that implements the socially optimal 

outcome.   
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3.  Dynamic characterization of the optimal private and social processes 

The extent of learning at each point of time depends on α – the part of income 

devoted to support learning activities.  Since the dynamic equations (2.4)-(2.5) are 

linear in α and the objective (2.6) is independent of α, the optimal learning policy at 

each point of time takes one of three distinct regimes: no learning (α = 0), maximal 

learning (α = 1), or singular learning (defined below).  Under each regime, 

consumption and saving are optimally adjusted to the chosen learning regime.  This 

classification allows describing the optimal (h,k) process in terms of two characteristic 

lines defined in the state space. 

The first line is defined by the locus of (h,k) states at which the marginal 

productivity of human capital, yh ≡ ∂y(k,h,H)/∂h, equals that of physical capital, 

yk ≡ ∂y/∂k, implying that no additional gains can be made by reshuffling investment 

between k and h when they both increase.  This line differs between the private and 

social plans because the marginal productivity of h (yh) depends on whether H is taken 

as an exogenous parameter (private) or as H =Lh (social).  Let ηA(h) = A′(h)h/A(h) and 

ηB(H) = B′(H)H/B(H) denote the elasticities of internal and external knowledge 

effects, respectively, x = k/A(h) and z(x) ≡ f(x)/f ′(x) – x.  The marginal productivity of 

human capital is obtained from (2.3): 

(p)    )()()()( HBhA'xzxf'yh =

(so) )()()]()()()()([ HBhA'h/Hηxfxzxf'y ABh η+=  
(3.1)

where "p" stands for "private" and "so" for "socially optimal".  Recalling (2.3), we 

find yk = f ′(x)B(H).  The no-arbitrage condition yk = yh, then, implies  
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(p)  
)('

1)(
hA

xz =   

(so)  
)('

1))((
)(
)()(

hA
xxz

h
Lhxz

A

B =++
η

η  

(3.2)

 Notice, recalling f ′(x)> 0 and f ′′(x)<0, that z(x) is increasing.  Solving for the 

variable x = k/A(h), we see that (3.2p) defines a line in the h-k plane, which we call 

the private singular line and denote by .  The analogous solution of (3.2so) also 

defines a line in the h-k plane, called the social singular line and denoted .  We 

use the notation k  to represent either  or  when no confusion arises.  

It turns out that  is the unique locus of (h,k) points along which the singular 

learning policy is supported (see claim 3 of Appendix A).  This property explains the 

name singular attached to this line.  The second term of (3.2so), representing the 

contribution of the external effects, is positive.  Since z(x) is increasing, this term 

implies that .  This difference between the two singular lines turns out 

to be essential to the analysis of the difference between the corresponding growth 

processes. 

)(hk S
p

(k S
p

)(hk S
so

)(hS

)(hk S

) kh S
so>

)h )(hk S
so

)(hk S
p (

To understand the economic significance of the singular line note that above the 

line, when k > kS(h), the relation yk < yh holds, so that capital is less productive than 

knowledge hence investment in human capital is more attractive than saving (see 

Claim 7 in Appendix A).  The opposite situation holds below the singular line.  Along 

the singular line the two forms of capital are equally productive at the margin and we 

expect the decision maker (household for the private plan and the social planner for 

the social plan) to be indifferent between investing in one or the other.  Indeed, we 

find that if the economy grows indefinitely, the optimal (h,k) process first approaches 

the singular line at a most-rapid-learning rate: maximal learning (α = 1) above the line 
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and no learning (α = 0) below it.  Once the singular line has been reached, singular 

learning (with 0 < α < 1) is adopted, adjusting the optimal process to evolve along the 

singular line.  As this behavior is akin to turnpike models of growth (Samuelson 1965, 

Cass, 1966), we refer to the singular line also as the turnpike.   

The second characteristic line in the (h,k) plane is defined by equating the 

marginal productivity of capital yk with the utility discount rate ρ.  Using (2.3), this 

condition becomes 

f '(k/A(h))B(H) = ρ. (3.3)

Solving for k, we find 

k(h) = A(h) f ' −1(ρ/B(Lh)). (3.4)

The properties of A, f and B ensure that k(h) is increasing.  The function k(h) 

represents the optimal steady state of k when no learning takes place and human 

capital is fixed.  We thus refer to k(h) as the steady-state line.  Indeed, if the private or 

social knowledge-capital process ever approaches a finite steady state (when learning 

is allowed), the steady state must fall on this line (Claim 1 in Appendix A).  Notice, 

from (3.3) and (2.1), that r = ρ along the steady state line; this equality must hold at 

any finite steady state. 

We can now state the following property:  

Property 3.1:  (i) The optimal knowledge and capital processes must either converge 

to a steady state on the steady-state line or grow indefinitely along the singular line.  

(ii) For a growing economy, the optimal (h,k) processes approach the singular line at a 

most-rapid-learning rate, i.e., no learning (α = 0) below the line and maximal 

learning (α = 1) above it, and evolve along it thereafter.   
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The property holds for both the private and social plans by considering the 

private and social singular lines, respectively.  Part (ii) of the property establishes the 

singular line as the turnpike for growing economies.  The final (singular) phase 

follows from Part (i).  The initial (most-rapid-approach) phase is understood recalling 

that only the extreme learning regimes (α = 0 or α = 1) are allowed away from the 

singular line.  To determine the particular learning regime recall that below the 

singular line physical capital is more productive at the margin than human capital 

(yk > yh) while the reverse relation holds above it.  The proof is given in Appendix A. 

What are the conditions under which economies grow?  As it turns out, these 

conditions depend on the relative location of the two characteristic lines at large 

knowledge levels.  Two cases are considered, classifying economies into one of two 

possible types:   

(i) The singular line lies above the steady-state line at large h, i.e., 

limh→∞ [kS(h) − k(h)] > 0. 

(ii) The singular line does not exceed the steady-state line at large h, i.e., 

limh→∞ [kS(h) − k(h)] ≤ 0.  

Economies that satisfy condition (i) are referred to as converging economies and those 

satisfying condition (ii) are called potentially growing economies.  Economies of the 

first type eventually stagnate at a finite steady state, whereas those of the second type 

have the capacity to grow indefinitely pending "appropriate" capital-knowledge 

endowment.  The type classification depends on the production functions and on the 

utility discount rate ρ but not on the instantaneous utility u(c), which does not enter 

the definitions of kS(h) or k(h).  Notice that because the singular line takes on different 

forms under the private and social plans, the same economy can be of a different type 

under each of these plans.  With the social singular line lying below its private 
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counterpart, an economy that is potentially growing under the private plan maintains 

its type under the social plan.  However, a private converging economy can obtain 

either type under the social plan.  Explicit examples of these situations are considered 

in the next section.   

 The large-h relations that define the two types of economy either extend all the 

way down to the initial knowledge state (if the characteristic lines never cross), or are 

reversed at some point (if the lines cross).  We consider here only situations where the 

two lines cross at most once.  Multiple crossing introduces some ambiguity regarding 

the identification of the optimal steady states, but otherwise yields no further insight 

and is therefore ignored (see Tsur and Zemel, 2001, for a discussion of multiple 

equilibria in a related context.)  Denoting the intersection point by , we see that 

the singular line of a converging economy is above the steady-state line for all  

(or for all h if the lines never cross above h0).  For potentially growing economies, the 

geometrical relation is reversed. 

)ˆ,ˆ( kh

hh ˆ>

To understand the significance of the relative location of the two lines, we 

refer to the property that consumption typically decreases above the steady-state line 

(except under maximal learning where α = 1 – see Claim 2).  If the optimal (h,k) 

process of a converging economy were to grow along the singular line from some 

time onward, it would eventually enter the domain where the singular line lies above 

the steady-state line and from that time the consumption process would have to 

decrease indefinitely.  But such a policy cannot be optimal, since entering a steady 

state at any point along such a decreasing consumption path is feasible and yields a 

higher welfare.  This explains the name "converging" attached to this type of 

economies. 



 12

While yh = yk holds along the singular line, yh > yk holds above it (Claim 4, 

Appendix A).  Thus, it cannot be optimal for a potentially growing economy to settle 

at a steady state above the singular line, since yh > yk implies that the economy would 

be better off converting some of its physical capital to knowledge (Claim 6).  If the 

knowledge-capital endowment suffices to raise the knowledge stock of a potentially 

growing economy above  (that is, to the domain where the steady-state line lies 

above the singular line), then the process cannot converge, since the steady state 

would have to be located above the singular line.  The only possibility left for this 

economy is to grow along the turnpike, explaining the name "potentially growing" 

attached to this type of economies.  Observe that these considerations do not rule out 

steady states with  below the singular line.  Indeed, potentially growing 

economies may not realize their growth potential if their capital-knowledge 

endowment is too small.  

ĥ

hh ˆ<

Consider a converging economy endowed with a knowledge stock  so 

that the geometry of Figure 1 is obtained.  Possible state-space evolution paths for this 

economy corresponding to different capital endowments k0 are depicted in the figure.  

The arrows indicate the directions in which the processes evolve over time.  

hh ˆ
0 <

Figure 1 

Excluding cases with exceedingly high capital endowment (above k1(h0) of 

Figure 1), the optimal policy of a converging economy is a most-rapid-learning-

approach to the singular line (αt = 0 below the singular line and αt = 1 above it), 

followed by a ride along the singular line to a steady state at the intersection point 

.  When k0 = k1(h0), the maximal learning policy (αt = 1) drives the (h,k) process 

directly to .  When k0 > k1, the optimal plan begins with αt = 1, steering the (h,k) 

)ˆ,ˆ( kh

)ˆ,ˆ( kh
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process above the intersection point (  and switching to the no learning policy 

(αt = 0) at some point before reaching the singular line.  From that time onward, the 

processes converge to a steady state on the steady-state line right below the switching 

point.  In all cases this economy encourages some learning, increasing knowledge to 

 or higher.  The equilibrium capital stock is also increased relative to the level k(h0) 

that would have been obtained without the option to learn and accumulate knowledge.   

)ˆ,ˆ kh

ĥ

Time trajectories of learning, knowledge and capital processes are shown in 

Figures 2-3 for the cases k0 < kS(h0) and k1(h0) > k0 > kS(h0).  Notice that learning may 

not be initiated at the outset: with small endowment, learning is delayed to allow 

capital build up until the turnpike is reached (at kS(h0)), at which time learning begins 

and tuned so as to steer the (ht,kt) process along the turnpike (Figure 2).  In contrast, 

larger endowments call for maximal learning (αt = 1) immediately (Figure 3).  Notice 

also that the most-rapid-learning-approach to the singular line can give rise to a non-

monotonic evolution of the capital process kt (Figure 3).  

Figures 2-3 

Possible state-space evolution paths for potentially growing economies with 

different endowments are depicted in Figures 4-5, with the arrows, again, indicating 

the directions in which the processes evolve.  The endowment is related, for each 

path, to some threshold capital stocks defined in Appendix A.  

Figures 4-5 

Potentially growing economies blessed with sufficient endowments reach the 

turnpike at a most rapid learning approach and grow along it thereafter.  Poorer 

economies, however, ignore the learning option altogether and converge to a poverty 

trap at k(h0).  In some intermediate cases (depicted as the middle trajectory of Figure 

4), learning is worthwhile for some period, but being too poor to carry these activities 
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all the way to the turnpike, the household terminates learning at some point above the 

turnpike and converges to the steady state on the steady state line below.  The 

complete characterization of the various trajectories is given in Appendix A. 

Notice that the human and physical capital endowments are substitutes to 

some extent.  For example, if  the characteristic lines do not cross in the 

relevant domain.  A potentially growing economy, then, will grow indefinitely with 

any positive capital endowment.  Similarly, a sufficiently large initial capital stock 

calls for some learning that may be temporary (if the economy eventually settles at a 

steady state) or permanent (if it grows).   

hh ˆ
0 >

4.  Consequences of knowledge spillover 

 We study the effects of knowledge spillover by comparing the private and 

social plans for an economy characterized by:   

f(x) = θ xβ,  0 < β < 1 (Cobb-Douglas); 

A(h) = ha,  0 < a < 1; 

B(H) = (H/L)b,  0 < b < 1 

(4.1a) 

(4.1b) 

(4.1c)

and the iso-elastic utility   

u(c) = (c1−σ−1)/(1−σ), σ > 1. (4.1d)

Under (4.1b-c), the elasticities ηA(h) = A′(h)h/A(h) and ηB(H) = B′(H)H/B(H) reduce 

to the constants a and b, respectively.  It will prove useful to introduce the notation 

η = β/(1−β) and  ββ ββθϕ −−= 1)1( .

Specification (4.1) corresponds to an economy that faces a menu of technologies 

(developed elsewhere) from which to adopt.  Due to setup cost, know-how spillovers 

and other external effects associated with technology adoption, the technology index 

B depends on aggregate knowledge (Lucas 1988, Bils and Klenow 2000).  The 
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parameter θ  represents social infrastructure, such as corruption level, quality of 

institutions and property right enforcement (Hall and Jones 1999, De Soto 2000, 

Easterly 2001, Parente and Prescott 2002).   

Under the above specification, the singular lines (equations (3.2)) and the 

steady-state line (equation (3.4)) specialize to  

(p)  h
a

hS
pk η

=)( , 

(so)   hhk S
so η=)(

(4.2)

and  

)1/()1/(1)/()( ββρβθ −+−= bahhk . (4.3)

Recalling the type classification of Section 3, we see that a + b/(1−β) < 1 implies a 

converging type under both the private and social plans and rules out sustained 

growth.  We thus assume a + b/(1−β) ≥ 1 and focus on the threshold case  

a + b/(1−β) = 1. (4.4)

Under (4.4), the steady-state line (4.3) reduces to the straight line 

hhk )1/(1)/()( βρβθ −= . (4.5)

Since the singular and steady state lines are straight lines emanating from the origin, 

they cannot intersect at positive h values.  The analysis of Section 3, then, implies that 

the economy is converging when the singular line lies above the steady-state line and 

is potentially growing when  

(p)   ϕρ β−< 1a

(so)  ρ < ϕ  
(4.6)

It is verified that under (4.1) the right-hand side of (4.6) equals the marginal 

productivity of capital (∂y/∂k) along the singular line (4.2), which, according to (2.1), 

determines the interest rate: 
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(p)  rp = a1−βϕ 

(so)  rso = ϕ. 
(4.7)

We see from (4.6)-(4.7) that sustained growth requires that the equilibrium interest 

rate along the turnpike exceeds impatience.   

Since a steady state cannot occur above the singular line (Claim 6), a potentially 

growing economy in this case (of non-intersecting characteristic lines) will realize its 

growth potential for any positive capital endowment.  Moreover (see Appendix B for 

a proof):  

Property 4.1: Under the specifications (4.1), (4.4) and the growth condition (4.6), the 

optimal private and social (h,k) processes reach the respective private and social 

turnpikes (4.2) at a most-rapid-learning rate (α = 0 or α = 1 while below or above the 

turnpike, respectively) and grow exponentially along their respective turnpikes at the 

rate  

(p)  
σ

ρ
σ

ρϕβ −
=

−
=

−
p

p

rag
1

 

(so)  
σ

ρ
σ

ρϕ −
=

−
= so

so
rg  

(4.8)

The turnpike growth rate is achieved by devoting to learning the constant income 

fraction  

(p) pp
p

p
p rga

r
r
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β
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ρ
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σ
ϕρα
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−=
−

−=−
−
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(so) soso
so

so
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r
r /)1()1()1(/1 β
σ

ρββ
σ

ϕρα −=
−

−=−
−

=  

(4.9)

Saving obtains the income fraction  
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(p)   pppppp rgayks /// βηα === &

(so)  s  sosososososo rgyk // βηα === &
(4.10)

and the residual income fraction  

(p)  c pppppp rgbsy /)1(11/ −−=−−= α  

(so)  c sosososososo rgsy /11/ −=−−= α  
(4.11)

is consumed.  

The growth conditions (4.6) ensure that gp and gso are positive while σ > 1 

implies that αp lies between 0 and a(1−β) and αso lies between 0 and 1−β.  The 

endogenous exponential growth of (4.8) is directly linked to the constant returns to 

human capital h in the knowledge production function (2.4), implied in equilibrium by 

(4.4) along the singular line (where k is proportional to h).  (Solow 2000 discusses 

equivalent assumptions in a variety of endogenous growth models.)  

From (4.8), we obtain  

0)1()( 1 >−=−=− −βϕσ arrgg psopso , (4.12)

hence (as expected) the private economy grows too slowly.  The reason can be traced 

to insufficient learning on the part of households, as can be seen from  

0/)1(1)1/()( >−−−=−− sopso raa ρβαασ β , (4.13)

which follows from (4.9), (4.7) and the growth condition (4.6).  In fact, households 

also save too little (under the private plan), as can be seen from   

0
)(

>
−

=









−=−

pso

pso

p

p

so

so
pso rr

rr
r
g

r
gss

σ
βρ

β . (4.14)

This leaves a smaller income fraction for consumption under the socially optimal 

policy.  However, since this fraction is derived from yso which grows faster than its 
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private counterpart yp, the overall welfare obtained under the socially optimal plan is 

larger.  

Table 4.1 compares the turnpike values of various economic variables for the 

private and socially optimal scenarios.  The results in Table 4.1 are relevant when 

both the private and socially optimal plans give rise to growing economies, i.e., when 

both conditions (4.6) hold.  The difference induced by knowledge spillover is even 

more pronounced when a1−βϕ < ρ < ϕ.  In this case, the steady-state line k  lies 

between the private and social singular lines, implying that the economy (eventually) 

stagnates under the private plan but growth exponentially under the social policy.   

)(h

Table 4.1:  Private and social outcomes. 

 Private Social Disparity  

Interest rate rp = a1−βϕ rso = ϕ rso – rp = ϕ(1−a1−β) > 0 

Growth rate 
σ

ρ−
= p

p
r

g  
σ

ρ−
= so

so
rg  0>

−
=−

σ
pso

pso
rr

gg   

Learning  
p

p
p r

g
a )1( βα −=  

so

so
so r

g)1( βα −= 0)1(1
)1(

)(
>−−−=

−
−

so

pso

r
aa ρ

β
αασ β

Saving  
p

p
p r

g
s β=  

so

so
so r

gs β=  0
)(

>
−

=−
pso

pso
pso rr

rr
ss

σ
βρ

 

Consumption  
p

p

p

p

r
g

b
y
c

)1(1 −−=
so

so

so

so

r
g

y
c

−= 1  0
)(

<−
−−

=−
p

p

pso

pso

p

p

so

so

r
g

b
rr

rr
y
c

y
c

σ
ρ

 

 

The rightmost column of Table 4.1 presents the growth effects of knowledge 

spillovers.  Whether these effects are indeed appreciable depends on the parameter 

values, in particular on a and b – the exponents representing the internal and external 

effects of knowledge.  To gain insight on the significance of knowledge spillover 

effects we evaluate relative turnpike values of the variables of Table 4.1 for 

representative parameters.  Following the literature (e.g., Mankiw et al. 1992) capital 

share is assumed at β = 1/3.  Regarding the private and social effects of knowledge we 
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take as a benchmark the assessment that they are of the same order of magnitude 

(Wolfe and Haveman 2002).  However, in order not to overstate the external effects, 

we allow for a larger private contribution by assuming a/b = 3.  It then follows from 

(4.4) that b = 2/9 and a = 2/3.  Moreover, we set θ = 0.099 so as to obtain the private 

interest rate of 0.04 (i.e., 4% return to capital along the private singular line).  The 

corresponding social interest rate (the return to capital along the social singular line) 

then equals 5.24 %.  Thus 

rp = 0.04  and  rso = 0.0524.   

With a utility discount rate of ρ = 0.03, we obtain gso/gp = 2.24, αso/αp = 2.56 

and sso/sp = 1.71: the turnpike growth rate under the social policy is more than twice 

its private counterpart and this faster growth is achieved by higher investment in 

human capital (the fraction of income allocated to human capital investment under the 

social policy is 2.56 times the corresponding fraction under the private policy).  The 

corresponding figures for a more forward-looking economy with ρ = 0.01 are 

gso/gp = 1.41, αso/αp = 1.62 and sso/sp = 1.08: the effects of knowledge spillover on 

growth rate and on human capital investment are significant for this economy as well.   

The value 0.099 assigned to the social infrastructure parameter θ has been 

chosen to give rp = 0.04.  It is of interest to find the minimal value of θ that supports 

growth.  When ρ = 3%, reducing θ below 0.0743 leads to a violation of the growth 

condition (4.6p) and transforms a growing private-learning-economy into a 

converging (stagnating) type.  Reducing θ further below 0.0567 violates (4.6so) and 

transforms the social economy into a converging type.  For values of θ between 

0.0743 and 0.0567, private learning entails stagnation while the social learning policy 

supports long run growth.   
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5.  Optimal learning regulation  

The failure of the competitive equilibrium to induce appropriate human capital 

investment calls for policy intervention.  In actual practice such an intervention takes 

different forms, including state-financed schooling and training, and subsidized higher 

education (see Wolfe and Haveman 2002 for data on public spending on education in 

a number of countries).  In this section we offer a mechanism that implements the 

socially optimal outcome for the economy specified in Section 4.  The mechanism 

consists of a learning subsidy to encourage human capital investments and linear taxes 

to cover the subsidy payments.  The taxes alter between a flat income tax during the 

transitional phase (while the knowledge-capital processes approach the turnpike) and 

a flat consumption (or value added) tax along the singular line.  The tax proceeds 

exactly match the subsidy outlays at each point of time, so no lump sum transfers are 

needed.  

Learning subsidy:  For every income unit spent on learning, the household 

receives a coupon worth q income units that can be used to pay for additional learning 

only.  This policy modifies the human capital accumulation process (2.4) to  

),,()1( Hhkyqh += α& . (5.1)

The value of q that provides the right learning incentives turns out to be (1−a)/a.  To 

avoid overinvestment in human capital, that is to ensure that α(1+q) does not exceed 

unity, the subsidy is given only while α ≤ a.  The subsidy policy can be succinctly 

defined in terms of  



 ≤−

=
otherwise

aifaa
q

0
/)1( α

. (5.2)
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It is verified in Appendix B that this policy changes households' learning decisions 

(αt) in such a way that their private singular line changes from  to .   )(hk S
p )(hk S

so

Taxes:  To balance the mechanism's budget, a flat income tax at a rate m or a flat 

consumption tax at a rate v is used.  These taxes modify the household's saving 

process (2.5) to  

cvymk )1()1( +−−−= α& . (5.3)

The consumption tax v is applied along the turnpike  at the rate bgso/(rso−gso):  )(hk S
so



 =−

=
otherwise0

)(if)/( hkkgrbg
v

S
sosososo . (5.4)

Above  an income tax at the rate 1−a replaces the consumption tax, 

thus 

)(hk S
so



 >−

=
otherwise0

if1 )h(kkam
S
so . (5.5)

No subsidy or taxes are used below the singular line.   

Efficiency:  The tax proceeds exactly match the subsidy payments 

when 

qαy = my + vc.   (5.6)

A q-v-m policy that satisfies (5.6) at all times is called feasible.  The policy is efficient 

if it yields the socially optimal (h,k) process.  Indeed, we verify in Appendix C that: 

Property 5.1:  The mechanism defined by (5.1)-(5.5) is feasible and efficient.  

The centerpiece of this mechanism consists of the learning subsidy that modifies 

the household's singular line from the private  to the socially optimal .  

The subsidy induces households to increase the income fraction they devote to 

)(hk S
p )(hk S

so
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learning from αp to the regulated fraction αr = aαso, which is still below the socially 

optimal fraction αso.  According to (5.1) and (5.2), however, the subsidy ensures that 

the fraction αr implies the correct socially optimal investment in human capital.   

Along the turnpike, the consumption tax has no effect on household decisions 

(Rebelo 1991 showed that this property holds also for an extended Lucas model).  

Thus, this tax can serve to finance the learning subsidy.  Applied at the rate 

v=bgso/(rso−gso), this tax will raise the exact amount needed to cover the subsidy 

expense.  This goal cannot be achieved with the income tax, since its distorting effects 

divert households away from the social turnpike .  Above the turnpike, 

however, income tax is used temporarily to guide the process towards k .  At this 

stage, the income tax serves a dual role: first its distorting effects modify the saving-

consumption balance and lead the (h,k) process towards the turnpike at the socially 

optimal pace.  Second, its proceeds match exactly the subsidy payments, so that the 

consumption tax can be avoided until the turnpike is reached.   

)(hk S
so

)(hS
so

Below  (at (h,k) states satisfying ), the socially optimal policy 

is to avoid learning and build up capital until the singular line is reached.  The 

regulator, then, has no reason to support learning and the subsidy is set to zero.  As a 

result, the taxes can also be avoided during this phase.   

)(hk S
so )(hkk S

so<

6.  Concluding comments 

 There is a wealth of evidence to suggest that external effects of human capital 

– social benefits not privately captured – are substantial.  This paper investigates 

growth consequences of these effects and finds them to be significant under a wide 

range of circumstances.  In the extreme case, an economy that sustains long run 

growth under the social policy would stagnate under the private policy.  We offer a 
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simple mechanism, based on a flat learning subsidy and altering income-consumption 

taxes, that implements the socially optimal policy.  The mechanism is self-financed in 

that the linear income and consumption taxes, each levied during a different phase of 

the growth process, match the subsidy payments at each point of time. 

Growth failures in our model can happen for two reasons: either the economy 

fails to satisfy the growth condition, or it lacks resources to realize its growth 

potential.  The former situation is often due to poor social infrastructure, such as 

corruption, excessive bureaucracy, or insufficient enforcement of property rights.  

External infusion of capital – a common means of foreign aid for stagnating 

economies – can jumpstart economic growth for economies that satisfy the growth 

condition but not for those that fail in this respect (Burnside and Dollar 2000, Easterly 

2003).  For the latter economies, structural changes must take place in order to escape 

poverty.  A policy that provides the right learning incentives may turn a stagnating 

economy into a growing one and in general accelerates growth.   

Appendix A: Derivation of the optimal plan 

We derive here the optimal private plan.  The derivation of the socially optimal 

plan follows the same line and is therefore omitted.  The decision problem entails 

finding ct and αt, t ≥ 0, according to    













= ∫
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}{00 )(),( dtecuMaxhkV t

t,c tt

ρ
α  (A.1)

subject to (2.5), (2.6), kt ≥ 0, ct ≥ 0 and 0 ≤ αt ≤ 1, given the endowments k0 and h0.  

The current-value Hamiltonian is 

Ht = u(ct) + λt[(1−αt)y(kt,ht,Ht) − ct] + γtαty(kt,ht,Ht), (A.2)

where λ and γ represent the current-value costate variables of k and h, respectively.  

Necessary conditions for optimum include  
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u'(ct) =λt,  (A.3)
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(  is the singular solution defined below),  S
tα

])1)[(,,( tttttttktt Hhky γαλαρλλ +−−=−& , (A.5)

])1)[(,,( ttttttthtt Hhky γαλαργγ +−−=−&  (A.6)

and the transversality conditions  

(a)  limt→∞{ktλte−ρt} = 0    and    (b)  limt→∞{htγte−ρt} =  0. (A.7)

Condition (A.4) identifies three possible learning regimes: no learning (α = 0), 

maximal learning efforts (α = 1) and singular learning (α = αS).  The optimal plan 

consists of selecting among these three regimes at different phases of the planning 

horizon.  Given the learning regime, only k remains an independent state variable.  

The selection among the three learning regimes, thus, reduces the two-state problem 

(A.1) into a series of single-state problems.   

The steady-state line k(h) is defined by the solution to f '(k/A(h))B(Lh) = ρ (cf. 

(3.3)).  This equation is implied by the two conditions  (i.e., α=0) and  

that must hold at any optimal steady-state (see (2.4) and (A.5)).  Thus, if the optimal 

solution ever approaches a steady state, it must fall on this line.  Since we refer to this 

property below, we state it as:   

0=h& 0=λ&

Claim 1:  An optimal steady state (h*,k*) must fall on the steady-state line, i.e. 

k* = k(h*).■ 

Below the steady-state line (where k < k(h)), the strict concavity of f implies yk>ρ .  

Thus, using (A.4) and (A.5),  below this line.  This, together with (A.3) and 0<λ&
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u″(c) < 0, implies that c  also holds below the steady-state line.  The reverse 

relations hold above the line if α < 1, yielding 

0>&

αγ Λ(] k

Claim 2:  The optimal consumption process increases in time below the steady-state 

line under all learning regimes and decreases in time above the steady-state line when 

αt < 1.  ■ 

Implementing the singular plan α = αS during a time interval is optimal only if the 

condition λt = γt (see (A.4)) holds during this interval, implying also .  Using 

(A.5) and (A.6) we find that these conditions imply yk = yh, which defines the singular 

line (3.2).  We obtain the following characterization:  

tt γλ && =

Claim 3:  Singular learning can proceed only along the singular line.  ■  

Let Λ(k,h) = yk(k,h,Lh) − yh(k,h,Lh), so that along the singular line Λ(kS(h),h) must 

vanish.  Moreover, f " < 0 implies ykk(k,h,Lh) < 0 and yhk(k,h,Lh) > 0, hence   

Claim 4:  Λ(k,h) > 0 below the singular line and Λ(k,h) < 0 above it.  ■ 

 According to (A.4), the optimal learning rate is determined by ζ = γ −λ:  α = 1 

is optimal when ζ > 0; α = 0 is optimal when ζ < 0 and α = αS is adopted when 

ζ =  = 0.  Using (A.5) and (A.6), one finds ζ&

ρζλαζ ++−= ),)1[( h& . (A.8)

Since the shadow prices are positive, we conclude:    

Claim 5:  (a)  If maximal learning (ζ > 0) is optimal below the singular line, then 

ζ e−ρt→∞.  (b)  If no learning (ζ < 0) is optimal above the singular line, then 

ζ e−ρt→ −∞.   ■ 
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Observe that allowing the faster-than-exponential divergence of ζ  in Claim 5 to 

proceed permanently is inconsistent with the transversality conditions (A.7).  Since a 

steady state involves no learning, Claim 5b implies  

Claim 6:  A steady state cannot fall above the singular line. ■   

Claim 5 entails restrictions also on the dynamic processes.  For example, under 

maximal learning, physical capital must decrease.  If the maximal learning regime is 

adopted at or below the singular line, the sub-optimal behavior of Claim 5a will be 

followed permanently.  Hence, 

Claim 7:  Maximal learning can be optimal only above the singular line. ■   

In fact, maximal learning can hold only during a finite period, after which it must be 

replaced by either no learning (above the singular line) or singular learning (along the 

singular line). 

When no learning takes place, the capital process is monotonic in time because 

knowledge remains constant and the problem is essentially one-dimensional.  Above 

the singular line, this regime must involve decreasing capital until the singular line is 

reached, for otherwise the sub-optimal behavior of Claim 5b will be followed 

permanently.  Now, ζ must be negative when the singular line is reached from above 

under the no-learning regime (α=0).  Since no other plan can hold below the singular 

line (Claims 3 and 7), this capital decreasing, constant-knowledge plan must converge 

to a steady state on the steady-state line segment below the singular line. 

Initiated below the singular line, a no-learning (α = 0) process cannot cross it.  

Neither can it switch to another regime below the singular line (the singular plan 

holds only on the singular line and Claim 7 precludes maximal learning below the 

singular line).  The only two possibilities left are to converge to a steady state below 
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the singular line or to reach the singular line (with ζ = 0) and switch to singular 

learning.  We summarize these considerations in  

Claim 8:   (a) When initiated above the singular line, a no-learning regime continues 

permanently and the ensuing (h,k) process converges to a steady state on the steady-

state line segment below the singular line.  (b) When initiated below the singular line, 

a no-learning regime process either converges to a steady state below the singular line 

or reaches the singular line and switches to the singular learning regime. ■   

Once the singular learning regime has been initiated on the singular line (with 

) we find, using (A.8), that the (h,k) process cannot leave the singular line 

without violating Claim 7 or 8 (in other words, the singular regime is trapping).  In 

view of Claim 1, the following characterization holds: 

0== ζζ&

Claim 9:  The singular regime process either converges to a steady state on the 

intersection point  of the steady-state and singular lines or grows indefinitely 

along the singular line. ■   

)ˆ,ˆ( kh

To decide between the two options of Claim 9, consider a singular regime process 

that grows permanently along a singular line segment above the steady-state line.  

According to Claim 2, this involves a decreasing consumption process.  However, the 

policy of staying at the initial state (diverting to consumption the resources allocated 

by the singular plan to increase the capital and knowledge stocks), is feasible and 

yields a higher utility.  Therefore, a singular learning regime that drives the (h,k) 

process permanently along the singular line above the steady-state line cannot be 

optimal.  Of course, a singular plan that drives the (h,k) process along a segment 

above the steady-state line during a finite period, and upon reaching the intersection 
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point moves on to a singular segment below the steady-state line cannot be ruled out.  

These considerations imply 

Claim 10:  A singular plan cannot be confined to a segment of the singular line that 

lies above the steady-state line.  ■   

We apply these results to characterize the optimal processes corresponding to the 

economy types introduced in Section 3.   

Converging Economies:  When the characteristic lines cross, a converging 

economy is characterized by the property that the steady-state line crosses the singular 

line from above (Figure 1).  It follows from Claims 1 and 6 that an optimal steady 

state must lie on the steady-state line segment with h   Suppose 0 < k0 < kS(h0).  

Claim 7 forbids maximal learning, and singular learning can be take place only along 

the singular line, thus α = 0 is initially optimal.  Since k(h0) > kS(h0), Claim 8b 

implies that it is optimal to delay learning and increase capital until kt reaches kS(h0), 

and proceeds thereafter along the singular line towards the intersection point.  

According to Claim 10, it cannot be optimal to continue the singular policy past the 

intersection point (where the singular line lies above the steady-state line).   The only 

steady state allowed on the singular line by Claim 1 is the intersection point.  Thus, 

we deduce from Claim 9 that the optimal (h,k) process must converge to a steady state 

at the intersection point (  

.ĥ≥

).ˆ,ˆ kh

With capital endowment larger than kS(h0), delaying learning is no longer 

advantageous (Claim 8a) and the optimal policy is to initially set α = 1, increasing 

knowledge and decreasing capital until the (h,k) process reaches the singular line at 

some time.  From that time on, α is reduced to the singular value, and the process 

continues along the singular line to the steady state    ).ˆ,ˆ( kh
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Evidently, the higher the initial endowment k0, the higher is the point at which the 

singular line is reached.  In fact, there exists some threshold initial stock 

k1(h0) > kS(h0) such that the (h,k) process initiated from (h0,k1(h0)) with α = 1 meets 

the singular line exactly at  (see Figure 1).  To see this, we solve the dynamic 

equations for (k,h,λ) backwards in time with α = 1, using the reversed time τ = −t and 

the initial values  and 

)ˆ,ˆ( kh

hh 0 ==τkk ˆ,ˆ0 ==τ )ˆ(0 cu′==τλ  where ĉ  is the 

equilibrium consumption rate holding at ( .  The threshold stock k1(h0) is 

determined from the solution as the state kτ corresponding to the reversed time τ  

when hτ = h0.  Using Claim 4 and the time-reversed version of (A.8) initiated with 

ζτ=0 = 0, it is verified that  along the solution and 

maximal learning is indeed optimal all the way back to (h0,k1(h0)).   

)ĥL,ĥ,k̂(y=

0

)ˆ,ˆ kh

−ρλ e)h, s(
sss0

τ
>τΛ dsk( )−= ∫τζ

When k0 > k1(h0), the maximal learning plan brings the process to a point  

above the singular line.  In such cases, this plan continues to higher knowledge stocks, 

but it cannot cross the singular line (Claim 7) or meet it above the steady-state line 

(Claim 10).  At some point above the singular line the variable ζ vanishes and 

learning ceases abruptly, leading to a k-decreasing process towards a steady state on 

the steady-state line segment below the singular line.  Thus, (  is the optimal 

steady state whenever k0 ≤ k1(h0), while larger endowments imply higher asymptotic 

knowledge and capital stocks.  

),ˆ( kh

)ˆ,ˆ kh

When the steady-state line lies below the singular line for all h > h0, no point 

along it can be ruled out as a steady state.  Of course, optimal trajectories that end by 

a singular approach to the intersection point are not feasible in this case, but otherwise 

the characterization above is not affected. 
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Potentially growing Economies:  Here the steady-state line crosses the singular 

line from below (Figures 4-5).  Claims 1 and 6 restrict optimal steady states to lie on 

the steady-state line segment between h0 and   In contrast to the previous, 

converging case, Claim 10 forbids the optimal process to converge to the intersection 

point  along the singular line.  However, unbounded growth along the singular 

line cannot be ruled out.  The dynamic behavior, then, depends on two critical capital 

stocks defined by the following properties: k2(h0) is the maximum endowment for 

which it is optimal to avoid learning altogether and approach the steady state 

(h0,k(h0)).  (If the endowment k0 = k(h0) implies approaching the singular line, set 

k2(h0) = 0.)  Obviously, for all 0 < k0 < k2(h0) it is optimal to avoid learning and 

converge to (h0,k(h0)).  k3(h0) is the minimum endowment in excess of kS(h0) for 

which eventual growth along the singular line is optimal.   

.ĥ

)ˆ,ˆ( kh

If the endowment k0 = kS(h0) implies unbounded singular growth, set k3(h0) = 

kS(h0).  Otherwise, to find k3(h0) note, using Claims 1 and 6, that there must exist a 

minimal knowledge level ĥhm ≤<0h  such that initiated from the state (hm,kS(hm)) on 

the singular line, the optimal process follows the singular plan of unbounded growth.  

The critical level k3(h0) is obtained by solving the dynamic equations for h, k and λ 

backwards in time with α = 1, using the initial values (hm,kS(hm)) and the initial value 

of λ determined by the condition that the constant knowledge plan that drives the 

system from (hm,kS(hm)) to a steady state at (hm,k(hm)) is also optimal.  The critical 

level k3(h0) corresponds to the (reversed) time when the state h = h0 is reached.  

Evidently, k3(h0) ≥ k2(h0), and for all k0 > k3(h0) it is optimal to initially learn at the 

maximal rate and drive the process to the singular line and then switch to unbounded 

growth under the singular plan.   
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To characterize the behavior for intermediate endowments with k2(h0)<k0<k3(h0) 

we distinguish between two cases: (i) k2(h0)≥kS(h0) (Figure 4) and (ii) k2(h0)<kS(h0) 

(Figure 5).  In case (i) a maximal learning rate is initially adopted.  Learning is then 

ceased upon the vanishing of ζ at some point above the singular line, and the process 

crosses the singular line towards a steady state on the steady-state line below  (see the 

intermediate trajectory of Figure 4). Case (ii) implies k3(h0) = kS(h0) because any point 

on the singular line gives rise to a growing singular plan.  Delayed learning leads the 

process to (h0,kS(h0)).  Once the singular line is reached, the singular plan of 

unbounded growth takes over (see the intermediate trajectory of Figure 5). 

If the characteristic lines never cross, Claims 1 and 6 forbid the existence of any 

steady state, hence the economy must grow permanently along the singular line.  

When k0 < kS(h0) the no learning regime (α = 0) is invoked, increasing capital until 

kS(h0) is reached (Claim 8b), at which time the singular learning regime is adopted to 

steer the (h,k) process along the singular line.  In contrast, when k0 > kS(h0) the no-

learning regime is suboptimal (Claim 8a) and maximal learning (α = 1) is employed 

until the singular line is reached and the singular plan takes over.  This behavior is 

described as a most-rapid-learning-approach to the turnpike. 

Appendix B:  Turnpike growth processes (Properties 4.1 & 5.1) 

In Appendix A we establish the basic policy rule for growing economies:  reach 

the singular line at a most-rapid-learning rate and proceed along it thereafter.  This 

policy rule applies to both the private and social plans, which differ only in the 

location of the corresponding singular line.  The private plan under the q-m-v 

mechanism is called the regulated plan.  This plan abides by the same policy rule, 

with its own singular line that depends on the regulation parameters q, m and v.  Here 

we derive the optimal growth processes along the singular lines of the private (p), 
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social (so) and regulated (r) plans assuming the production technology and utility 

specified in (4.1) and the growth condition (4.6).  As it turns out, the optimal q-m-v 

values of the regulated plan differ between the transitional phase (i.e., during the 

most-rapid-learning-approach to the singular line) and the equilibrium (singular) 

phase.  In this appendix we analyze the equilibrium phase; the transitional phase is 

considered in Appendix C.   

The derivation is similar for the three plans and we use a generic formulation 

incorporating all of them as special cases.  Thus, we extend (2.4) and (2.5) to account 

for the regulation mechanism,  

(a)    },,{,)1( rsopjyqh j ∈+= α&

(b)   },,{,)1()1( rsopjcvymk jj ∈+−−−= α&
(B.1)

where qj, mj and vj may differ from zero only for the regulated plan, i.e.,  
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, (B.2)

and the optimal values of q, m and v are derived below.  Unless otherwise indicated, 

the use of the subscript j implies j ∈ {p,so,r}.   

The specifications in (4.1) give    

y = θha(1−β)kβ(H/L)b, (B.3)

hence yk = βy/k for all plans, yh = a(1−β)y/h  for the private and regulated plans, in 

which H is taken as a given parameter, and yh = [a(1−β)+b]y/h = (1−β)y/h for the 

social plan (that accounts explicitly for the relation H/L = h), where the rightmost 

equality follows from (4.4). 
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Following Appendix A, we find that the condition for singular learning 

generalizes to yk = (1+qj)yh, yielding linear singular lines  

,)( hhk j
S
j χ=  (B.4)

with the slopes 

},{)],1(/[ rpjqa jj ∈+= ηχ  and )1/( soso q+= ηχ  (B.5)

Recalling that qso = 0, we see that the subsidy rate leading to χr = χso = η  is   

qr = q = (1− a)/a  (B.6)

as specified in (5.2).  Under (B.6), the social and regulated singular lines coincide. 

Along the singular line (B.4), the production function (B.3) reduces to 

bb
j

S
j LHhy )/(1−= βθχ  (B.7)

and the marginal knowledge productivity is ∂  for j ∈ {p,r} 

and ∂  (only the social planner accounts for the external effects).  

Thus, we rewrite (B.7) as 

)1(/ S
, byhy jhj

S
j −=≡∂ βθχ

βθχ sohsoso yhy =≡∂ S
,

S /

hyZy hjj
S
j

S
,=  (B.8)

where the coefficient   

},{),1/(1 rpjbZ j ∈−= ;       Zso = 1 (B.9)

accounts for the neglect of the external effects in the evaluation of the marginal 

productivity of knowledge along the private and regulated singular lines.   

It is expedient to express the marginal knowledge productivity as 

)1/(S
, jjjhj qWry +=  (B.10)

where rj is the interest rate along the corresponding singular lines (see 4.7):  
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},,{, rsojrj ∈= ϕ  and  ϕβ−= 1arp (B.11)

and using (4.4), (B.5)-(B.9) (and some straightforward algebraic manipulations) 

)1(1 jjj qW ++= χ . (B.12)

In the following discussion we suppress, for brevity, the index j from the 

dynamic variables (α, c, y etc.) but continue to use it to distinguish among the 

constant parameters of the three problems.  Inserting (B.4) into (B.1) gives 

, which can be reduced, using (B.12), to 

obtain the consumption fraction 

cvymyq jjjj )1()1()1( SS +−−−=+ ααχ

.
1

1 S

j

jj y
v

Wm
c

+

−−
=

α
  (B.13)

In view of (B.13), the singular plans are determined by  
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subject to (B.1a), ht ≥ 0 and 0 ≤ αt ≤ (1−mj)/Wj, where h0 is reset to the knowledge 

state at which the singular plan begins.  (Similarly, we reset the time at which the 

singular process starts to t = 0.)   

The current-value Hamiltonian for this problem is 

S
j

S

j

jj yqy
v

Wm
uH )1(]

1
1

[ ++
+

−−
= γα

α
. (B.15)

The necessary conditions include  

jjj Wvqcu /)1)(1()( ++=′ γ  (B.16)

and, using (B.10) and (B.16), 

jjj mrhH Φ−≡−−=∂∂−= γργργγ )]1([/& , (B.17)

where  
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ρ−−=Φ )1( jjj mr . (B.18)

From (B.17), γ = γ0 exp(−Φjt) and (B.16) implies c ])("/[)('/ ccucuc j −Φ=&  which for 

the isoelastic utility u(c)=(c1−σ−1)/(1−σ) reduces to 

.// σjjgcc Φ=≡&  (B.19)

According to (B.11) rr = rso = ϕ.  Since mso = 0, we see from (B.18) and (B.19) 

that any positive value of the income tax mr distorts the regulated growth process 

relative to its desired (socially optimal) rate.  Thus, to obtain the same growth rates 

for the regulated and social plans the regulator must set 

mr = m = 0 (B.20)

along the singular line.  We suppress, therefore, all reference to the income tax for the 

rest of Appendix B.  We also note that the turnpike growth rate is independent of the 

consumption tax vj, suggesting this tax as the appropriate tool to fund the learning 

subsidy along the singular line.   

Condition (4.6) and σ > 1 ensure that consumption grows exponentially at the rate 

0 < gj < rj.  It turns out that income, capital and knowledge are all proportional to 

consumption along the singular line and thus grow at the same rate.  This is so 

because the optimal learning fraction αt is constant along the singular line.  To verify 

this, compare (B.1) with (B.8) and (B.10) to find h .  Using (B.8), (B.10) 

and (B.13) we write the consumption rate as c = h(1−αWj)ZjrjWj/[(1+vj)(1+qj)].  Thus, 

, yielding 

hWrZ jjjα=&

)1/( jj Wα−)1/(// jjjjjj WWrZWWhhccg αααα −=−−== &&&&

),1)(1( −Ω−= ααα jjjjj WWgW &  (B.21)

where Ωj  = Zjrj/gj  > 1.   
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Integrating (B.21) gives ( ])1([)1/()1 tgexpWW jjjjjj −Ω=−−Ω ψαα  or 

.
])1

])1
t

t

j

j

−

−

([
([1

gexp
gexp

W
jjj

jj
j Ω+Ω

Ω+
=

ψ
ψ

α   To set the integration constant ψj, note that with 

Ωj > 1 any non vanishing value of ψj that avoids divergence at finite time implies that 

Wjα converges to unity in the long run with 1 ])t1([ gexpW jjj −Ω−≈− α  (the notation 

at ≈ bt signifies that the ratio at/bt approaches a constant as t→∞).  It follows that 

][][)]1( trZexptgexpWWr jjjjjjj/[)1)(1( Zqvch jjj =Ω≈−++= α , hence 

])1([]) tZrexpt jjj[()( rZexptexph jj −=−Φ−≈− ρργ  (cf. (B.18)).  Since Zj ≥ 1 (see 

B.9), the exponent on the right-hand side does not approach zero at large t, violating 

the transversality condition (A.7b).  Thus, the optimal integration constant ψj must 

vanish for all plans, reducing the optimal α to the constant αj = 1/(ΩjWj), which 

ensures that 1 − Wjαj = (rjZj − gj)/rjZj > 0.   

Using the explicit expressions above for each problem, and recalling that the 

growth and interest rates are equal along the social and regulated singular lines, we 

find 

sososoppp rgrag /)1(,/)1( βαβα −=−=  and sosor rag /)1( βα −=  (B.22)

verifying (4.9).  Note that αr = aαso < αso.  Nevertheless, the subsidy policy implies 

that regulated learning is enhanced by the factor 1+qr = 1/a, hence proceeds at the 

socially optimal rate. 

It remains to determine the consumption tax rate vr = v along the singular line.  

This turns out to be a simple task because v affects neither the growth rate nor the 

learning fraction along the singular line and can be adjusted to cover the subsidy 

payments.  Noting (B.13), we see that qrαryS = vrc = vr(1−αrWr)yS/(1+vr), hence 
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)1/( rrrrrrr qWqv ααα −−= .  From (4.4), (B.6), (B.9) and (B.22) we find that 

αrWr = (1−b)gso/rso and αrqr = bgso/rso, yielding  

)/( sososor grbgvv −== , (B.23)

as specified in (5.4).  With v given by (B.23), the consumption/income ratio for the 

regulated economy is , which is the same as the socially 

optimal ratio (see B13).  It follows that the regulated and socially optimal 

consumption (and the utilities derived thereof) coincide at all times. 

sosorrr
S
rr rgvqyc /1// −== α

Appendix C:  The transitional phase of the regulated plan (Property 5.1 cont.) 

In Appendix B we analyze the equilibrium growth phase (along the singular 

line), setting the subsidy rate q so that the social and regulated singular lines coincide 

and imposing the consumption tax rate v such that the tax proceeds just cover the 

subsidy payments at each point of time.  Here we consider the transitional phase 

(away from the singular line) and show that the regulated plan coincides with the 

socially optimal policy of a most rapid learning approach to the singular line.  The 

reasoning follows closely the arguments of Appendix A. 

Under (B.6) the r and so singular lines are the same  and lie 

below their p counterpart , while the growth condition (4.6) ensures 

that the (common) steady-state line lies above all of them.  For k < ηh, the socially 

optimal policy is to avoid leaning and accumulate capital until the singular line is 

reached (Appendix A).  The regulator, then, has no reason to support leaning, hence 

neither subsidy nor taxes are used below the social-regulated singular line.  Without 

subsidy or taxes, the conditions of the p problem, which admits no learning below its 

own singular line, apply.  Thus, the optimal r policy is to set αt = 0 and increase 

hhkhk S
so

S
r η== )()(

hahk S
p )/()( η=
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capital until k  is reached (any other choice entails the contradictions that 

motivate Claims 3 and 7 of Appendix A). 

)(hS
r

kt yρλ −=

t y−=

λ −1( m

Consider the optimal learning policy for k > ηh.  Equations (A.5) and (A.6) for the 

regulated process are modified to 

])1()1[( ttttt qm γαλαλ ++−−−&  (C.1)

and  

])1()1[( ttttht qm γαλαργγ ++−−−& . (C.2)

To rule out the no learning policy above the singular line, note that the choice αt = 0 is 

optimal only when the variable ζ = (1+q)γ −λ takes negative values.  However, when 

αt = 0 we find from (C.1) and (C.2)  

ρζζ +−+−= ])1)[( kh yyq& . (C.3)

Recalling that yk = βy/k and yh = a(1−β)y/k for the r problem (see B.3), the term inside 

the square brackets of (C.3) must be positive when k > ηh.  Thus, for any income tax 

rate below unity (m<1), a negative value of ζ entails the divergence of ζe−ρt (as in 

Claim 5b), violating the transversality conditions (A.7).  It follows that maximal 

learning αt = 1/(1+q) = a is optimal above .  Together with the result that αt = 0 

below the singular line, we find that, away from the singular line, the optimal 

regulated plan is a most-rapid-learning-approach to the singular line from any initial 

state. 

)(hk S
r

To cover the subsidy cost above the singular line, the tax proceeds must satisfy 

(5.6) or vc+ my = αqy = (1−a)y.  However, away from the singular line the optimal 

consumption/income ratio is not necessarily constant hence the only way to balance 

the budget with constant tax rates is to set v = 0 and m = 1−a, in accordance with (5.4) 

and (5.5). 
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The most-rapid-learning-approach to  implies that once the singular 

line is reached, the optimal r process must remain on it, following the so growth 

pattern established in Appendix B and yielding the so value.  For r processes initiated 

above the singular line, the subsidy and tax rates determined above reduce (B.1) to 

 and  which agree with the so equations of motion under the maximal 

learning policy of αso = 1.  Given the learning policy, external effects do not enter the 

consumption-saving tradeoffs, hence the r and so processes must coincide all the way 

to the singular line.  Similar considerations apply to processes initiated below the 

singular line, which avoid learning and increase capital at the socially optimal rate.   

)()( hkhk S
so

S
r =

yh =& ck −=&
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