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Summary 

In comparison to flatland agriculture mountainous agriculture is often shaped by small plot sizes, unfavourable 
climatic conditions and steep slopes. All those conditions make it extraordinarily expensive to implement new 
technologies and to modernise farms. Consequently our research hypothesis is that technical progress in mountainous 
regions is slower in comparison to flatland regions. In order to test this hypothesis we develop a model combining a 
Malmquist index approach with a matching analysis. We apply our model in Austria, using a panel data set comprising 
the data of 1034 Austrian voluntarily bookkeeping farms and ranging from 2003 to 2009. On basis of the Austrian 
Mountain Farm Cadastre the farms are classified into five categories expressing the degree of disadvantage which 
farms are exposed from being located in a mountainous area. Our results show that technical change in mountain 
regions is significantly lower than in flatland regions and continuously decreasing with increasing disadvantage. 
Matching our results shows that this result is mainly based on farm grassland share, while farm size is of minor 
importance. With regard to efficiency change and change of total factor productivity we do not find any significant 
results. 
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- A Malmquist index approach -  
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1. INTRODUCTION 

Site conditions for Austrian agriculture are very heterogeneous. In particular, the difference between 
mountainous areas and flatland areas is shaping Austrian agriculture. In comparison to flatland agriculture, 
mountainous agriculture in general is characterized by small plot sizes, unfavourable climatic conditions and 
steep slopes. Therefore it is extraordinarily expensive to implement new technologies. Consequently our 
research hypothesis is that technical progress in mountainous regions is slower in comparison to flatland 
regions.  

In order to answer this question we apply a Data Envelopment Model (DEA). DEA is suitable method 
allowing the economic performance of farms to be assessed (Charnes et al. 1978). A notable strength of DEA 
is that it allows for the consideration of multiple inputs and outputs while not requiring identical units. There 
are a number of studies which analyse farm performance with the help of DEA. For instance, Balmann and 
Czasch (2001) calculate and compare the economic efficiencies of East German farms. Reig-Martinez and 
Picazo-Tadea (2004) estimated the economic efficiencies of Spanish citrus farms in order to identify best-
practice farms. 

Based on the DEA we apply a Malmquist Total Factor Productivity (TFP) index model. In contrast to 
DEA efficiency scores are calculated not only for a single year but for several years and efficiency change 
rates can be determined. Finally we match the results we received with the Malmquist model. Matching goes 
back to the work of Rubin (1977). It allows us to compare TFP index results of farms located in mountainous 
areas with the TFP index results of farms which are located in flatland areas but nevertheless are fairly 
similar with regard to structural aspects.  

The remainder of our paper is organized as follows: In Section 2 we present our methodical 
framework, define the required economic input and output variables and introduce our data basis. The results 
of our Malmquist TFP index calculation and of our matching analysis are displayed in Section 4. Finally, in 
Section 5, we discuss our results and draw some conclusions for the further development of our model. 

2. METHOD UND DATA 

The first part of the following section contains a description of the methods applied in our empirical 
analysis, namely Data Envelopment Analysis, the Malmquist Total Factor Productivity index and Matching. 
We introduce the applied methods only very briefly, since all methods itself are well-known and well-
described in literature. However, further information on the applied methods can be found in the indicated 
references. 
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In the subsequent parts of the section we define input and output variables of our model and present 
the data base. In this context we also introduce the Austrian Berghöfekataster (BHK, mountain farm 
cadastre) system, which classifies farms with regard to their potential economic disadvantage caused from 
being located in a mountainous area. 

2.1. Method 

The main aim of our study is to analyse whether the technical change of mountain farms differ from 
the technical change of a flatland farms. In order to do so we apply a Malmquist Total Factor Productivity 
index. The TFP approach is based on Data Envelopment Analysis, which will be briefly described in the 
following paragraphs. DEA, which was originally developed by Farell (1957), is a non-parametric 
mathematical programming approach. It enables the comparison of production performances of so-called 
Decision-making Units (DMU). In our case these DMUs are farms deciding on the use of production factors 
in order to maximise farm output. The performance of each farm is rated by calculating the output-to-input 
ratio of the respective production processes; the less input a farm requires for producing a given output or the 
more output it produces with a given input, the higher is the productivity of the farm. The final efficiency 
score is derived by benchmarking the output-to-input ratio of an individual farm against the output-to-input 
ratio of all best-practice farms.  

Figure 1, which is based on a single-input/double-output case, explains this principal idea of DEA: In 
period I (refer to the continuous lines in Figure 1) farms A and B show the longest distance to the origin. 
Consequently these farms are determined as best-practise farms, which form the so-called data envelope (cf. 
fig. Cooper et al. 2007). This envelope serves as a reference frontier allowing to benchmark all those farms 
which do not reach the frontier. In our case, the efficiency of C is calculated by comparing the distance from 
the origin 0 to the actually observed point C and the distance from the origin 0 to the potentially possible 
point C*. 

 
Figure 1: Input-output analysis 

 
Annotation: continuous line indicates period I, dashed line period II 
Source: own illustration 
 

Cooper-Rhodes model (Cooper et al. 2007, p. 42). Since the main (economic) goal in agriculture is to 
maximize output rather than to minimize input, we apply the output-orientated version of this model (cf. 
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Coelli and Rao, 2003). However, it should be emphasized that with either output or input orientation the 
technical efficiency scores will be the same unless a variable returns to scale model is applied. 

The linear programming problem to be solved for each farm is as follows: 
φλφ ,max   (1) 

s. t. 0≥+− λφ Yyi  
 0≥− λXxi  
 0≥λ , 

where φ is a scalar, λ is a Nx1 vector of weights, X is a NxK matrix of input quantities for all N farms, 
Y is a NxM matrix of output quantities for all N farms, xi is a Kx1 vector of input quantities for the i-th farm 
and yi is a Mx1 vector of output quantities for the i-th farm. In order to derive the technical efficiency θ, 
expressing the performance of the studied farms, the reciprocal of φ has to be calculated. In DEA the 
relevance of input (X) und output variables (Y) is expressed by weights (η in the input case, μ in the output 
case), which are determined in a way that the assessed DMU achieves the highest possible level of 
efficiency. In order to derive input weights η and output weights μ, additional to the above described 
envelopment model the multiplier model has to be solved (cf. Cooper et al. 2007, p. 42). 

In a second step we apply a Malmquist Total Factor Productivity Analysis. This method is based on 
DEA, but efficiency scores are calculated not only for one single time period but for several time periods. On 
this basis efficiency scores can be compared among farms as well as the change of efficiency scores within 
the observed period can be calculated. Again Figure 1 serves to illustrate this idea: Due to technical progress 
the output of all farms increases and observation points move away from the origin. In consequence of this 
also the frontier (the data envelop) moves outwards: In the new period it is formed by A* and B* (and 
symbolised by the dashed curve). However, although C doubtlessly also increased output and shifts to the 
new observation point C*, the new efficiency of C* must not increase in any case. If the shift of the frontier 
(which can be interpreted as the technical change) is bigger than the shift of the specific farm, this will result 
in a negative efficiency change. In other words, the algebraic sign of the efficiency change depends on the 
movement of the specific observation point and on the movement of the frontier. In order to assess the 
efficiency change of the specific farm, both aspects, namely efficiency change and respective technical 
change, are combined in one measure: the so-called total factor productivity change.  

From the mathematical point of view the Malmquist TFP index is calculated as follows:  

,  (2) 
where the notation dos(yt, xt) stands for the distance from the period t (the future period) observation 

to the period s (the base period) technology (Coelli and Rao, 2003). Alternatively the writing of this 
productivity index is  

, (3) 
where “the ratio outside the brackets measures the change in the output-oriented measure of Farrell 

technical efficiency between periods s and t. That is, the efficiency change is equivalent to the ratio of the 
technical efficiency in period t to the technical efficiency in period s. The remaining part of the index in 
equation 2 is a measure of technical change. It is the geometric mean of the shift in technology between the 
two periods” (Coelli and Rao, 2003). 
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As last step, we apply Matching in order to compare the efficiency results of only such farms, which 
are comparable in structural aspects. Matching goes back to the work of Rubin (1977) and is mainly applied 
in studies, where an estimation of causal effects of a certain policy measure is done. In order to assess causal 
effects in observational studies a naïve comparison of treated and non-treated units leads to a biased results. 
That’s because there are certain variables, which correlate to the assignment to one of these groups as well as 
to the outcome and consequently confound the causal effect (Imbens and Wooldridge, 2009). One way to 
cope with this problem of confoundedness is to apply econometrical and statistical methods. One of the most 
promising and well-studied methods is matching, which basically conditions on observable determinants of 
the assignment to one of these groups (Morgan and Winship, 2010, 81f).  

In our case we do not use the matching approach for assessing policy measure but to find our set of 
mountainous farms a set of flatland farms which are comparable with in structural aspects. In order to do this 
we apply a matching model which is based on the nearest neighbour approach. This means that we identify 
for each treated unit a non-treated (control) unit with the smallest distance with regard to the respective 
observable variable. We identify the nearest neighbors by matching directly on the chosen variables. This 
approach – which is called Direct Covariate Matching (DCM) – represents the most straightforward non-
parametric matching procedure. However, the approach is limited applicable if the number of variables rises 
(Sekhon, 2009). This shortcoming states no problem for our analysis since we concentrate on very few 
structural variables. Namely we use farm size (UAA) and grassland share, since these variables represent the 
most important structural differences in our data set.  

2.2. Definition of input and output variables 

Using DEA for the assessment of farms, we have to define appropriate input and output factors. A 
fundamental requirement doing this is that the factors have to cover the full range of resources used. 
Moreover, all relevant activity levels and performance measures have to be captured (Dyson et al. 2001). 
However, the number of input and output variables has to be kept at a distinctly smaller level than the 
number of DMUs (or farms, respectively). Otherwise, too many DMUs will appear efficient and no relevant 
conclusions can be drawn. To minimize the number of variables to a suitable ratio with respect to the number 
of DMUs, the variables have to be aggregated. Dyson et al. (2001) suggest in this context that the number of 
DMUs should be at least twice the product of the number of input variables and the number of output 
variables.  

In our paper we consider agricultural land and other economic inputs and relate them to economic 
output. The resulting efficiency measure expresses the economic success of the farm and therefore represents 
the performance of farmers. It shows how much input a farm needs in order to produce economic output 
(revenue). As input variables we use the agricultural land (ha), the operating expenses (EUR), the capital 
expenses (EUR) and the labour (WU). As output variables we use the farm revenue (EUR). It is to annotate 
that all monetary values are deflated. Figure 2 gives an overview of the selected input and output variables. 
All input and output variables are briefly described in the following enumeration: 

• Agricultural land summarizes all grassland and arable land cultivated by farms. It is measured in 
hectare. 

• Capital expenses summarise the expenditures for fixed assets such as machinery and buildings. In 
order to reflect the yearly expenses, the value of capital assets is depreciated (cf. BALMANN and 
CZASCH, 2001). They variable is expressed in Euro 
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• Operating expenses are all expenses which are directly related to the production of the farm. In 
particular, they include the costs for energy (fuel and power supply), plant protection, fertilizers, 
fodder and hired machinery. This variable is expressed in Euro. 

• Labour considers agricultural work provided by family members and employees; hired machine work 
is not included in this factor. Labour is expressed in Working Units (WU). 

• As output variable we use the revenue. This factor considers all revenues of the farm from  animal and 
crop production. Furthermore, all subsidy payments granted to the farm are considered. These include 
the payments for agri-environmental programmes, less-favoured area payments, as well as direct 
payments of the European Union. This variable is expressed in Euro. 
 

Figure 2: Definition of input and output variables 

 
Source: own illustration 

2.3. Definition and description of data 

We apply the model on an Austrian farm panel data set. The set comprises data of 1034 voluntary 
bookkeeping farms and range from the year 2003 to the year 2009. In order to ensure a principal 
comparability of farms, we consider only cash-cropping, pig and poultry, mixed and forage farms, and 
exclude other farm types such as permanent crop and gardening farms.  

As a basis for the classification of farms with regard to their belonging to the mountainous area, we 
use the Austrian Mountain Farm Cadastre (BHK). It allows the estimation of the degree of disadvantage 
which farms are exposed from being in a mountainous area. The cadastre classifies mountain farms into four 
categories and is calculated on the basis of the following indicators (the percentage in brackets indicates the 
respective relevance of the factor for the calculation of the BHK degree): steepness of slopes (49 %), 
accessibility (18 %), temperature (9 %), sea level (9 %), soil fertility (9 %) and average plot size (7 %).  

Figure 3 depicts the spatial distribution of average BHK classes in Austria. It becomes clear that in 
particular the western parts of Austria which are shaped by the Alps are dominated by high BHK classes. 
The eastern parts are comparatively flat and they consequently show quite low BHK classes. However, also 
the Waldviertel region in the north-eastern part of Austria is characterised by comparatively high BHK 
classes. 
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Figure 3: Spatial distribution of BHK classes in Austria 

 
Source: own illustration based on IACS (2009) 
 

Table 1 presents our empirical data. The data set is grouped into the five BHK groups 0, 1, 2, 3, 4. For 
each group the respective group size (number of farms) as well as mean and variation coefficients of all input 
and output variables are displayed. 

 
Table 1. Mean (and coefficient of variation) of selected input and output variables 

 BHK 0 BHK 1 BHK 2 BHK 3 BHK 4 
Number of farms 406 218 280 87 43 

Utilised Agricultural Area [ha] 
26 

(0.88) 
31 

(0.96) 
29 

(0.70) 
42 

(0.93) 
38 

(0.88) 

Labour [WU] 
1.6 

(0.39) 
1.6 

(0.37) 
1.6 

(0.35) 
1.7 

(0.29) 
1.4 

(0.41) 

Capital assets [EUR] 
214,748 
(0.62) 

279,942 
(0.72) 

281,941 
(0.60) 

264,587 
(0.52) 

233,058 
(0.61) 

Financial expenses [EUR] 
38,325 
(0.89) 

30,108 
(0.65) 

27,310 
(0.62) 

22.276 
(0,59) 

16.979 
(0,63) 

Revenues [EUR] 
64,965 
(0.78) 

55,153 
(0.61) 

50,275 
(0.60) 

41,391 
(0.59) 

29,819 
(0.71) 

Annotation: all data refer to the first year of the observation period (2003) 
Source: own calculations 

 
The data show that the BHK groups 0, 1 and 2 are each represented by more than 200 farms. The BHK 

groups 3 and 4 are significantly smaller. However, with a size of more than 40 farms they are still big 
enough to be included into our analysis. With regard to UAA is becomes clear that the farms of BHK groups 
3 and 4 are in average bigger than the farms of all other groups. Labour differs only in the BHK 4 group 
from the other groups; they are in average equipped with less working units. Capital assets are higher in 
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BHK 1, 2 and 3 and comparatively low in the BHK groups 0 and 4. A clear ranking exists with regard to 
financial expenses: the higher the BHK number, the lower are financial expenses. The same applies for 
revenues; also here average revenues are decreasing with increasing disadvantage. The coefficient of 
variation is in all cases (with exception of labour) comparatively high. This indicates that farm samples are 
quite heterogeneous with regard to the most variables.  

3. RESULTS 

The technical change, expressed by the outward shift of the DEA frontier, can be interpreted as an 
efficiency increase which most efficient farms in our sample realised in the observed period. Regarding the 
results of our analysis depicted in Table 2, we observe that the technical change of mountain farms is 
significantly lower than the technical change of flatland farms. The less disadvantageous agricultural site 
conditions are, the more the DEA frontier shifts. If we now understand the DEA frontier as the state-of-the-
art technology and the shift of the frontier as the velocity of the technical progress, one can state, that flatland 
farming systems benefit in comparison to mountainous agriculture from a faster technical progress. 
 
Table 2. Mean technical efficiency change, technical change and total factor productivity change 
 BHK 0 BHK 1 BHK 2 BHK 3 BHK 4 signific. 
Technical change 1.037 1.036 1.031 1.026 1.021 *** 
Efficiency change 0.967 0.974 0.975 0.983 0.977 - 
Total factor 
productivity change 

1.003 1.009 1.005 1.008 0.997 - 

Annotation: Kruskal-Wallis-H-Test; Significance levels: *< 0.05; **< 0.01; ***< 0.001; 
Source: own calculations 

 
Coming from that point one may also think about the ability of the “average farm” to follow the 

technical progress. If we consider that the implementation of new technologies is costly, one can conclude 
that it will be increasingly difficult for an average farm to follow the technical progress the quicker the 
technical progress takes place. With regard to our analysis this would mean that a quick technical change 
should be accompanied by a small change in total factor productivity. However, according to Table 2 we do 
not find any significant results with regard to TFP change, so we cannot prove this thesis. Table 2 indicates 
furthermore no significant differences between the various BHK groups with regard to efficiency change.  

In order to assess causal effects in observational studies a naïve comparison of treated and non-treated 
units leads to a biased results. The consequence for our analysis is that a simple comparison of the different 
BHK groups is not sufficient as other attributes beside of the degree of disadvantage may influence the 
technical change: e.g. there might be a faster biological technical progress in crop farming than in husbandry. 
According to the design of our TFP model design we are not able to determine whether the difference in 
technical change results from the degree of disadvantage or other farm-specific attributes which correlate to 
the location of the holding.  

In order to cope with this problem we match in a second step our Malmquist TFP model results. As 
Table 3 shows the detected differences with regard to technical change disappear and lose significance. This 
applies in particular if we match with regard to farm grassland share, while farm size is of minor importance. 
These results indicate that the reduced rate of technical change does not depend so much on the circumstance 
of being in a mountainous area and encountering all the typical disadvantages such as unfavourable weather 
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conditions and relief, as well as small plot sizes, but much more on being forced to work with a 
comparatively high share of absolute grassland.  
 
Table 3. Naïve and matched comparison of BHK 0 and BHK … results with regard to technical change 

 BHK 1 BHK 2 BHK 3 BHK 4 

Naïve comparison -0.001 -0.006** -0.012*** -0.017* 

Matched comparison - LF -0.002 -0.005*** -0.008** -0.012** 

Matched comparison - %DF  0.002 -0.002 -0.001 -0.008 

Matched comparison - LF+%DF  0.003 -0.003 -0.003 -0.004 
Annotation: Mann-Whitney-U-Test; Significance levels: *< 0.05; **< 0.01; ***< 0.001; 
Source: own calculations 

4. DISCUSSION AND CONCLUSIONS 

From the methodical point of view, we conclude that the Malmquist TFP index approach is a suitable 
way to analyse the technical change of farming systems. Our results show that the technical change in 
Austrian agriculture is in average the higher the less disadvantageous the site conditions for farms are. 
However, we cannot prove the thesis that in regions with low technical progress farms can easier follow the 
technical change whereas in regions with high technical progress a segregation of farms into two groups 
takes place: into a group of farms which determine technical progress and into another group which cannot 
follow the technical progress. With regard to this point it is to state that our model only allows us to get a 
first insight. In order to come to more reliable results a deeper analysis of each BHK group is necessary. A 
possible track would be to calculate for each BHK group a separate TFP model. However, the challenge of 
such an approach would be to establish a comparability of the resulting efficiency change rates.  

With regard to the applied methodology we can further conclude that the combination of the TFP 
index with matching allows an in-depth analysis of the factors which drive the differences in technical 
progress between the considered BHK groups. Consequently we plan to continue this approach. 
Furthermore, in order to get results which are closer to production and more independent from markets, we 
plan to adapt our model by including production-related non-monetary input and output variables. Another 
challenge is to deal with random variations in yields, which have a high influence in plant production but not 
in animal husbandry. 
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