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The potential cost to New Zealand dairy farmers from the introduction of 

nitrate-based stocking rate restrictions.  

 

Abstract 

Introducing a stocking rate restriction is one possible course of action for regulators to 

improve water quality where it is affected by nitrate pollution. To determine the 

impact of a stocking rate restriction on a range of New Zealand dairy farms, a whole-

farm model was optimised with and without a maximum stocking rate of 2.5 cows per 

hectare. Three farm systems, which differ by their level of feed-related capital, were 

examined for the changes to the optimal stocking rate and optimal level of animal 

milk production genetics when utility was maximised. The whole-farm model was 

optimised through the use of an evolutionary algorithm called differential evolution. 

The introduction of a stocking rate restriction would have a very large impact on the 

optimally organised high feed-related capital farm systems, reducing their certainty 

equivalent by almost half. However, there was no impact on the certainty equivalent 

of low feed-related capital systems.  

 

Keywords: environmental regulation, dairy farms, whole-farm model, evolutionary 

algorithm 

 

1. Introduction 

The decrease in water quality of New Zealand’s waterways has been linked, in part, to 

the dairy industry (Crawford, 2001). Regulation of some aspects of farming activity is 

likely to be part of the governments’ response to solve the water quality issue. One of 

the proposed regulatory responses to a similar water quality problem in the EU was to 
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limit stocking rates to 2.5 livestock units per hectare. In this paper, the impact of New 

Zealand introducing a similar stocking rate restriction on the incomes and optimal 

input choices of a range of dairy farming systems was examined.  

 

The following two sections describe some estimates of the contribution from 

agriculture to nitrate leaching and proposed regulatory responses to the problem. The 

fourth section is used to describe the Dexcel Whole-farm Model which is used to 

model the impact of the stocking rate restriction. This is followed by the method for 

optimising the model with a genetic algorithm. The final three sections relate to the 

results of the restrictions, further policy considerations and concluding comments. 

 

2. Nitrate leaching 

Nitrogen, a major nutrient required for plant growth, is mobile in the soil relative to 

the other nutrients. Under certain conditions, nitrates can leach into groundwater. 

Once nitrates are in groundwater, they may be transported to other water bodies such 

as lakes and rivers, where it may be sourced for drinking, adversely impact human 

health if above certain levels. Excessive nitrates can promote excessive algal growth, 

reducing oxygen levels in the water and harming aquatic animals through 

eutrophication1. 

 

Crawford (2001) describes the poor quality of water in several rivers in New Zealand, 

where the lower reaches of several rivers had nitrate levels between three and five 

times the water quality guideline. Crawford (2001) also showed that groundwater 

nitrates are increasing in areas where dairy farming is expanding, although the levels 

have not yet exceeded the drinking water standard. 
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The likelihood and amount of nitrate leaching is strongly linked to land use. New 

Zealand’s total land area is close to 27 million hectares with agricultural accounting 

for approximately 15.5 million hectares (Statistics New Zealand, 2002). Of the 

agricultural uses, sheep and/or beef account for approximately 10.5 million hectares, 

but typical farms account for only 2-16 kg N leached per ha per year (MAF, 2002). 

Dairy farming accounts for 2 million hectares, but due to much higher stocking rates 

and fertiliser application rates, typical farms leach 18-41 kg N/ha annually (MAF, 

2002). Vegetable growing farms had the highest estimated rate of leaching at 235-300 

kg N/ha, but accounted for only 0.1 million hectares (MAF, 2002). 

 

The main sources of nitrogen in the soil, which may then be leached, are through 

fertiliser application and animal wastes. Di and Cameron (2001) estimated that 

growth-synchronised application of nitrogen under high rainfall conditions lead to 

leaching losses of 6-17 kg nitrate/ha/year if pasture was not grazed. Unsynchronised 

fertiliser application increased leaching to 13-49 kg nitrate/ha/year. Animal waste 

from grazing dairy cattle was expected to result in leaching of approximately 33 kg 

nitrate/ha/year. 

 

The leaching potential depends on soil, climate and management factors. The Waikato 

region is examined in detail, although many of the conclusions generalise to other 

areas of New Zealand. MAF (2002) used the OVERSEER model to estimate that 41 

kg N/ha would be leached from a typical Waikato dairy farm that was stocked at 2.5 

cows per hectare. Increased intensity (with production increasing by 20-50%), 

increased the model’s estimate of leaching to between 61 and 99 kg/ha, a rise of 49-
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140%. Hence, increased intensity (stocking rates), under the assumptions of the MAF 

(2002) report, leads to a more than proportionate increase in nitrate leaching. 

 

3. Regulatory response to nitrate pollution 

In New Zealand, the Resource Management Act 1991 promotes the sustainable 

management of natural and physical resources. It states in section 17 that “every 

person has a duty to avoid, remedy, or mitigate any adverse effect on the environment 

arising from an activity carried on by or on behalf of that person…”. Several reports 

have been commissioned by the government on the issue of nitrates and related issues 

(eg MAF, 2000; MAF, 2002; Hatton MacDonald et al., 2004), and although additional 

regulation is anticipated, the form of any imminent regulation is unknown.  

 

Ireland is another country that has experienced water quality issues related to excess 

nitrates in regions dominated by dairy production (EC, 2002). The European 

Commission (EC) passed a regulation, the Nitrates Directive 19912, and the impact 

that is now anticipated in Ireland is the introduction of a maximum stocking rate of 

2.5 livestock units (LU) per hectare, reduced to 2 LU/ha 4 years later (McQuinn et al., 

2004). The potential impact of these limitations in Ireland was examined in Lally 

(2002). Farms with stocking rates greater than 2.5 LU/ha accounted for approximately 

10% of dairy farms, or 2,125 dairy farms. Few farms were stocked at more than 3 

LU/ha . The reduction in stocking rates to 2.5 LU/ha generally resulted in an 

estimated reduction in income of less than 6% (Lally, 2002). 

 

In New Zealand, using data from Dexcel’s (2002) economic survey, it was found that 

55% of Waikato dairy farms had a stocking rate over 2.5 cows per hectare, and 25% 
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over 3 cows/ha. The overall dairy industry reported a similar distribution of stocking 

rates. Due to the higher average stocking rates, a limitation of 2.5 cows per hectare 

would be expected to adversely impact the majority of the dairy farming population. 

 

Hatton MacDonald et al. (2004) reported on a range of economic instruments that 

could be considered in managing water quality in New Zealand. These instruments 

were considered for their potential to meet the environmental goals at lowest possible 

cost. This can be achieved by defining property rights and facilitating trade between 

firms such that the marginal cost of abatement is equated across all polluting firms.  

 

The EU policy response has been dominated by highly prescriptive approaches. In the 

EU, the potential to offset agricultural nitrate leachate against urban and 

manufacturing sources of nutrients has not been considered, nor has the potential to 

offset against other agricultural industries or between firms within an industry. The 

lack of flexibility in favour of prescriptions such as stocking rate restrictions may be 

due to the ease of enforcement, as well as a low perceived benefit from the ability to 

offset against other firms. Another reason may be that the budgetary cost of assistance 

(eg production subsidies) is reduced by introducing restrictions on farming activities 

that also limit production. Hence, while New Zealand shares some aspects of the EU’s 

water quality problem, the eventual regulation there may be less prescriptive than the 

stocking rate limitation examined in this paper due in part to the different economic 

and political situation.  
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4. Describing a whole-farm model of dairy production 

In New Zealand, the group primarily responsible for research and extension is Dexcel. 

The primary tool used by farm systems researchers is the Whole-farm Model (WFM), 

and this model has been used to examine the impact of a stocking rate restriction. 

 

Figure 1 shows a simplified schematic of the WFM (Wastney et al. 2002). The WFM 

treats all cows and paddocks as discrete objects, and so cows may differ in any 

physical aspect such as weight, genetic potential and calving date, while each paddock 

may be different in size and soil characteristics, and grow a different plant species. 

The management policies interact with the cows and paddocks on a daily time step to 

simulate the biophysical output. The biophysical output is then used in the economics 

component of the model to generate a simplified profit and loss statement, balance 

sheet and return on assets. 
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Figure 1. Whole-farm model schematic 

 

A large proportion of costs are defined in an activity based costing framework.. The 

main cost drivers are the number of cows calved and the effective farm area, with 

default values generated through the use of economic survey data specific to a region. 

Constant returns to scale is assumed and Neal (2005) found this to be a reasonable 

assumption over a wide range of farm sizes encompassing more than half of the farms 

surveyed in the 2002 economic survey (Dexcel, 2002).  

 

The WFM attempts to predict what effect variables outside the farmer’s control will 

have on their return, and the risk associated with that return. The major sources of risk 

are assumed to be weather, milk price, supplementary feed price, land appreciation 

Biophysical system (controlled by management policies)  
Daily timestep 

Animal 
Component 

Paddock 
Component 

Cow 1 

Cow 2 
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Paddock x 

Paddock 1 
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and 
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mentary 
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Climate data 

Economics (P&L, BS, ROA) Annual timestep 

Whole-farm Model 
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rates, and the interest rate payable on borrowings. Distributions for these variables are 

detailed in Neal (2005). For the optimisation process, a single sample of 100 price sets 

was assumed to represent all possible states of nature, and was used for evaluating all 

farm systems during the optimisation. 

 

Three farm systems were considered, based on the amount of feed-related capital 

(low, medium and high) and the associated losses associated with feeding 

supplementary feed. All farms were assumed to be 80 hectares in size, and begin with 

$1 million equity, financing the remainder of the farms assets through debt. The low 

feed-related capital farm used grass silage as the main supplementary feed, supplied 

in the paddocks by simply spreading the silage bale. Losses when feeding silage are 

assumed to be 30%. This compares to 25% found by Wallace and Parker (1966) in a 

simple system. The value of plant and machinery and dairy capital are low, and 

consequently the cost of repairs and maintenance is also relatively low. 

 

The medium feed-related capital farm used a basic feedpad and a higher powered 

tractor to feed maize pit silage. Feed-out losses for the maize silage are lower, 

assumed to be 18%. The value of plant and machinery and dairy capital are higher 

than for the low feed-related capital farm, with a higher cost for repairs and 

maintenance. 

 

In the high feed-related capital farm, larger quantities of supplements (up to 60% of 

animal requirements) can be fed through the year in the form of total mixed ration 

(TMR). Wastage was expected to be low in this system, assumed at 8% (Wallace and 

Parker, 1966). The value of plant and machinery and dairy capital are much higher, as 
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are repair and maintenance costs. The key distinctions between feed-related capital 

levels are shown in table 1. 

 

Table 1. Farm systems modelled 

 Low feed-
related capital 

Medium feed-
related capital 

High feed-
related capital 

Main supplementary feed Grass silage Maize silage Total mixed 
ration 

Cost of machinery*  $87,000 $151,000 $241,000 
Costs of dairy and feedpad* $300,000 $440,000 $615,000 
Losses when feeding out 30% 18% 8% 
Repair and maintenance 

cost per ha 
$135 $150 $195 

*Required for standard sized farm (80 Ha) 

 

5. Optimising the whole-farm model with an evolutionary algorithm 

Evolutionary Algorithms (EA) are population-based optimisation techniques that 

utilise evolutionary operators such as selection, mutation and recombination. The 

specific EA used for the optimisation of the Dexcel WFM is Differential Evolution 

(DE), based on the work of Storn and Price (1997). It has previously been used in a 

farm model optimisation context (Mayer et al., 2005). The important features are that 

the algorithm performs recombination and mutation as a single step that benefits from 

adaptive search. Adaptive search implies that knowledge of the diversity of the 

current group of candidate farm systems are used in creating new farm systems to 

evaluate. In terms of this optimisation, the population was the group of potentially 

optimal farm systems under consideration. Each potential farm system was an 

individual within the population. Further details are given in Neal (2005). 
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The optimisation was firstly performed for farms at the three levels of feed-related 

capital, allowing any stocking rate up to 6 cows per hectare, and any level of genetic 

milk production potential between 30 and 40 litres peak daily milk yield. The 

optimisations were then performed with a maximum stocking rate of 2.5 cows per 

hectare. Each optimisation used a population of 60 individuals over 45 generations. 

The basic differential factor f was 0.4, and it was pulsed to 4 every 4th generation. 

The objective to be maximised was the certainty equivalent assuming unitary 

(constant) relative risk aversion. The certainty equivalent for one year reflects the 

certain amount of money that the farmer would feel is equivalent to taking on the 

risks and receiving the rewards of operating the farm for the year.  

 

6. Estimated impact of a stocking rate restriction 

Before the stocking rate restriction, the preferred farm system (in terms of certainty 

equivalent) was the high feed-related capital farm system that also had a very high 

optimal stocking rate. However, this system requires a much higher level of 

managerial ability which may explain why a minority of farms are set up in a similar 

way. The next most preferred system was the “medium” feed-related capital system, 

followed finally by the “low” system (Table 2). 

 

Following the introduction of the stocking rate restriction, the optimal stocking rate 

for the “low” system was unaffected, but stocking rate reductions are required for the 

“medium” and “high” systems. In the “high” system, the stocking rate was reduced by 

58% and a lower optimal level of milk production genetics is required. Overall, the 

increase in certainty equivalent falls by 49%, which was significantly less than the 

58% fall in the mean return on assets (ROA). This disparity was due to the reduced 
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exposure to financial, price and production risk at lower stocking rates. After the 

restriction, the preferred farm systems, ordered by certainty equivalent, were the 

“low”, “high” and finally the “medium” system (Table 2). 

 

Table 2. Optimum farm systems before and after the stocking rate restriction 

Low feed-
related capital 

Medium feed- 
related capital 

High feed- 
related capital 

 

  Restricted  Restricted 

Certainty 
equivalent 136,500 161,800 112,800 227,500 115,200 

% change   -30%  -49% 
Mean return  
on assets 11.2 12.0 10.2 13.6 10.2 

% change   -15%  -25% 
Stocking rate, 
cows per ha. 2.3 4.9 2.5 6.0 2.5 

% change   -49%  -58% 
Milk production 
genetics 33 37 34 40 39 

% change   -8%  -2.5% 
 

Before the restriction, the “high” system is most profitable and uses a high level of 

milk production genetics (40 litres peak daily yield). The restriction leads to a fall in 

the optimal milk production genetics within each farm system, and the “low” system 

is most profitable, using lower milk production genetics (33 litres peak daily milk 

yield). 

 

7. Policy considerations 

Given the link between dairy farm intensity and nitrate leaching, introducing a 

stocking rate restriction should, ceteris paribus, reduce nitrate leaching. However, 

there are several complications where practical considerations reduce the 

effectiveness of the policy. For example, “high” systems make a large use of feed-
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pads, where animal effluent may be more easily trapped for application to areas of the 

farm in seasons where the rate of nitrate leaching is reduced, relative to a farm 

stocked at a lower rate that always grazes cows and cannot trap effluent. Also, farmers 

could meet the stocking rate restriction by purchasing more land. However, unless the 

farmer actually uses the additional land for grazing stock, the actual amount of nitrate 

leaching may be unchanged.  

 

Unintended consequences of the restriction could include farmers attempting to 

recover the reduction in income by increasing pasture growth through larger 

applications of fertiliser. However, Di and Cameron (2001) showed that applying the 

same amount of fertiliser in fewer, larger amounts, or increasing the amount of 

fertiliser significantly increased leaching. Hence, the significant loss in income shown 

in this paper for some farm systems, together with uncertain benefits with regards to 

the actual reduction in nitrates should lead to the consideration of a wider range of 

solutions than simply a stocking rate restriction. 

 

It is likely to be of benefit to farmers and the wider environment to improve the 

nutrient budgeting skills of dairy farmers. This is because farmers have some 

incentive to reduce the leaching of nutrients that could be used to grow more pasture. 

However, there is still the likelihood that the optimum management strategy from the 

farmer’s point of view results in higher nitrate leaching than would be optimal from 

society’s viewpoint because the costs of pollution are not wholly borne by the farmer. 

Assuming that a limit to overall nitrates allowed offsets or trading between all 

agricultural industries, it would be likely that dairy farmers could more cost 

effectively reduce their nitrate leaching than vegetable producers. The dairy farmers 
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could use improved management practise and capital expenditure for the collection of 

animal wastes to reduce their potential leaching with minimal affects on production. 

This compares to vegetable producers who would have almost proportionate 

reductions in profit for a given reduction in leaching (MAF 2002). 

 

The distributional effects of a stocking rate restriction would be uneven, and would 

affect the majority of farms. In particular, the profitability of highly stocked farms 

would be reduced very significantly. Highly stocked farms with a high level of feed-

related capital may also suffer a reduction in asset values and be at increased risk of 

defaulting on loans (depending on their leverage). To the extent that the potential for 

developing high profit, highly stocked farms contribute to increases in land values, 

introducing the stocking rate restriction may reduce the appreciation rate of land for 

all farmers. A more flexible regulation, such as allowing offsets is likely to reduce the 

overall impact on dairy farmers. However, there are still distributional issues for dairy 

farmers. For example, if the area for offsets are set at catchment levels, some areas 

that are dominated by dairy farming, such as the Waikato, would be affected more 

significantly than other regions with a wider range of land uses to offset with (eg 

Northland). 

 

8. Conclusions 

It was found that without a stocking rate restriction, the high feed-related capital farm 

system provided the highest certainty equivalent. However, the certainty equivalent 

fell by 49% when the stocking rate restriction was introduced, and the farm system 

was then less profitable than the low feed-related capital farm system. The low feed-

related capital farm system had an optimal stocking rate less than 2.5 cows per hectare 
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and hence was unaffected by the restriction. For the “medium” and “high” farm 

systems, the percentage reduction in certainty equivalent was less than the percentage 

reduction in the stocking rate. This was due to the lower exposure to production, price 

and financial risk with lower stocking rates. 

 

Alternative policies to a stocking rate restriction should be considered for their ability 

to more cost effectively meet the aim of reduced nitrates in waterways. More flexible 

policies may be justified because of the potential to offset against other agricultural 

industries as well as the existence of other management and capital-based approaches 

for reducing nitrate leaching on dairy farms. 
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Footnotes 

                                                
1 A certain level of phosphates are also required for large algal blooms. 

2 Council directive 91/676/EEC ‘Concerning the protection of waters against pollution 

from agricultural sources’ 


