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Abstract: A procedure is developed to examine the ex-post impacts of improved maize
varieties on poverty in rural Ethiopia. Yield and cost effects of adoption are estimated
econometrically under assumptions of both homogeneous and heterogeneous treatment
effects. A backward derivation procedure is employed within an economic surplus
framework using estimated treatment effects to identify the counterfactual income
distribution without improved maize varieties. Poverty impacts are estimated as the
differences in poverty indices computed using observed and counterfactual income
distributions. Improved maize varieties have led to noticeable reduction in the poverty
headcount ratio, depth, and severity in rural Ethiopia. However, poor producers benefit
the least from adoption because their land areas are limited.
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Introduction

A major objective of crop genetic improvement (CGI) research is to generate new
varieties to enhance the productivity or quality of food crops and contribute to poverty
reduction and food security. Despite substantial investments in agricultural research over
time, there are relatively few empirical studies of the poverty or other distributional
impacts of improved crop varieties in Sub-Saharan Africa. Policy makers need
information on these impacts to allocate resources to fruitful lines of research and to take
steps to strengthen the role of agricultural research in poverty reduction.

Maize is a widely grown food and cash crop in many environments in Sub-Saharan
Africa. In Ethiopia, maize accounts for the largest share of production by volume and is
produced by more farms than any other crop (Chamberlin and Schmidt, 2012). From
1960s to 2009, the dietary calorie and protein contributions of maize in Ethiopia have
doubled to around 20% and 16%, respectively (Shiferaw et al., 2013). In the last four
decades, more than 40 improved maize varieties, including hybrids and open-pollinated
varieties (OPVs), were developed and released in Ethiopia by the Ethiopian Institute of
Agricultural Research (EIAR) in collaboration with the International Maize and Wheat
Improvement Center (CIMMYT). This article investigates the impact of these improved
maize varieties on poverty.

Several empirical issues are addressed. Partial adoption is observed: the adoption of



improved maize varieties on only a portion of a household's maize area. As a result,
adoption decisions are non-binary at the household level. Therefore, the analysis is
conducted at the plot-level, and the subsample of partial adopters is used to check for
robustness. Heterogeneity is considered in treatment effects (yield and cost increases due
to adoption) across plots and farm households, and poverty impacts are investigated
under heterogeneity. Instrumental variable (IV) techniques, including a local IV (LIV)
approach, are used as the main identification strategy. A backward derivation procedure is
developed using an economic surplus framework to identify the counterfactual income
distribution. Poverty impacts are measured as the differences between poverty indices
computed with the observed and the counterfactual income distributions.

Background

Crop genetic improvement has led to substantial increases in food production worldwide
(Evenson and Gollin, 2003), and it contributes to poverty reduction through multiple
channels. At the farm-household level, benefits are obtained via adoption, which in turn is
affected by education (Lin, 1991), wealth (Langyintuo and Mungoma, 2008), risk attitude
(Koundouri, Nauges and Tzouvelekas, 2006; Dercon and Christiaensen, 2011),
profitability as compared to alternatives (Suri, 2011); seed supply and access constraints
(Shiferaw, Kebede and You, 2008); and information about the new technology (Conley

and Udry, 2010; Maertens and Barrett, 2012) among other factors.



Field-level impacts of improved maize varieties can be considered as “treatment
effects”, where the treatment is technology adoption. Adoption increases productivity, but
cost increases (seed and other input costs) can partially offset positive direct income
effects of a yield gain. As productivity gains are aggregated over many adopters,
market-level indirect effects emerge; market prices fall creating benefits to consumers
and adversely affecting farm incomes.

Most econometric analyses of treatment effects are based on the potential outcomes
framework (Rubin, 1974), where each observed unit has a potential outcome in the
treated and untreated state. We observe the outcome of interest of each unit (plot) as
either treated (adopting) or untreated (not adopting), but not both. Specifically, let 7 be a
binary indicator of treatment status (0 = not treated; 1 = treated), and y” be the outcome of
interest (crop yield or input costs). For each unit (plot) the difference in average outcomes,
or the naive average treatment effect estimate, is (covariates suppressed):

(1)  EyT=1-Ey°|T=0]=Ely' -y° |T =1 +{E[y° |T =1 -Ey° |T =0]}

The right hand side of equation (1) consists of two terms: the average treatment effect on
the treated (ATT) and selection bias. The latter occurs in non-experimental studies where
the assignment of treatment (individual decision makers decide to adopt) is non-random.
Specific strategies are needed to eliminate selection bias and identify the treatment effect

under this endogeneity. Matching (Mendola, 2007; Becerril and Abdulai, 2010; Dillon,



2011; Kassie, Shiferaw and Muricho, 2011) and instrumental variable (IV) techniques
(Matuschke, Mishra and Qaim, 2007; Minten and Barrett, 2008; Dercon et al., 2009) are
the most widely used. Matching imposes the strong assumption that all determinants of
selection are observed in the treatment. Use of IVs assumes that the [Vs are uncorrelated
with the error term in the outcome equation. It can also be difficult to find suitable I'Vs.
Possible differences in treatment effects across plots and households must be
considered. Treatment effect heterogeneity can be associated with observed and
unobserved characteristics of plots (e.g. fertility) and households (e.g. managerial skill).
Recent literature on treatment effect heterogeneity has yielded a number of promising
approaches. For example, the local average treatment effect (LATE) (Imbens and Angrist,
1994) identifies the treatment effect among compliers with the treatment. Quantile [V
regression (Chernozhukov and Hansen, 2005) investigates heterogeneous impacts on
different percentiles of the treatment effect distribution. The marginal treatment effect
(MTE) procedure estimates heterogeneous treatment effects across estimated propensity
scores: the probabilities of being treated (Bjorklund and Moffitt. 1987; Heckman, Urzua
and Vytlacil, 2006). A control function approach has also been developed for cases in
which the treatment is continuous and endogenous (Florens et al., 2008). While the
literature continues to grow, a gap remains between econometric theory and empirical

applications. We use the MTE procedure proposed in Heckman, Urzua and Vytlacil (2006)



because of the binary plot-level treatment and the difficulties in assessing
population-level poverty impacts using LATE estimates.

Once plot-level treatment effects are obtained, a market model is used to account for
indirect income effects. Indirect effects occur when the diffusion of improved crop
varieties causes market price changes, and both producers (adopters and non-adopters)
and consumers are affected (de Janvry and Sadoulet, 2002). Regardless of methods, a key
to effective impact assessment is specification and identification of the
counterfactual—what would have happened in the absence of the treatment. The
counterfactual can be found in an economic surplus framework using a backward
derivation procedure. A natural link exists between plot-level treatment effects and
market-level impacts, and the former can be aggregated to identify the market-level
counterfactual.

Modeling Procedure

The modeling procedure consists of three steps. First, treatment effects are identified in
terms of yield and cost changes due to adoption. Second, direct and indirect effects on
income are the identified using estimated treatment effects. Third, poverty impacts are
estimated via comparisons of poverty indices computed using observed and
counterfactual income distributions.

Treatment effect specification



The household is the basic unit in most micro-econometric assessments of CGI impacts,
and most empirical studies classify households as either adopters or non-adopters. This
grouping rules out the possibility of partial adoption. Some studies have considered
partial adoption and model the adoption rate as a continuum of land area share using
censoring methods. Such methods include the two-limit Tobit model where a
double-censored error distribution is assumed (Lin, 1991), and the double hurdle model
in which the two-stage decision process of whether and how much to adopt are assumed
independent and sequential (Mal et al., 2012). An alternative is to model adoption at the
plot level and employ Probit or Logit (Marenya and Barrett, 2007). Although partial
adopters are widely observed in our survey, each plot contains either improved or local
varieties, but not both. A plot-level Probit model is thus appropriate, which best reflects
the plot-specific adoption decision. The plot-level Probit model also allows for
heterogeneity in plot characteristics.

For each maize plot, we assume the farm household maximizes expected utility by
selecting a maize variety, either improved (7 = 1) or local (7= 0). Farmers are assumed
to be risk averse and the plot-level expected utility U of growing maize is:

2 u'=z"9-v’
where Z represents observed factors affecting U through mechanisms captured by

coefficients J, and V represents unobservables. Intuitively, utility is positively affected by



maize profits, which are functions of maize yield and costs (as specified below), and
negatively affected by unobserved risks. We normalize U°, the expected utility from local

varieties, to zero. The adoption rule can be written as:

3
©) 0, ifu'<0

1o {1 if Ut>0
On the production side, by specifying a suitable production function (e.g. Matuschke
et al., 2007; Suri, 2011), the potential outcomes in terms of plot-level maize yield are
specified in logarithmic form as (Heckman and Vytlacil, 2001):
(42)  y'=a'+gexpru
(4b) yo=a®+XB° +u°
where ¢ is the plot-specific percentage yield gain with adoption; X is the input vector
with coefficients § and u denotes unobservables. Equations (2) - (4b) jointly specify the
Generalized Roy Model (Heckman and Vytlacil, 2001). Production can be expressed
asy =Ty' + (L-T)y°, or more specifically:
5) y=a’+T(a' -a®)+Tg+XB° +TX(B" - B°) +u
where u = Tu'+(1-T)u’. Estimation of equation (5) quantifies the yield advantage of
improved maize varieties as the coefficient ¢ of the treatment indicator 7. Notice that
equation (5) allows for possible unobserved heterogeneity in the error term.

Estimation of cost changes due to adoption is empirically specified in a similar

manner. In a cost function, y’ in equations (4a) and (4b) would reflect total input cost and



X is the vector of input prices together with maize output. ¢ would be interpreted as the
plot-specific treatment effect in terms of percentage cost increase.

Estimation methods

Equation (5) is the main model to be estimated, and is applied to both yield and cost
effects. Since treatment is self-determined by farmers, I'V techniques are used to account
for potential endogeneity. Homogeneous treatment effects are firstly assumed, i.e. all
farmers increase their yields and costs by the same proportion with adoption. A simple
2SLS procedure is consistent but may not fully capture the binary nature of the first-stage
decision, and additional econometric techniques are implemented for robustness check
purposes'. One alternative is to use the Probit-estimate of the propensity score as the IV
in the 2SLS procedure (Probit-2SLS). This estimator is efficient and robust for
misspecifications in the Probit model (Wooldridge, 2002). To allow for arbitrary
heteroskedasticity, equation (5) is also estimated using generalized method of moments
(GMM, Hansen 1982). Finally, a generalized selection model (Heckit) is estimated via
Heckman’s two-stage procedure (Heckman, 1979), which provides consistent and

efficient treatment effect estimates under joint normality assumption of error terms.

! A hierarchical IV model which differentiates plot-level and household-level characteristics has advantages such as
identifying treatment effect heterogeneity and gaining efficiency (Gelman and Hill, 2007). Clustered standard errors
also have potential benefits. We cluster standard errors at farm-household level in the 2SLS procedure rather than using
a hierarchical model because 1) the data indicate that half of the maize growing households own only a single maize

plot; and 2) a marginal treatment effect (MTE) procedure is later employed to identify treatment effect heterogeneity.
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To help understand the yield effect and how it varies among heterogeneous farmers,
treatment effect heterogeneity is also considered. Local instrumental variable (LIV)
estimation of the marginal treatment effect (MTE) is employed to deal with such
heterogeneity (Heckman, Urzua and Vytlacil, 2006). The MTE provides treatment effect
estimates at each propensity-score level?. It is useful because it is difficult to match all
covariates in all of their dimensions, especially when there are many covariates.
Estimation of treatment effects across propensity scores provides the best solution. This
estimation procedure has an advantage compared with hierarchical models when
estimating plot-specific treatment effects as using the latter only group-specific treatment
effects are identified.

Given the Generalized Roy Model in equations (2) - (4b), the MTE is defined as the
treatment effect with specific realizations of X and V, E(y' -° | X=x, V' =v). Denote the
cumulative distribution function of V" as Fi(}). The decision rule for adoption in
equations (3) can be written as Fi(Z9) > Fi(V), or simply P(Z) > u” where P(Z) is the
propensity score. It can be shown that (Heckman, Urzua and Vytlacil, 2006):

6 E(YIX=xP@)=p)=a+px+(8 -5 Wp+K(p)

where

2 Propensity score is introduced at different evaluation levels of the LIV estimator, which differs from the propensity
score matching literature in which the treatment effect as a scalar value is defined as the average difference of the

variable of interest between treated and untreated observations matched by propensity score.
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(M K(p)=gp+E(U |P@Z) = p)+ pE[* ~u*|T =1P(2) = p)
Equations (6) and (7) lay out the basic MTE approach. Heckman and Vytlacil (2001,
2005) show that in the discrete treatment case, the MTE is equal to the local instrumental

variable (LIV) estimator where the propensity is evaluated at p:

_ OE(Y | X =x,P(Z) = P)| = AMTE (x uT).
ap - |

p=u

8) ALV (X, u' )

Computation of MTEs involves taking the partial derivative of the expected outcome,

evaluated at x and p, with respect to p. Given (6) and (7), equation (8) can be written as:

E(Y[X=xPZ)=p) _ o _ ro). 9K(P)
ap |p:uT _X(ﬂ ﬂ )+ ap p:uT'

9)
To obtain the MTE from equation (9), (5! - £°) and 0K(p)/0p are estimated. This is a
semiparametric procedure since estimation of the latter term requires nonparametric
methods. The LIV algorithm proposed in Heckman, Urzua and Vytlacil (2006) is used.
With estimates of MTE(x, u”), the conditional estimators of ATT, ATUT and ATE are
derived as weighted averages of the MTE (Heckman and Vytlacil, 2001, 2005). For
example, for the ATT:

(10)  ATT(x)= [ MTE(x,u" )y (x,u™ Jou”

where the weight is given by:

PP(z)>u" | X = x)

(11) wA'I‘I' = 1 :
J'Pr(P(Z) >u” | X = x)du”

12



Finally, the unconditional estimators are derived by integrating X out:

(12)  ATT = [ ATT(x)dF, o ().

The ATUT and ATE can be derived similarly with different weights and conditional
cumulative distributions of X. Under heterogeneity, ATT, ATUT and ATE estimates are
numerically different. In our case, a specific ATT is obtained for each adopting plot.
Direct changes in household income

With an assumption that maize market price does not change in the short run, the direct
income effects can be computed using the estimated treatment effects, i.e. yield and cost
increases due to adoption. For household i’s plot k£ planted with an improved maize
variety, the income change Afik is computed as:

(13) AIAik = (PYn?bS - Ciokbs)_ (PYIk -Ci ) = PAYAik - Aéik

where P is the maize market price; (Y°?, C°*) and (Y*, C*) are observed and
counterfactual yield and cost pairs of plot & and A\?ik and Aéik denote the differences in
yield and cost due to adoption, respectively, computed using estimated treatment effects.
Household-level income changes are computed as the summation across all maize plots
of the household with improved maize varieties:

14) Al =Y [Pay, -ac,).

The counterfactual income for each adopting household is obtained by subtracting the

estimated household-level income change due to adoption from observed income.
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Indirect effects: Changes in markets

Following treatment effect estimation, the next step is to relate plot-level outcomes to
market outcomes. Income changes by equation (14) assume that maize market price does
not change, but increased supply may lower the market price received by producers and
paid by consumers. The welfare impacts of supply shifts on maize market participants
depend on the nature of supply and demand.

In a small open economy, price is fixed in the short run as the country is a price taker
in the world market. Welfare changes occur only to adopters who increase their incomes
due to the reduction in per unit cost of production. Non-adopters and pure consumers
experience no change in welfare. In the closed economy, the market price decreases as
total output increases, and all producers and consumers are affected (figure 1). Ethiopia
was not a member state of the World Trade Organization (WTO) in 2010, and maize
exports are occasionally restricted by cereal export bans (World Food Programme News,
July 13, 2010). Ethiopia can be considered a relatively closed economy for maize.
However, cross-border trade with neighboring countries still occurs even when cereal
export bans are in effect. As a result, we assess poverty impacts of maize CGI under both
a small open economy and a closed economy assumption, and the true poverty impacts
will fall within the bounds of the estimates from these two cases.

In a closed economy, it is difficult to directly estimate household income changes

14



because household demand and supply respond to the price changes and affect all maize
producers and consumers. Thus, it is necessary to estimate market-level changes in prices
and economic surplus, and then allocate this surplus change to appropriate households.
The key parameter affecting price and economic surplus change is the cost reduction per

unit of output due to improved varieties, or the k-shift (Alston, Norton and Pardey, 1995):

A A

(15) K :(Y - CAJ x Adoptionrate

£ 1+Y

where £ is the supply elasticity; Y and C are the LIV-estimated yield and cost ATTs,
respectively, both computed using equations (10) - (12), with weights from equation (11).

Using the estimated k-shift, the counterfactual output price level is retrieved. As
shown in figure 1, the idea is to derive backwardly from the observed equilibrium price at
b (P°%, 0°%) the counterfactual equilibrium price at a (P, O¢'). Mathematically, it can be
shown that the counterfactual equilibrium price can be obtained using equation (16):
ae)  P*=P™(e+n)/e+n-Ke)
where 7 is the absolute value of the demand elasticity. O is computed by subtracting the
aggregate yield gains from Q°”. The following formulas estimate changes in aggregate
producer and consumer surplus (Alston, Norton and Pardey, 1995), where Z equals the
relative reduction in prices, (P® — P*®)/ P%:
a7 APS = P%Q% (K - Z)(1+ 0527)

19 ACS = P*Q%Z(1+ 05Zn)
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Producer and consumer surplus changes are allocated to individual households. On
the demand side, only maize buyers experience consumer surplus changes. Thus, we
allocate ACS to surveyed households (using appropriate sample weights) according to
their purchased quantities as a share of total market supply.

The allocation of producer surplus change is more complicated. Welfare impacts vary
by household net sales position. We first decompose the aggregate producer surplus
change into yield and price effects:

(29) APS = APS,,y +APS .
where APSpice 1s equal to -P'Q“Z(1+0.5Zn) which has an absolute value that numerically
equals ACS, and APS)i.a 1s the difference between APS and APSice. APSprice 1s allocated

to all maize sellers based on their market shares since only sellers suffer from the price
drop. All adopting plots, however, observe productivity and cost changes. Thus, APSicia

is first allocated to all adopting plots (which have different yield and cost MTEs) based

on their shares of yield gains weighted by plot-level profitabilities (see table 1 for details),
and then aggregated to households. This procedure accounts for partial adoption, direct
benefits from adoption, and indirect effects from market price change. The counterfactual
household income of each household is computed by subtracting the income change due

to allocation from the observed household income, and the counterfactual income

distribution is mapped.
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Poverty impact estimation

Under both the small open economy and closed economy assumption, the counterfactual
income distribution is derived using procedures described above. Foster-Greer-Thorbecke
(FGT) poverty indices (Foster, Greer, and Thorbecke, 1984) are then calculated for a
given poverty line using the observed and counterfactual incomes. The poverty impacts,
in terms of reductions in poverty headcount ratio, depth, and severity are measured as the
differences of the respective poverty indices.

Data and Results

The data come from a household survey conducted jointly by CIMMYT and EIAR during
2009-2010. Four regions are covered: Oromia, Amhara, Tigray, Southern Nations,
Nationalities, and People's Region (SNNPR), which together account for more than 93%
of maize production in Ethiopia (Schneider and Anderson, 2010). The survey uses a
stratified random sampling strategy that includes interviews with farmers from 30
woredas® across these regions. A total of 1,396 farm households were surveyed, of whom
1,359 grew maize on a total of 2,496 plots. Plot areas were reported by farmers and
details of crop production such as varieties, yields, and inputs were gathered as recall data

from the previous cropping season®.

3 A woreda is an administrative district, comparable to a United States county.
4 Beegle, Carletto and Himelein (2012) show that agricultural data collected in this manner are generally of good

quality.
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Maize varieties can be grouped into three categories: hybrids, improved
open-pollinated varieties (OPVs), and local open-pollinated varieties. Hybrid maize has
the highest yield, but requires the purchase of new seeds for each cropping season to
restore hybrid vigor and the seeds cost more than OPVs. OPVs generally have lower
yields than hybrids (still higher than local varieties) but the seeds may be recycled for up
to three years. Many OPVs are developed for challenging conditions (i.e. droughts, pests)
and under circumstances where seed markets are underdeveloped or missing. Whatever
varieties farmers grow, inbred lines are crossed through open pollination. Thus, varieties
are only differentiated as being either improved or local>. Any hybrid that has been ever
recycled or OPV that has been recycled for more than three seasons is categorized as
local®. After accounting for sampling weights, our data suggest an adoption rate of 39.1%
by area.

Farmers tend to adopt improved varieties on larger, flatter plots and closer to their

homes (table 2). Among the 1,359 households, there are 503 adopters, 583 non-adopters,

5 There are several reasons for this categorization. First, the pollination process is not controlled for and varieties may
cross with each other if the plots are close to each other. Second, OPVs are a collection of varieties with different
characteristics such as drought tolerance and pest resistance (Pixley and Bénziger, 2004). As 2010 was a good cropping
year, specific yield advantages of OPVs are hardly realized and difficult to identify. Third, the mean per-hectare yields
of hybrids and OPVs in our data differ only with 10% significance. See Figure 2 for the kernel density estimations of
yields of the three maize varieties.

¢ This cut-off is suggested by local experts.
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and 273 partial adopters (table 3). Larger and wealthier land holders” with more family

members tend to adopt improved maize varieties, while partial adopters have the largest
total cultivated area, maize area and household size. Adopting household heads are more
likely to be male, younger, married and better educated.

Farmers grow improved varieties during the long rainy season (mid-June to
mid-September) more frequently than during the short rainy season (February-April, see
table 4). Inputs such as oxen power, fertilizer, and other inputs reported in monetary
terms, including purchased seeds and pesticides, are significantly higher for adopting
plots. Labor use does not vary by variety. Improved varieties yield about 1275 kg more
dry maize® per hectare than local varieties, a 59.0% yield difference.

Estimating treatment effects

In order to identify the treatment effects with endogenous adoption, IV techniques are
employed. The IVs should affect adoption, but only affect the outcome through their
impacts on adoption. Similar procedures are used for yield and cost estimation.

In the yield ATT estimation, five potential IVs are used: the distances to the nearest
seed dealer, agricultural extension office, farmer cooperative and main market, as well as
the quality of roads to the main market. These [Vs reflects the accessibility of improved

seeds and markets, extension efforts, availability of credit and business services, and

7 Total household wealth is computed as the sum of the self-reported values of all household assets.

8 All maize yields have been converted to dry maize throughout the article in a manner suggested by local experts.
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degree of commercialization. All these I'Vs directly affect farmer’s adoption decision, but
not yield. Specifically, closer distances to facilities and markets and better roads are likely
to be positively correlated with adoption, which should be the only channel which they
are related to maize yield.

Besides adoption, other variables included in the production function (equation 5) are
per-hectare inputs (labor days, ox plowing days, amount of fertilizer and other capital
inputs, all in logarithmic form)®, human capital indicators (total household size and
wealth, characteristics of household head such as gender, age, marital status, education),
maize area, soil characteristics (slope, depth and fertility, on self-reported discrete scales),
season (short or long), village altitude, and regional dummies. The combination of the
five IVs are tested in 2SLS and GMM environments, and stands a series of tests with
respect to endogeneity, under-identification, over-identification and weak identification!®.

A Cobb-Douglas production function is estimated via 2SLS, Probit-2SLS, GMM and
Heckit procedures to reveal yield ATT, orY . Alternative estimates under heterogeneity
are obtained by taking weighted averages of MTEs, as described previously. As reported
in the upper panel of table 5, these results are numerically close. Across different models,

Y is estimated to be between 47.6% - 63.3%. As a robustness check, a flexible translog

® Following Jacoby (1993), a constant of one is added to all inputs that have zero observations, which, as explained in
his article, does little harm to the robustness of estimates.

19 Detailed test results are available upon request.
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functional form is employed, and Y is estimated as 55.1% - 61.6%. This closeness builds
confidence in the estimates. Another means of robustness check is implemented:
estimation of Y using propensity score matching at the plot-level. Three matching
techniques are employed, including nearest neighbor matching, radius matching, and
kernel matching. The yield effect is estimated to be 43.4% - 48.9% (all with 1%
significance), numerically close to the regression estimates.

Finally, the treatment effect is estimated using the subsample of 273 partial adopters
with 772 plot-level observations. The treatment effect is estimated as the difference in
productivity between improved and traditional plots of the same farm household. The
model is specified as the differences between equations (4a) and (4b):

(20) Ay, =@+ L AX,, +Au,,

where the difference is taken between the plot k (improved) and plot / (local) for the i
household; S is equal to (8" — 5°) and AX is the vector of input differences. This vector
of input differences cancels out both observed and unobserved household-level
heterogeneity and identifies the treatment effect as the constant ¢. OLS regressions of
Cobb-Douglas and translog specifications suggest 38.7% and 42.1% yield increases,
respectively, both significant at 5%. These results are very close to the observed
per-hectare yield difference for partial adopters (43.3%) and other robustness check

estimates, and lend credence to our estimates.
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Estimated yield MTEs are highest among mid-low propensity scores, as observed
using both Cobb-Douglas (figure 3a) and translog function form (figure 3b). These results
may indicate negative selection: farmers are less likely to grow improved varieties on
plots that are more likely to observe a higher yield gain, a pattern also found in Suri
(2011). About half of the households surveyed grow maize only on a single plot, and
negative selection indicates that farmers planting maize on plots with higher yield
potential may be more conservative. As a test for heterogeneity inY, OLS regressions
were run of the estimated MTEs on propensity scores, with the null hypothesis being a
zero slope. Similar to Suri (2011), the slopes were negative and significant at 1% level,
confirming the existence of heterogeneity.

The cost ATT, orC , 1s estimated in a similar manner. However, only three of the five
IVs are included in the cost effect estimation: distances to the nearest extension office,
farm corporative and seed dealer, which are not supposed to correlate with total cost per
hectare other than through adoption. Distance and quality of road to the main market are
excluded as they reflect the degree of commercialization and may be correlated with
input prices, including improved seeds. Other variables include the prices of different
inputs (labor, fertilizer, ox plow, pesticides), maize yield per hectare, maize area, plot and
household characteristics, and regional dummies. These three Vs pass tests of

endogeneity, under-identification, over-identification and weak identification.
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Following Jacoby (1993), shadow prices of labor and ox plow are computed from
production function estimation and employed here. Results are reported in the lower
panel of table 5). Assuming a homogeneous treatment effect, Cis estimated to be 22.8% -
29.4% under a Cobb-Douglas specification and 23.1% - 27.4% under a translog
specification. The LIV estimates are close, reporting 27.8% and 25.3% cost increases due
to additional inputs. Propensity score matching as another robustness check suggests a
per hectare cost reduction of 22.1% - 25.6% (with at least 5% significance).

Although the first-difference type procedure in equation (20) does not apply to cost
function estimation, as the same household cannot differentiate input prices among plots,
we compute the difference in average per-hectare total input cost difference between
improved and local maize varieties using plot-level data. Shadow prices for labor and ox
plow used when growing improved maize varieties indicate an average 30.2% increase in
input cost per hectare among all plots, the increase being even higher among the plots of
partial adopters (33.4%). All robustness checks support the econometric estimates.

Estimated cost MTEs generally decrease as propensity scores increase, with either
the Cobb-Douglas (figure 4a) or translog (figure 4b) functional form. Similar OLS
regressions of MTE on propensity scores yield a negative slope with 1% significance,
confirming the existence of heterogeneity in cost ATT as well. These results offer a

possible explanation for the negative selection observed in yield MTEs: farmers are less
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likely to adopt improved maize varieties given high additional costs even if the yield
potential is high. Given the existence of heterogeneity in both yield and cost MTEs, the
LIV estimates are now presented.

Estimating the counterfactual price in the closed economy

In the small open economy, poverty impacts are easily estimated using yield and cost
MTE:s since the maize market price does not change as productivity-related supply shifts
occur. For the closed economy, a natural next step is to obtain estimates of price
elasticities of supply and demand to derive the counterfactual price level. Given the
cross-sectional nature of our data and the lack of demand side information, the elasticities
of both maize supply and demand were obtained from existing literature'!.

The literature suggests a wide variation of estimates of elasticity of maize supply in
Sub-Saharan Africa, ranging from 0.157 to 0.68 (Kiori and Gitu, 1992; Cutts and Hassan,
2003; Abrar, Morrissey and Rayner, 2004; Omamo et al., 2007; Alene et al., 2008). We
assume the supply elasticity to be 0.5 as it is comparatively easy for farmers to switch in
and out of maize production. Examples of demand elasticity estimates include Bezuneh,
Deaton and Norton (1988) who report -1.19 for maize and beans for Baringo, Kenya;
Jayne, Lupi and Mukumbu (1995) who report -1.41 for Nairobi, Kenya, and Omamo et al.

(2007) who report -0.53 for Kenya, Ethiopia and Uganda. We use a unit absolute value of

T We conduct a sensitivity analysis on these and other parameters, as detailed below.
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demand elasticity.

The market price P°* is obtained as a six-year average (2005-2010) of national-level
annual producer prices from FAOSTAT, which is 0.220 US dollar per kilogram'2. With
Pobs, and sample-level 0, the k-shift is computed as a 39.1% cost reduction per kilogram
of maize. A P of 0.253 US dollars per kilogram is obtained by averaging the LIV
estimates from the Cobb-Douglas or translog technologies'. The aggregate producer
surplus and consumer surplus changes are USD 99,554 and USD 49,777 among the
surveyed households, respectively; 6.37% of the latter is allocated to these households
according to their maize consumption share of total supply. Plot-level yield and cost
MTEs are used to derive counterfactual incomes. At the national level (3.897 million
metric tons of maize production in 2010, FAOSTAT), the total changes in producer
surplus and consumer surplus are USD 274.47 million and 137.23 million, respectively.
Assessing poverty impacts
The counterfactual and observed income distributions are used to measure poverty. Three
poverty lines are employed: $1, $1.25 and $1.45 per person per day, which roughly
represent a 95% confidence interval for the mean poverty line for the poorest 15 countries
including Ethiopia (see Chen and Ravallion, 2010). We compute poverty impacts using

MTESs and LIV-estimated ATTs.

12 Producer price is used here as retail price observes larger variation across areas and relative statistics are limited.

13 The two counterfactual prices are numerically very close; thus the average should be acceptable.
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All three poverty indices decrease following adoption of improved maize varieties
(table 6). Impacts on the poverty headcount reduction is slightly larger under the
assumption of a small open economy, where the poverty headcount ratio dropped by 1.0 -
1.3 percentage points, as compared to 0.7 - 0.9 percentage points in the closed economy.
This makes sense since the profitability of maize decreases as market price drops, and
only a small portion of total consumer surplus is enjoyed by surveyed households. These
numbers further imply that 1.8% - 3.3% of the poor have escaped poverty in the current
year due to the adoption of improved maize'*. Other estimates under different
assumptions of economic openness are similar. Specifically, a 2.3% - 2.7% decrease in
poverty depth and a 2.9% - 4.3% decrease in poverty severity are observed. These results
are robust across all poverty lines.

To explore the distribution of impacts, the variations in producer benefits from
adoption of improved maize varieties along the counterfactual income levels are
presented in figure 5, estimated by local polynomial regressions (consumer benefits are
small). Poor adopters benefit the least assuming either economic openness. Analysis

shows that the poor are as likely to adopt as the non-poor, and their yield and cost MTEs

14 Computed as the percentage reduction divided by the counterfactual poverty headcount ratio. For example, in the
small open economy, the counterfactual poverty headcount ratio and poverty impact under the $1 poverty line are .2994
and .0100, respectively. Thus, the percentage of the originally poor who have escaped poverty is computed as .0100

/.2994 = .0334, or 3.3%. Similar computations with respect to poverty depth and severity are applied.
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are generally similar. Limited land area, rather than an inability to adopt, explains why
the poor receive relatively few producer benefits'>.

Sensitivity analyses of the poverty impact estimates are conducted, and suggest that
the estimates are robust (see Appendix for details). The estimate of a 0.7 - 1.3 percentage
reduction in poverty implies that 0.48 - 0.89 million people in rural Ethiopia who
otherwise would have been poor are not due to the adoption of improved maize varieties.
Concluding Remarks
Crop genetic improvement in maize has had substantial impacts on poverty in rural
Ethiopia. Such poverty impacts should increase over time as maize area and maize
consumption expand. Given the cross-sectional data, poverty impacts were only
estimated for the current year. It is likely that such impacts have been felt over several
years as improved maize varieties were continually released. The results are consistent
across alternative poverty lines and estimation strategies. Multiple robustness checks
were conducted and consistently support our findings. Most of the reduction in poverty
among maize producers comes through producer benefits, but consumer gains over the
whole economy are also large. Since total consumer gains are spread over a large number
of households, most of whom were not represented in the survey, this study understates

the true magnitude of poverty reduction from maize CGI. Although the overall impact is

15 Further computation shows that the mean differences of maize areas between the poor and non-poor are significantly

different under each of the five poverty lines.
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substantial, poor producers benefit less than the non-poor producers (in absolute terms)
from maize CGI because they have less land than the non-poor.

The combination of treatment effect and economic surplus analysis allows us to
estimate both direct and indirect effects on household well-being of technology adoption.
This approach is an improvement over typical economic surplus applications which use
k-shifts derived from expert opinion or from experimental-trial data without accounting
for household-specific heterogeneity. Treatment effect estimation could be combined with
more general multi-market and general equilibrium models. It could also be adapted to
more general cases where distributional impacts are of interest to provide information for

research planners and policy makers.
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Table 1.

Household Welfare Changes with Improved Maize Varieties by Net Sales Position

Maize utilization'-? Overall
Market role Self-produced consumption Purchased consumption Selling welfare
APSyieta | APSprice | ACS | APSyieta | APSprice | ACS | APSyieta | APSprice |  ACS effect®
Pure seller + - 0 ?
Adopter Self-sustainer + +
Net seller + + - ?
Maize Net buyer + + - +
grower Pure seller 0 - -
Non- Self-sustainer 0
adopter Net seller 0 + - -
Net buyer 0 + - +
Pure buyer 0 + +

! Grey cells indicate the group of households does not participate. Net sellers do not necessarily purchase maize in the market; similarly,
net buyers do not necessarily sell maize.
2 Partial adopters are considered as both adopters (for adopting plots) and non-adopters (for non-adopting plots). 1) APS,.i is allocated to
all adopters according to the shares of their estimated yield increases of aggregate yield increases; 2) APSyic. is allocated to all maize

sellers according to their market shares; and 3) ACS is allocated to all buyers based on the households’ share of purchased maize among
the total market supply.
3 For the two undetermined cases, i.e. pure sellers and net sellers among adopters, although it is likely that APS)i is large enough to

offset the negative term of APS, i, the total welfare effect can still be negative, especially when the yield gain is small.
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Table 2.  Descriptive Statistics of Plot Characteristics

Improved! Local'
Difference?
(n=1214) (n=1282)
Altitude (meters) 1832.5 (304.5) 1830.1 (255.4) 2.4 (.832)

Walking minutes from home 9.73 (18.43) 14.26 (28.87) -4.53 (.000)

Plot area (ha) 453 (.416) 334 (.357) .119 (.000)
Soil slope

1.43 (.65) 1.52 (.70) -.11 (.002)
(1-3: gentle-medium-steep)
Soil depth

2.21 (.84) 2.17 (.85) .05 (.162)
(1-3: shallow-medium-deep)
Soil fertility

2.45 (.62) 2.47 (.60) -.02 (.359)

(1-3: good-average-poor)

! Standard deviations are in parentheses.
2 p-values of t-tests of differences by maize varieties are in parentheses.
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Table 3.  Descriptive Statistics of Maize Households by Adoption Type!
Adopters Non-adopters  Partial-adopters
(n=503) (n=583) (n=273)
Total cultivated area (ha) 2.02 (1.51) 1.86 (1.33) 2.37(1.89)
Total maize area (ha) 709 (.674) 553 (.545) 1.090 (1.173)
Household size 6.58 (2.46) 6.29 (2.21) 6.91 (2.40)

Total household wealth?

(thousand Ethiopian birrs)

Poverty rate by household
(< 1.25 USD / person day)

Head gender (% of male)
Head age (years)

Head marital status

(proportion married)
Head education (years)

Head literacy rate?

18.83 (35.31)

40.36%

950 (.218)

42.01 (12.95)

946 (.226)

2.92 (3.36)

451 (.492)

13.18 (29.51)

46.14%

913 (.283)

43.90 (12.52)

1906 (.293)

2.48 (2.99)

408 (.498)

22.69 (61.18)

39.93%

981 (.134)

43.15 (11.34)

967 (.179)

2.99 (3.32)

418 (.494)

! Standard deviations are reported in parentheses.

2 Computed as the sum of the self-reported values of all household assets. The daily
average exchange rate in 2010 is 1 USD = 14.38 ETB.
3 Defined as at least some education, as opposed to no education at all.
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Table 4.  Descriptive Statistics of Maize Cropping Practice
Improved! Local!
Difference?
(n=1214) (n=1282)
Season (1 = long; 0 = short) .945 (.228) 915 (.279) .030 (.003)
Intercropping
129 (.266) 173 (.384) -.044 (.135)
(1 =yes; 0=no)
Labor days per ha 105.0 (115.4) 102.9 (78.5) 2.1 (.588)
Ox plow days per ha 8.01 (7.87) 4.92 (4.63) 3.09 (.000)
Fertilizer (kg per ha) 150.6 (243.3) 56.3 (305.8) 94.3 (.000)
Other inputs per ha’
(Ethiopian birrs?) 299.1 (398.9) 67.7 (210.8) 231.4 (.000)
Yield (kg per ha) 3434.9 (2176.2) 2159.6 (1610.8)  1275.2 (.000)

! Standard deviations are reported in parentheses.

2 p-value of t-tests are reported in parentheses.

3 Including cost for seeds purchased and pesticides.

4 The daily average exchange rate in 2010 is 1 USD = 14.38 ETB.
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Table 5. ATT Estimation of Yield and Cost Effects!

ATT Model Homogeneity Heterogeneity
specification 2SLS Probit-2SLS GMM Heckit LIV
Vield effect Cobb-Douglas 588 (.170) 476 (.128) 561 (.145) 496 (.129) .633 (.242)
Translog .616 (.170) .564 (.126) .594 (.146) 551 (.128) .535(.203)
Cost effect Cobb-Douglas 276 (.113) 228 (.084) 261 (.102) .294 (.093) 278 (.110)
Translog .243 (.097) .231 (.089) 239 (.110) 274 (.095) .253 (..098)

!'Standard errors of the treatment effects are reported in parentheses; LIV standard errors are obtained by bootstrapping 100 times.
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Table 6. Poverty Impacts of Improved Maize Varieties

Observed Small Open ?overty Closed ?overty
Economy impact! Economy impact!

$1 per person per day
Headcount .2894 2994 .0100 .2966 .0072
Depth .0963 .0989 .0026 .0990 .0027
Severity .0435 .0452 .0017 .0449 .0014
$1.25 per person per day
Headcount 4162 4291 .0129 4255 .0093
Depth .1496 1534 .0038 1537 .0041
Severity 0724 .0746 .0022 .0751 .0027
$1.45 per person per day
Headcount 4957 .5079 0122 .5050 .0093
Depth 1947 1995 .0048 .1992 .0045
Severity .0983 1027 .0044 .1024 .0041

"' All poverty impacts are reported as percentage point changes (the post-adoption
compared to the counterfactual baseline).
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Fig. 2.  The kernel density estimates of yields of different maize varieties
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Fig. 3.  Yield MTE using semiparametric LIV estimator’

! Estimated using local polynomial regression. Solid line shows the estimated MTE; dashed lines are 95% confidence intervals obtained
via bootstrapping.
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Fig. 4. Cost MTE using semiparametric LIV estimator!

! Estimated using local polynomial regression. Solid line shows the estimated MTE; dashed lines are 95% confidence intervals obtained

via bootstrapping.
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Fig. 5.  Benefits due to adoption across counterfactual income levels!

! Counterfactual incomes of 95% households are less than 5 USD per person per day.
About 1% households with counterfactual incomes above 10 USD per person per day
are excluded.
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Appendix: Sensitivity Analysis of Poverty Impacts

As a means of robustness check, sensitivity analyses were conducted for the poverty
impact estimates. Variations in several parameters can alter the poverty impact
estimates. These parameters include A77s (YA andC ), & 1, the adoption rate, and the
proportion of maize supply purchased by rural households. The first two are
econometrically estimated; while the last four are obtained from previous literature or
algebraically computed. Different combinations of these parameters affect the
estimates of the k-shift, P, the total producer and consumer surplus change to be
allocated, and the counterfactual household income. Poverty impacts via FGE indices

were computed as:

(A1) %Z?fl(z_"J -EZ?L’T(Z_" J

V4 n V4

Randomness exists in both the counterfactual household income, | ia , and the
counterfactual number of poor people, g, which is determined by the former. The
observed and counterfactual household incomes are linked via the estimated income
change due to adoption, Al;:
(A2) [&+Al =1
Thus, variations in the parameters above affect| ™ via A

For the econometrically estimated parameters, a 95% confidence interval of the
estimated mean is obtained via bootstrapping. Also, the adoption rate is assumed to

vary by as much as 20 percentage points, i.e. from 19.1% to 59.1%. The proportion of
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maize supply purchased by rural households is allowed to vary from 5% to 20%.
Based on literature estimates, the value of ¢ and the absolute value of # are assumed to
vary from 0.2 to 1 and 0.5 to 1.5, respectively.

The results of the sensitivity analysis of the poverty impact estimates for small
open and closed economies are reported in table A1l. Joint variation of six parameters
is allowed and the global maximum and minimum of equation (A1) is solved, which
should be the upper and lower bounds even when all parameters are realized at their
maximum values. The variation of parameters leads to noticeable variation in poverty
impacts, with changes mainly being upward. For example, compared with the poverty
headcount ratio of 0.7 - 1.3 percentage point reduction, the estimates vary 0.4 - 3.5

percentage points. All three FGT indices are consistently higher.
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Table A1.  Sensitivity Analysis of Estimated Poverty Impacts

Small open economy Closed economy

Poverty Lower Upper Poverty Lower Upper
impact! bound bound impact! bound bound

$1 per person per day

Headcount  .0100 .0036 .0301 .0072 .0036 .0279
Depth .0026 .0011 .0098 .0027 .0014 .0103
Severity .0017 .0008 0121 .0014 .0008 .0095

$1.25 per person per day

Headcount  .0129 .0050 .0358 .0093 .0044 .0322
Depth .0038 .0016 0155 .0041 .0019 .0167
Severity .0022 .0013 .0146 .0027 .0014 .0163

$1.45 per person per day

Headcount  .0122 .0057 .0308 .0093 .0050 .0294
Depth .0048 .0023 .0240 .0045 .0021 .0246
Severity .0044 .0020 .0261 .0041 .0023 .0233

' Computed as the difference in percentage point change between the observed and
counterfactual measures.



