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The likely impacts of climate change in the U.S. include damages to agricultural production 

resulting from increased exposure to extreme heat (Schlenker and Roberts 2006, 2009; Urban et 

al. 2012; Fisher et al. 2012). However, there remains considerable uncertainty regarding 

associated impacts on the performance of the Federal Crop Insurance Program (FCIP), which 

covered roughly 280 million acres and $116 billion in liabilities in 2012 (FCIC 2012a). These 

impacts would likely extend beyond the agricultural sector as the heavily subsidized program has 

averaged over $6.4 billion in taxpayer-sponsored subsidy payments to producers over the last 

three years (FCIC 2012a).  

Here we utilized nearly 40,000 county-level corn yield observations spanning 1950-2005 

to predict the effect of a 1oC uniform increase in temperature on crop insurance premium rates 

and subsidies for the Group Risk Plan. We found a statistically significant increase in premium 

rates, which is primarily driven by increased exposure to extreme heat. These increases induce 

large increases in subsidy payments, the incidence of which is spread disproportionately across 

the U.S. Corn Belt. The implied increase in annual tax payer burden could be as high as $923 

million depending on how these findings extrapolate to other crop insurance policies. These 

results suggest that warming presents an even greater challenge than implied by previous studies.   

Corn is the most intensively insured crop in the FCIP with more than 81 million insured 

acres and $53 billion in liabilities in 2012, and is the biggest driver of total FCIP subsidy 

payments as the $2.7 billion paid to producers represents 39 percent of all program subsidies 

(FCIC 2012a,b). The political motivation for this subsidy is to increase FCIP enrollment as 

farmer participation levels are below those desired by policy-makers (Knight and Coble 1997). 

Empirical research has consistently found that meeting this objective requires heavy 

subsidization as insurance demand is largely insensitive to small price changes (Coble and 
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Barnett 2012; Goodwin 1993; Barnett and Skees 1995; Coble et al. 1997; Barnett et al. 2005; 

Shaik et al. 2008).  

 The Federal Crop Insurance Act of 1980 reduced farm dependence on ex post disaster 

assistance, which was previously provided by the federal Disaster Payments Program (Barnett 

2000). This Act was coupled with a shift toward a more private-sector oriented program as sales 

and servicing of policies is conducted by privately owned companies. However, substantial 

public sector influence remains in the form of government-set premium rates, administrative and 

operating expense compensation for private sellers, and subsidy payments to producers to induce 

policy purchases (Coble and Barnett 2012; Coble and Knight 2002).  

The key components of any crop insurance policy are the coverage level, guarantee, 

indemnity, premium, and subsidy. The coverage level is a value between 0.5 and 0.9 that is used 

to calculate the policy’s guarantee, which establishes the threshold below which indemnities are 

triggered. Essentially, the insured unit/farm receives an indemnity payment if the realized ex post 

production outcome is below the guarantee, and receives nothing otherwise. The premium is the 

purchase price of the policy, and the subsidy is the amount of this price covered by the 

government.  

 Figure 1a plots total FCIP premiums and subsidies over the last ten years, and the 

stability of the pair plot across years (Fig 1b) demonstrates a stable, proportional relationship 

between subsidies and premiums. Indeed, the producer paid net-premium (premium less subsidy) 

is simply the product of the premium and a subsidy factor that is set by the government. This 

relationship implies a percentage change in premium necessarily equals a percentage change in 

subsidy, and is confirmed in the data as a regression of log subsidy on log premium generates an 

r-squared of 0.997 and a parameter estimate of 1.04. 
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In response to the Intergovernmental Panel on Climate Change findings, many studies 

have analyzed the effects of climate on the agricultural sector including Schlenker and Roberts 

(2006, 2009), Urban et al. (2012), Fisher et al. (2012), Lobell and Asner (2003), Lobell et al. 

(2011), Lobell et al. (2011), Mendelsohn et al. (1994), Pongratz and Lobell (2012), and 

Schlenker et al. (2005, 2006, 2007). Overall, studies have found that U.S. agriculture will likely 

not see major impacts over at least the next few decades, but findings vary considerably across 

contexts (Beach et al. 2010). While farmland value and/or profitability studies suggest relatively 

minor short-term implications, research focusing on crop yields has found much larger effects 

(Beach et al. 2010). Initial yield studies focused primarily on mean impacts, however more 

recent studies have included higher order moments of the crop distribution (Tack et al. 2012).  

With the exception of a recent USDA Risk Management Agency report (see Beach et al. 

2010), no study has focused on estimating the effects of warming temperatures on the FCIP. 

While the scope of this report is quite large and covers a range of crops insurance products, the 

empirical approach assumes that premium rates remain constant and offers no guidance 

regarding subsidy effects. These shortcomings represent major knowledge gaps as premium rates 

capture the inherent riskiness of crop production and would thus likely increase under warming 

as exposure to extreme heat increases. Furthermore, given the proportional relationship between 

subsidies and premiums, these rate increases would in turn drive up subsidy payments to 

producers.  

 Here, we introduce an approach for measuring the impacts of alternative climates on 

FCIP premium rates and subsidies, which utilizes a rich dataset of historical yield and weather 

outcomes previously utilized in Schlenker and Roberts (2006, 2009). FCIP premium rates 

predictions from our model are made using the historical data, and then compared with 
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predictions based on simulating a 1oC uniform increase in daily temperatures. These 

comparisons are used to explore whether premium rates and producer subsidies are affected by 

warming. 

 

Empirical Model 

We use a Moment Based Maximum Entropy model to link weather outcomes to crop yields, 

which is the preferred approach for analyzing climate impacts on yield distributions (Tack et al. 

2012). We assume that corn yields follow a Beta distribution as most of the empirical literature 

in agricultural economics over the past decade has used the beta distribution to model crop yields 

(Babcock et al. 2004). The Beta distribution is the maximum entropy solution under a specific 

set of moment constraints, so by regressing the sample moments on a set of regressors one can 

then predict the moments for different subsets of the data. These predicted moments can then be 

used to estimate densities using the principle of maximum entropy.  

 The first step of the Moment Based Maximum Entropy Model is the estimation of a 

linear moments model using regression analysis. The Beta probability density function is the 

Maximum Entropy solution under moment constraints defined by [ ]1 ln( )E Yµ ≡  and 

[ ]2 ln( )E C Yµ ≡ −  where Y is the underlying random variable (corn yield) defined on the 

positive support (0, ]C . To ensure that the support contains all reasonable values for corn yields, 

we fix the upper value of the support at 1.5max{ }C y≡  where max{ }y  denotes the maximum 

yield contained in the historical yield sample. The regression equations are defined by  

(1) 1 1

2 2

 ln( )
ln( )

y
C y

ε
ε

′= +
′− = +

X β
X β
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where the set of regressors X  contains low, medium, and high temperature exposure, 

precipitation, precipitation squared, county-level fixed effects, and a trend to account for changes 

in technology over time. 

Parameter estimates for the moments model given by (1) are estimated using OLS. For 

the baseline climate scenario, we predict the two Beta-defining moments according to 

ˆˆ ,  1, 2j j jµ ′= =X β  where X  is the sample average of the regressors. We do the same for the 

warming scenario, except the temperature variables in X  are recalculated in accordance with a 

1oC uniform increase in daily minimum and maximum temperatures as in Tack et al. (2012). We 

modify publicly available Matlab code for univariate maximum entropy density estimation from 

Wu (2003) to reflect the use of a Beta distribution, and use the predicted moments to estimate 

baseline and warming densities 0 0ˆ ( | )f y =X X  and 1 1ˆ ( | )f y =X X  for each county in the data. A 

more detailed discussion of the Moment Based Maximum Entropy model is provided in Tack et 

al. (2012) 

 

Data 

This study focuses on the U.S. Corn Belt, one of the most intensive corn growing regions in the 

world, which produced 7.8 billion bushels of corn (nearly 75 percent of total U.S. production) in 

2012. We include all counties in Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, 

Nebraska, Ohio, and Wisconsin, which represented 77 percent of FCIP corn liabilities in 2012 

(FCIC 2012b). This region has a fairly homogenous April to September growing season, and 

previous research indicates that warming will have large negative effects on yields (Schlenker 

and Roberts 2006, 2009).  
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The dataset combines yield data from the National Agricultural Statistics Service with the 

best available historical temperature and precipitation data, and contains 39,200 observations 

spanning 700 counties from 1950-2005. We utilize the same low, medium, and high temperature 

degree day measures as Schlenker and Roberts (2009). Exposure to low temperature measures 

degree days between 0oC and 9oC; medium temperature measures degree days between 10oC and 

29oC; and high temperature measures degree days above 29oC. The precipitation variable is 

measured in centimeters, and all weather variables are calculated as growing season aggregates 

across the months April-September. This approach is consistent with previous research analyzing 

the nonlinear effects of weather on crop yields (Schlenker and Roberts 2006, 2009; Tack et al. 

2012), and a summary of the data is provided in Table 1 and Figure 2. 

 

Empirical Results 

The Federal Crop Insurance Corporation (FCIC) currently lists 17 different insurance plans 

available to producers, the most popular of which are farm-based policies in that indemnities are 

triggered by farm level outcomes. As an alternative, the FCIC also offers the Group Risk Plan 

(GRP) and the Group Risk Income Protection plan, both of which are triggered by county level 

outcomes. The GRP program has received much attention as it has the potential to mitigate the 

adverse selection and moral hazard problems that are associated with farm-based policies 

(Barnett et al. 2005; Deng et al. 2007; Harri et al. 2011). Thus, we focus on the GRP program 

here.  

 

Moments of the Beta Distribution 
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The effects of temperature and precipitation on the characterizing moments of the Beta 

distribution are summarized in Table 2. We include all three degree day measures of 

temperature, a quadratic formulation for precipitation, state-specific trends, and county fixed 

effects. The parameters are estimated using OLS with standard errors clustered by year to 

account for arbitrary patterns of spatial correlation among the residuals. The r-squared values 

suggest that a large portion of the variation in the dependent variables is explained by the 

regressors, thus implying a reasonable level of fit. Consistent with previous findings, exposure to 

extreme heat is the biggest driver of yield response among the temperature variables, and 

precipitation has the standard inverted-U effect on log yields. Importantly, weather affects the 

yield distribution through both of the characterizing moments as nearly all variables are 

statistically significantly different from zero across both equations. 

Proper identification of weather effects in this data requires accounting for gradual trends 

in yields due to technology changes. Controlling for this change is necessary to ensure that the 

regression model parameter estimates are not biased from common trends in the data. For 

example, a positive yield trend during periods of warm weather does not imply that warming is 

beneficial, since other factors drive the yield trend (Lobell et al. 2011). 

We account for nonlinear technological change by modeling the trend component in each 

year 1,...,t T=  as 

(2) 0 1 2 3 4sin(2 ) cos(2 ) sin(4 ) cos(4 )ttrend t t t t tα θ π θ π θ π θ π= + + + +     

where /t t T≡ . This approach utilizes a set of functionally flexible trigonometric functions to 

nest the more commonly used linear technological change model defined by =θ 0 , and we allow 

for the trend parameters 0α  and θ  to vary by state to capture potential differences in 

technological change. We find that both extensions are warranted as the p-value for a Wald test 
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of constant coefficients across states is 0.000, and the largest p-value for state-specific Wald tests 

of the null hypothesis =θ 0  is 0.061. 

 

Baseline and Warming Densities 

The effects of warming are measured relative to historical climate, which is constructed as the 

sample average of the weather variables within each county. These averages are used to predict 

county-specific moments, which in turn generate county-specific baseline densities. Conversely, 

to construct densities for the warming scenario, we first modify the underlying temperature data 

so that the daily minimum and maximum values are increased by 1oC. These changes are 

aggregated up to the county-year level for all observations, and used to construct new low, 

medium, and high degree day measures. Next, we calculate sample averages of the new 

temperature variables within each county, predict the associated moments, and then estimate the 

corresponding warming densities.  

The baseline and warming densities are reported for the largest producing counties within 

each state in Supplementary Figures S1-S9. The legend in each figure includes both the mean,  

(3) 
0

ˆ( ) ( | ) ,  0 (baseline) and 1 (warming),
Cs s s sM E y yf y dy s≡ = = =∫ X X  

and downside risk, where downside risk is measured as the partial variance below the mean,  

(4) 2

0
ˆ( ) ( ) ( | ) ,  0 (baseline) and 1 (warming).

sMs s s s sD Var y y M f y dy s−≡ = − = =∫ X X  

It is clear that the magnitude of the warming effect varies by state, but the general pattern is a 

decrease in the mean coupled with an increase in downside risk.  

Figure 3 provides kernel density plots for the county-level effects of warming on mean 

yield for the full sample (Fig 3a), western region (Iowa, Minnesota, Missouri, and Nebraska; Fig 
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3b), and eastern region (Illinois, Indiana, Michigan, Ohio, and Wisconsin; Fig 3c). The acreage-

weighted average impacts across panels a-c are -4.23%, -4.61%, and -3.76%, so the reduction in 

mean yields is roughly one percentage point higher on average for the eastern versus western 

region. While negative on average, nearly ten percent of the counties in the sample have positive 

impacts. Unsurprisingly, these positive impacts are concentrated among the northern states of 

Michigan, Minnesota, and Wisconsin, with just over 65 percent of all Wisconsin counties 

experiencing an increase. The estimated densities and associated findings are consistent with 

previous findings in the literature.  

 

GRP Rate Effects 

The estimated densities are used to quantify the effect of warming on per-acre actuarially fair 

premium rates for GRP insurance policies. The estimated rates for coverage levels [.5,.9]cov∈  

are calculated as the ratio of expected indemnity over liability for each county, 

(5) ( ) / ,s s s
cov cov covrate E indemnity liability=  

where  

(6) 0

0

ˆ( ) [( ) / ] ( | ) ,

ˆ( ) ( | ) .

covys s s
cov cov

Cs s s s s
cov cov

E indemnity y y cov f y dy

liability y covE y cov yf y dy

= − =

≡ = = =

∫
∫

X X

X X
 

The factor 1/ cov  in the expected indemnity calculation reflects the “disappearing deductible” 

that is built into GRP contracts (Barnett et al. 2005). 

Acreage-weighted rate averages for the baseline and warming scenarios are reported in 

Figure 4. Panels a-c plot the calculated GRP rates against coverage levels, while panels d-f report 

corresponding pair plots constructed as the ratio of the warming rate over the baseline rate. The 

implied percentage change in rates is simply 100( 1)ratio − , and for the entire sample warming 
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increases premium rates between 9-30 percent (Fig. 4d). The rate increases are much larger for 

low coverage levels, which is consistent with an increased frequency of large-scale crop loss 

under warming. However, these averages mask a considerable amount of regional heterogeneity 

as the ratios are much smaller in the western region (Fig. 4e) relative to the eastern region (Fig. 

4f).  

To evaluate the uncertainty around these impacts, 95 percent confidence intervals are 

constructed for the ratios in Figure 4d based on a block bootstrapping routine that is robust to 

spatial correlation. For each of 999 bootstrap iterations, we first construct a bootstrap sample by 

sampling with replacement whole years from the data. Importantly, block sampling whole years 

preserves any spatial correlations across counties inherit in the data. Each bootstrap sample is 

used to re-estimate the parameters of the regression model, which are then used to predict the 

moments for the baseline and warming scenario for the largest producing county in each state. 

These moments are then used to re-estimate the Beta densities and calculate the corresponding 

premium rate ratios, which are in turn acreage-weighted to construct sample averages as in 

Figure 4d. For each coverage level, this generates 1000 premium rate ratios, which are sorted 

from smallest to largest. The 25th and 975th ordered observations represent the lower and upper 

bounds for a 95 percent confidence interval. The constructed interval for each coverage level 

does not span a ratio of one, which implies that the estimated rate increases are statistically 

significantly different from zero. 

Recalling that the distinction between baseline and warming scenarios is driven by 

changes in the degree day variables, we evaluate the relative importance of each temperature 

variable using an analysis of variance. We regress GRP rate differences on differenced 

temperature variables using pooled OLS, the results of which are reported in Table 3. Model (1) 
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yields an r-squared of 0.001, so coverage level fixed effects alone do not explain much of the 

variation in rate differences. The next three models demonstrate the relative importance of 

changes in high temperature as model (4) generates the largest r-squared increase. The next two 

models demonstrate the relative importance of adding low versus medium temperature to the 

model, and the results of model (7) show that 24.3 percent of the variation in rate differences is 

explained by the combination of all temperature variables. Interestingly, nearly all the remaining 

variation is explained by the inclusion of county fixed effects, which suggests that the effects of 

warming on crop insurance will be highly localized even after changes in temperature patterns 

have been taken into account.  

 

Producer Subsidy Effects 

Per-acre premiums for the GRP contract are the product of the liability, premium rate, and the 

subsidy factor,  

(7) .s s s s
cov cov cov covpremium liability rate sf= × ×  

This implies that the per-acre subsidy is proportional to the expected indemnity since 

(8) 

0

(1 )

( ) (1 ),

s s s
cov cov covsf

s s s s s
cov cov cov cov cov
s s s
cov cov cov

s s
cov cov

subsidy premium premium

liability rate liability rate sf
liability rate sf
E indemnity sf

=
= −

= × − × ×

= × × −

= × −

 

which in turn implies that the percentage in subsidy to equal to the percentage change in 

expected indemnity since 

(9) 

1 0 1 0

0 0

1 0

0

( ) (1 ) ( ) (1 )
( ) (1 )

( ) ( ) .
( )

cov cov cov cov cov cov

cov cov cov

cov cov

cov

subsidy subsidy E indemnity sf E indemnity sf
subsidy E indemnity sf

E indemnity E indemnity
E indemnity

− × − − × −
=

× −

−
=

 



12 
 

Acreage-weighted average subsidy impacts are plotted against coverage levels in Figure 5, and 

range from 4.9 to 32.8 percent for the full sample (Fig. 5a). Interestingly, the subsidy incidence 

varies across regions as the percentage increase is nearly twice as large for eastern producers 

across all coverage levels (Fig. 5b). The reason for this disproportionate increase is that warming 

generates a more risky production environment in the east, as evidenced by the rate difference 

pair plots in Figures 4e and 4f.    

 We combine the results from Figure 2 with 2012 FCIP subsidy data to measure the 

implied impact U.S. taxpayers, which are reported in Table 4. Column 1 provides subsidy 

payments by coverage level for the corn Group Risk Program, which totaled $5 million dollars in 

2012. The level increase in subsidy payment is rather small at $300,000 since the majority of 

acreage in this program is enrolled at the highest coverage level. However, if the findings here 

extrapolate to other corn-based insurance policies offered by the FCIP, which is likely given that 

the majority of other policies are farm-based and thus inherently more risky, the level impact 

becomes just over $300 million dollars. Furthermore, but perhaps less realistic, if these findings 

extrapolate to the other crops covered by the FCIP then the level impact is nearly $1 billion. 

Conclusion 

This research focused on two components of a standard FCIP contract, the premium rate and the 

producer subsidy. Premium rates essentially capture the cost of the crop insurance coverage, 

which is positively correlated with yield risk. Previous research has linked warming to increased 

yield risk, which in turn suggests that warming will also increase premium rates. Our empirical 

analysis confirms this hypothesis, and provides estimates of premium rate changes and implied 

subsidy effects under a 1o C  warming scenario.  
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These increased premium rates imply increased crop insurance subsidies and the 

associated taxpayer burden of the program. Whether these results hold beyond the crop and 

insurance policy considered in this study is a question for future research to address, and will 

probably depend on the degree to which other crop policy premium rates respond to increased 

exposure to extreme heat. This represents the major limitation of this research, however the 

findings provide a benchmark for future research that expands the scope of insurance 

instruments. 

The FCIP represents the most widely used risk protection policy instrument in the U.S., 

and current debate on the extension of the Farm Bill suggests that the next wave of agricultural 

policy will provide an even greater emphasis on this type of protection. As such, the findings 

reported here should benefit policy makers, as well as the academic community. The FCIP is a 

highly subsidized program as the government currently covers over fifty percent of the insurance 

cost. This subsidy is directly proportional to the cost of insurance by design, so that a percentage 

change in premium will generate an equal percentage change in subsidy. This implies that as 

premium rates increase the taxpayer burden increases as well. As current and future Federal 

budget deficits continue to occupy policy-makers’ and the general public’s attention, this 

connection to the more general populace outside of the agricultural sector provides a much larger 

scope for this research. 

 As a final note, the structure and performance of the FCIP is of great interest globally. In 

particular, the public/private nature of the FCIP is attractive to agrarian-based developing 

countries as the cost of risk protection is at least partly offset by private companies. This interest 

might lessen if the subsidization required to induce participation increases under climate change. 
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Tables 

Table 1 | Yield and Weather Data: 1950-2005 
Variable Sample Mean (s.d.) Min Max Obs 
All Years     
  Cotton Yield (bushels per acre) 92.90 (35.73) 0.041 200.0 39,200 
  Low Temperature (degree days) 1,706 (56.86) 1,433 1,825 39,200 
  Medium Temperature (degree days) 1,645 (255.5) 8,48.3 2,496 39,200 
  High Temperature (degree days) 21.67 (21.76) 0.000 240.4 39,200 
  Precipitation (centimeters) 55.98 (13.59) 14.18 126.9 39,200 

Notes: Values reported for temperature and precipitation variables correspond to the April through 
September growing season. Low temperature measures degree days between 0C and 9C; medium 
temperature measures degree days between 10C and 29C; and high temperature measures degree days 
above 29C. 
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Table 2 | Regression results for corn yield moments 

 
1 2 

Dependent variable: ln(Yield) ln(C-Yield) 
Low Temperature 0.0123 -0.0351** 

 [0.0308] [0.0153] 
Medium Temperature 0.0329** -0.0000213 

 [0.0138] [0.00621] 
High Temperature -0.872*** 0.258*** 

 [0.0956] [0.000436] 
Precipitation 1.55*** -0.624*** 

 [0.383] [0.177] 
Precipitation Squared -0.0137*** 0.00549*** 

 [0.00292] [0.00138] 
County Fixed Effects Y Y 
State Trends Y Y 
N 39,200 39,200 
R-sq 0.849 0.834 
Notes: Table shows results of regressing ln(yield) and ln(c-yield) on 
temperature and precipitation. Parameter estimates and standard errors 
scaled up by a factor of 100. Weather variables are aggregated for the 
months April-September. Clustered standard errors by year are in 
brackets. *, **, and *** denote significance at the 10%, 5%, and 1% 
levels. 
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Table 3 | R-squared results for regressions of premium rate difference 
Dependent variable: Premium Rates Differences due to Warming 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Diff Low Temperature N Y N N Y N Y Y 
Diff Med Temperature N N Y N N Y Y Y 
Diff High Temperature N N N Y Y Y Y Y 
Coverage Level FE Y Y Y Y Y Y Y Y 
County FE N N N N N N N Y 
R-squared 0.001 0.088 0.007 0.211 0.234 0.232 0.243 0.989 

Notes: Table shows results of regressing estimated premium rate differences on combinations of 
differenced temperature variables and county fixed effects. Coverage level fixed effects are included 
in all regressions. 
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Table 4 | Subsidy outlay and warming impacts, 2012 

 (1) (2) (3) 
Cov Level GRP Corn All Corn All All 

50 -- 53.9 441 
55 -- 4.75 36 
60 -- 40.2 276 
65 0.249 138 600 
70 0.133 551 1,694 
75 0.073 906 2,178 
80 0.146 646 1,117 
85 0.442 268 454 
90 3.99 69.7 146 

Total 5.033 2,677 6,942 
Impact 0.307 304 923 

Notes: Table shows the 2012 subsidy levels in million dollars 
for various insurance policies and coverage levels. GRP corn 
refers to the Group Risk Plan for corn, All Corn refers to all 
insurance policies for corn, and All All refers to all insurance 
policies for all crops. 
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Figures 

 

Figure 1 | Insurance premiums and subsidies for the Federal Crop Insurance Program, 

2002-2012. a, The total dollar value of subsidies and premiums for all policies. b, A pair plot of 

these values measured as the ratio of subsidies over premiums. 
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Figure 2 | Annual box plots for county level yield and weather sample data, 1950-2005. 

Each box is defined by the upper and lower quartile, with the median depicted as a horizontal 

line within the box. The endpoints for the whiskers are the upper and lower adjacent values, 

which are defined as the relevant quartile +/- three-halves of the interquartile range, and circles 

represent data points outside of the adjacent values. 
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Figure 3 | Percentage change in mean yield due to warming. The percentage change in mean 

yield due to warming is estimated for each county in the data, and reported as kernel density 

plots for the full sample (a), western region (b), and eastern region (c). For each plot, an 

Epanechnikov kernel function is used with the bandwidth set at the value that would minimize 

the mean integrated squared error if the data were Gaussian and a Gaussian kernel was used. 
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Figure 4 | Actuarially fair Group Risk Plan premium rates for baseline and warming 

scenarios. a-c, Estimated premium rates plotted against coverage levels for baseline and 

warming scenarios. The baseline scenario holds temperature variables fixed at the sample 

average of the data, while the warming scenario simulates these averages for a uniform 1oC 

increase in daily minimum and maximum temperatures. Rates are calculated for each county in 

the data, and then acreage-weighted averages are constructed for the full sample (a), western 

region (b), and eastern region (c). d-f, Pair plots of these values measured as the ratio of the 

warming rate over the baseline rate for the full sample (d), western region (e), and eastern region 

(f). 
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Figure 5 | Percentage change in Group Risk Plan subsidies due to warming. a, Estimated 

percentage changes in producer subsidies due to warming plotted against coverage levels. 

Percentage changes are calculated for each county in the data, and then acreage-weighted 

averages are constructed for the full sample, western region, and eastern region. b, A pair plot of 

the regional impacts, measured as the percentage change in the eastern region over the 

percentage change in the western region.  
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Supplementary Figures 

 

Figure S1 | Maximum entropy corn yield distributions for baseline and warming scenarios: 

McLean, Illinois. Densities are estimated using the Moment Based Maximum Entropy for the 

baseline (Bline) and warming (Warm) scenarios. The baseline scenario holds temperature 

variables fixed at the sample average of the data, while the warming scenario simulates these 

averages for a uniform 1oC increase in daily minimum and maximum temperatures. The legend 

includes the mean (M) and downside risk (D) for each density, where downside risk is measured 

as the partial variance below the mean. 
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Figure S2 | Maximum entropy corn yield distributions for baseline and warming scenarios: 

Jasper, Indiana. Densities are estimated using the Moment Based Maximum Entropy for the 

baseline (Bline) and warming (Warm) scenarios. The baseline scenario holds temperature 

variables fixed at the sample average of the data, while the warming scenario simulates these 

averages for a uniform 1oC increase in daily minimum and maximum temperatures. The legend 

includes the mean (M) and downside risk (D) for each density, where downside risk is measured 

as the partial variance below the mean. 
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Figure S3 | Maximum entropy corn yield distributions for baseline and warming scenarios: 

Kossuth, Iowa. Densities are estimated using the Moment Based Maximum Entropy for the 

baseline (Bline) and warming (Warm) scenarios. The baseline scenario holds temperature 

variables fixed at the sample average of the data, while the warming scenario simulates these 

averages for a uniform 1oC increase in daily minimum and maximum temperatures. The legend 

includes the mean (M) and downside risk (D) for each density, where downside risk is measured 

as the partial variance below the mean. 
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Figure S4 | Maximum entropy corn yield distributions for baseline and warming scenarios: 

Lenawee, Michigan. Densities are estimated using the Moment Based Maximum Entropy for 

the baseline (Bline) and warming (Warm) scenarios. The baseline scenario holds temperature 

variables fixed at the sample average of the data, while the warming scenario simulates these 

averages for a uniform 1oC increase in daily minimum and maximum temperatures. The legend 

includes the mean (M) and downside risk (D) for each density, where downside risk is measured 

as the partial variance below the mean. 
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Figure S5 | Maximum entropy corn yield distributions for baseline and warming scenarios: 

Martin, Minnesota. Densities are estimated using the Moment Based Maximum Entropy for the 

baseline (Bline) and warming (Warm) scenarios. The baseline scenario holds temperature 

variables fixed at the sample average of the data, while the warming scenario simulates these 

averages for a uniform 1oC increase in daily minimum and maximum temperatures. The legend 

includes the mean (M) and downside risk (D) for each density, where downside risk is measured 

as the partial variance below the mean. 
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Figure S6 | Maximum entropy corn yield distributions for baseline and warming scenarios: 

Atchison, Missouri. Densities are estimated using the Moment Based Maximum Entropy for the 

baseline (Bline) and warming (Warm) scenarios. The baseline scenario holds temperature 

variables fixed at the sample average of the data, while the warming scenario simulates these 

averages for a uniform 1oC increase in daily minimum and maximum temperatures. The legend 

includes the mean (M) and downside risk (D) for each density, where downside risk is measured 

as the partial variance below the mean. 
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Figure S7 | Maximum entropy corn yield distributions for baseline and warming scenarios: 

Hamilton, Nebraska. Densities are estimated using the Moment Based Maximum Entropy for 

the baseline (Bline) and warming (Warm) scenarios. The baseline scenario holds temperature 

variables fixed at the sample average of the data, while the warming scenario simulates these 

averages for a uniform 1oC increase in daily minimum and maximum temperatures. The legend 

includes the mean (M) and downside risk (D) for each density, where downside risk is measured 

as the partial variance below the mean. 
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Figure S8 | Maximum entropy corn yield distributions for baseline and warming scenarios: 

Darke, Ohio. Densities are estimated using the Moment Based Maximum Entropy for the 

baseline (Bline) and warming (Warm) scenarios. The baseline scenario holds temperature 

variables fixed at the sample average of the data, while the warming scenario simulates these 

averages for a uniform 1oC increase in daily minimum and maximum temperatures. The legend 

includes the mean (M) and downside risk (D) for each density, where downside risk is measured 

as the partial variance below the mean. 
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Figure S9 | Maximum entropy corn yield distributions for baseline and warming scenarios: 

Dane, Wisconsin. Densities are estimated using the Moment Based Maximum Entropy for the 

baseline (Bline) and warming (Warm) scenarios. The baseline scenario holds temperature 

variables fixed at the sample average of the data, while the warming scenario simulates these 

averages for a uniform 1oC increase in daily minimum and maximum temperatures. The legend 

includes the mean (M) and downside risk (D) for each density, where downside risk is measured 

as the partial variance below the mean. 

 


