Using a Control Function to Resolve the Travel Cost Endogeneity Problem in Recreation Demand Models

Richard T. Melstrom*
Department of Economics and Finance
Department of Environmental Studies
Salisbury University

Frank Lupi
Department of Agricultural, Food and Resource Economics
Department of Fisheries and Wildlife
Michigan State University

Selected Poster prepared for presentation at the Agricultural & Applied Economics Association’s 2013 AAEA & CAES Joint Annual Meeting,
Washington, DC, August 4-6, 2013

Copyright 2013 by Richard T. Melstrom and Frank Lupi. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

*Corresponding author. Contact: rtmelstrom@salisbury.edu
Background

- Endogeneity arises when the observed, explanatory variables are correlated with omitted variables.
- Standard two-stage least-squares (2SLS) approaches to correct for endogenous variables cannot be used in nonlinear models. So random utility maximization (RUM) models, which include many recreation demand models, require alternative ways to correct for endogeneity.
- In recreation demand cost endogeneity is a particularly serious issue because biased estimates of the travel cost effect will lead to invalid measures of site value (Parsons 1991).

Objectives

- Test and correct for travel cost endogeneity in a RUM model of recreation demand.
- Use a novel method to correct for endogeneity in recreation demand models: a control function.
- Compare the results of the control function approach with the results from using alternative-specific constants (ASCs), which has been used in prior research to correct for endogeneity in recreation demand models (Murdock 2006).

Application: The Demand for Great Lakes Recreational Fishing

Our application uses data on Michigan Great Lakes recreational anglers collected from a 2008-2009 survey. Information from the survey included the location and date of anglers’ most recent trips, targeted fish species, whether the purpose of the trip was primarily to fish and angler demographics.

The destinations from the reported trips were then matched to the fishing sites creel by the Michigan DNR.

Michigan DNR monthly creel data was used to construct per-hour catch rate (CR) estimates for six fish species at 66 creel sites, to describe the quality of fishing sites in the angling demand model. Trips in spread over approximately two years, so observed CR varied across sites and time.

Travel costs were calculated from distance information, angler characteristics and gasoline prices. The per-mile fuel costs were derived from Michigan monthly retail gasoline prices. Travel cost is the sum of fuel costs, maintenance and depreciation costs and the opportunity cost of travel time.

Several dummy variables were created to account for the effects of the availability of services (Urban), ease of access (Highway) and fish species in limited regions (Bayromiseaway) in the demand for Great Lakes recreational fishing.

Site Choice Model

- The RUM model follows a conditional logit framework, with the utility of visiting a site is:

 \[u_i = p(y_i | p_{it}) + \beta q_i + \beta f_{it} + \epsilon_{i0} \]

 where \(y \) is income of angler, \(p_{it} \) travel cost to site \(i \) at time \(t \), \(q_i \) a vector of quality measures that vary across sites and \(q_i \) a vector of quality measures that vary across sites and time.

- Travel cost endogeneity arises when \(p_{it} \) is correlated with \(\epsilon_{i0} \). This can arise, for example, if anglers are willing to drive farther in order to fish remote sites, inducing a positive correlation between remoteness and travel cost, but the researcher lacks a measure of remoteness.

- Two alternatives that distinguish between trips targeting salmonids versus those targeting warm water species are assigned to each site, yielding a total of 132 alternatives in the model.

Control Function

- Employing a control function is similar to standard instrumental variables methods involving a two-step estimation procedure, such as 2SLS.

- Travel cost endogeneity can be eliminated by conditioning the site choice model on the part of \(p_{it} \) correlated with \(\epsilon_{i0} \). This factor can be estimated by regressing travel cost on the observables and an instrument and then calculating the residuals. Inserting the residuals, which is referred to as the control function (CF), into the model yields:

 \[u_i = p(y_i | p_{it}) + \beta q_i + \beta f_{it} + \epsilon_{i0}^* + \omega + \epsilon_{i0}^* \]

 Evidence for endogeneity is found if \(\omega \) is estimated significantly different from zero. With a valid CF, cov(p_{it},\omega)=0, and the parameters will be estimated consistently (Petin and Train 2010).

Instrumenting for Travel Cost

- As an instrument, we use monthly crude oil prices interacted with the mileage distance to fishing sites. This instrument satisfies the condition that it be correlated with travel cost, but is not possible to test the exogeneity restriction, although unobserved characteristics, such as scenic beauty, are not likely to be correlated with (current) oil prices.

Alternative Specific Constants

- The ASCs method uses a vector of \(K-1 \) site-specific fixed effects, with the ASCs vector as \(q_i \), then angler utility is transformed into:

 \[u_i = p(y_i | p_{it}) + \alpha q_i + \alpha f_{it} + \epsilon_{i0}^* + \epsilon_{i0}^* \]

 where \(q_i \) absorbs the observed effects \(\beta q_i \) and unobserved site effects in \(\epsilon_{i0}^* \). Assuming that cov(p_{it},\epsilon_{i0}^*)=0 the remaining parameters can be estimated consistently.

- The ASCs method has limitations. For sites with few visits \(q_i \) is unlikely to be well identified, hindering identification of \(\beta \) in the auxiliary regression. In fact, it is not possible to estimate the constants for sites with no visits, so unvisited sites are dropped from the model with ASCs.

Results

- The site choice model is estimated as a conditional logit (CL). The first model, a traditional CL, ignores any travel cost endogeneity.

Control Function

- The control function estimate reveals statistically significant travel cost endogeneity.

Alternative Specific Constants

- The travel cost coefficient in the model with ASCs is nearly equal to its counterpart in the model with the control function. However, the model with ASCs yields weaker results compared with the other models.

Comparing the travel cost coefficients, the bias from travel cost endogeneity is small, so ignoring the endogeneity will not meaningfully affect estimates.

Conclusions

- The control function approach to resolve the travel cost endogeneity problem in recreation demand models.

References