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1 Introduction

The importance of universities�role in generating commercially-relevant research has risen

sharply in recent years. In fact, Lach and Schankerman (2008) report that universities con-

duct 53% of all basic research and that �...the number of U.S. patents awarded to university

inventors annually increased from 500 in 1982 to 3,255 in 2006. During the period 1991�2006,

the annual number of licenses granted more than tripled and license revenues increased from

$186 million to about $1.4 billion (Association of University Technology Managers, 2006).�

Despite the economic importance of licensing patents to university revenues, prices for these

licenses tend to be determined in ad hoc ways through institutional mechanisms that are

unlikely to arrive at e¢ cient, or economically justi�able prices. If the market for innova-

tions were deeper, if participants were well-informed and trading institutions were clear and

transparent, there would likely be no need for university administrators to have a formal

model to help them license work conducted by their faculty. However, none of these condi-

tions currently exist, so the development of a mutually-agreeable pricing system is critically

important for the growth and development of the market for patents in general, and agricul-

tural patents in particular. In this study, we develop a general approach for pricing licenses

on patented innovations, and apply two speci�c pricing models to a case study on licenses

to patents for new apple varieties.1

We argue that a patent is an option on a stream of pro�t generated by an innovation,

so should be priced as such. Empirical models of patent valuation have long-recognized the

isomorphic nature of patents and options on real investments (Pakes and Schankerman 1984;

Pakes 1986; Lanjouw 1998; Bloom and van Reenen 2002), but few re�ect the attributes of

patents that are relevant for their e¢ cient pricing. We agree that patents entail a �xed

and irreversible investment, the associated returns-stream is typically highly uncertain, and

1The value of a patent and the value of a license to that patent are regarded as equivalent throughout
this analysis. That is, we assume the market for licenses should be regarded as competitive by participants,
and that the license itself grants exclusive planting rights to the buyer.
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the patent licensor has at least a temporary monopoly right to exploit the market value of

the innovation, so patents are appropriately valued using real option valuation techniques.

However, the appropriate pricing model is non-standard. First, at the core of any option val-

uation model is the assumed data generating process for the returns upon which the option

is drawn. Bloom and van Reenen (2002) model the underlying returns process to patenting

in terms of a geometric Brownian motion (GBM), which results in a standard Black-Scholes

(1973) type of valuation model. Agricultural innovations in particular, however, entail a

number of complications that likely require the application of a far more �exible and robust

valuation method. Our pricing model accomodates the complex nature of the returns process

that underlie patent values. Second, patent prices are likely to be path-dependent because

exercise is at the discretion of the holder, not �xed by contract. We extend an approach

developed by Longsta¤ and Schwartz (2001) for valuing path-dependent, American-style op-

tions and apply this model to price patents on agricultural innovations. Third, we recognize

that university technology-transfer o¢ ces can choose the timing of their sale of the license.

Therefore, we calculate option prices over a number of expiry dates (years between the li-

cense sale and the patent�s expiry) to uncover any non-linearities in the relationship between

license prices and the timing of a license-auction. In doing so, we o¤er a means by which

university-technology transfer o¢ ces may be able to value discoveries by university-based

researchers in a more transparent, e¢ cient way.

We �nd that prices for licenses to agricultural innovations appear to be priced as if

producers recognize the path-dependency inherent in patent values. Moreover, because of

this path-dependency, we �nd some evidence that the sensitivity of license prices to key

model parameters (volatility, mean reversion and growth rates) tends to be highly non-

linear, unlike prices determined using a non-path dependent model. Building a market for

licenses in which innovations are priced e¢ ciently, and the incentives to innovate are aligned

with those to commercialize innovations, requires participants on both sides of the market
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to understand how license values are determined in an economically-justi�able way.

Our study contributes to to the literature on licensing patents on agricultural innovations

in a number of ways. First, we introduce a simple and �exible, yet realistic model for patent-

license pricing to the agricultural sector. Second, our �ndings provide a critical tool for

university technology managers responsible for pricing innovations from university faculty.

Third, our patent-license pricing model addresses a key weakness in existing markets for

agricultural innovations � the lack of a clear, transparent price that both parties to the

transaction can agree is economically justi�able. Just as the creation of the Black-Scholes

model some 40 years ago provided the platform for explosive growth of the �nancial options

and derivatives markets, our tool may provide a catalyst for greater liquidity in the market for

food innovations. Although our speci�c example concerns new apple varieties, our �ndings

are su¢ ciently general to be of interest to a wide variety of university technology managers

charged with generating as much revenue as possible from their research program.

The rest of the paper is organized as follows. In the next section, we provide some

background on the legal and institutional environment surrounding patent licensing by uni-

versities. In a third section, we describe two patent valuation models and an empirical model

of the data generating process for the returns to owning an agricultural patent. We then

describe the data used in our empirical application and the assumptions governing the appli-

cation of each model in a fourth section. In section �ve we present the results obtained from

each valuation method, and discuss some implications for both sellers and buyers of patent

licenses. We conclude in the sixth section and suggest some avenues for future research.

2 Background on Licensing University-Based Innova-
tions

There are many potential explanations why universities are licensing more and more inno-

vations to commercial enterprises. First, changes in public policy that allow universities
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to bene�t �nancially from the output of federally-funded faculty labs has opened the door

for virtually all universities to create administrative positions, technically and generically

referred to as technology transfer o¢ ces (TTOs), to serve as liaisons between researchers

and private-sector �rms. In 1980, only 25 universities reported operating TTOs, while there

were over 200 by 1990 (Mowery et al., 2001). Previous to the 1980 Supreme Court decision

in Diamond versus Chakrabarty, university researchers could not patent broad discoveries of

speci�c molecules and organisms. With this decision, the commercial potential of the entire

�eld of biotechnology was revealed to university researchers. Later that year, passage of

the Bayh-Dole Act (The Patent and Trademark Amendment Act of 1980) ceded intellec-

tual property rights to university research from the federal government to universities. In

1984, PL 98-620 further expanded the rights of universities regarding the type of research

that could be patented and licensed and provided more �exibility as to who universities

could assign these rights to (Henderson, Ja¤e and Trajtenberg 1998). In 2000, the Tech-

nology Transfer and Commercialization Act further updated regulations regarding licensing

federally-funded research to re�ect new technologies in entirely new industries. Whether the

successive relaxation of federal control over publicly-funded research is responsible for the

growth in patenting, however, is still an open empirical issue (Mowery et al. 2001).

Second, greater opportunity for �nancial bene�t was coincident with greater need for

funding. Sharp reductions in public funding for post-secondary education in the United

States has forced university administrators to look toward patent licensing as an alternative

source of operating and endowment funds. E¤orts to pro�t from licensing research, however,

are not always � or even typically � successful. Trune and Goslin (1998) �nd that fully

60% of research universities lose money on their TTOs. Using more recent data, Bulut and

Moschini (2006) show that between 1998 and 2002 the top 20 universities were responsible

for some 83% of license revenue. Moreover, Henderson, Ja¤e, and Trajtenberg (1998) and

Mowery and Ziedonis (2002) document a remarkable decline in the �quality�of the patents
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licensed in the surge following passage of Bayh-Dole.

Third, starting in the early 1980s, �rms began to recognize the advantages of building on

both basic and applied research coming out of universities. Underwritten by major research

universities such as Stanford, Columbia, MIT or U. C. Berkeley, academic research comes

with an implicit warranty, or at least an assurance of quality inputs.

Despite opponents of Bayh-Dole who argue that publicly-funded research should be in

the public domain by its very nature, there are strong economic arguments favoring licens-

ing university research (Rubenstein 2003). First, once the patent is �led, the nature of the

innovation is fully and completely disclosed to other researchers. Second, because the in-

novation met the criteria required to be awarded a patent, the science has been deemed to

be �...new, useful and nonobvious.�Third, by awarding exclusivity to the buyer, thereby

reducing fears that others will free-ride on the research, the overall returns to the innovation

may be greater than if rights were granted in open-source form. Fourth, the risk to license

buyers is lower if the innovation is backed by either a government agency or major research

university as both have an incentive to uphold the integrity of the research-and-discovery

system. Fifth, federal agencies and universities may be able to select licensees that would be

more successful in commercializing the innovation as they are not bound by either previous

business relationships or vertical-ownership restrictions. Consequently, we would expect the

social returns to licensed university research to be signi�cantly positive.

Historically, publically-funded universities and research centers developed new varieties

for many agricultural commodities and made them freely available to end users. Patented

cultivars have become very common for various annual crops, and in recent years we are

seeing a dramatic rise in patented fruit varieties, most notably with apples (see Brown and

Maloney, 2009). Many of the patented apple varieties that exist today were developed and

are promoted by European organizations such as Better3Fruits, Consorzio Italiano Vivaisti,

International Fruit Obtention, Inova, Kiku Ltd., and Varicom, among others. In addition,
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there have also been some patented apple varieties introduced by organizations in New

Zealand (e.g., ENZA) and by university breeding programs (such as Cornell Univeristy, the

University of Minnesota, and Washington State University) in the United States.

The transition to patented apple varieties, relative to patented seeds for annual crops,

presents a more complex set of economic issues for plant breeders and growers. The most

important di¤erence relates to lag between the time decisions are made about new variety

selections and the time when a fruit can be marketed. Over this time period there are

a number of factors that could change the economic conditions for the new variety. For

example, new varieties will continue to be introduced and subsequent introductions may

easily provide substantial improvements (in terms of production, storage capacity, or market

acceptance). Growers invest a signi�cant amount of money each time they plant a new

orchard and it represents a long-term �nancial commitment. In the case of a patented fruit

variety, the grower also needs to consider the additional cost of the patent as well as the

terms of the license as part of the decision process. The TTO�s also need to be cognizant of

these terms of the license in their e¤orts to maximize revenues for the innovations created by

universities. The value of the payment for the patent, however, is calculated in a relatively

ad hoc way with no formal valuation model to guide the process. Clearly, pricing new

plant technology to industry is an option-valuation problem that has not been solved by the

principals involved.

3 Model of Patent Valuation

3.1 Overview

Our real-option model of patent valuation compares two alternative valuation methods, under

di¤erent assumptions regarding the important sources of uncertainty governing patent values.

We �rst consider a relatively standard risk-neutral valuation model (Cox, Ingersoll and Ross

1985) in which the option can only be exercised on the data of expiry (European option
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assumption) and the duration of cash �ows does not depend on the duration of investment.

We then extend our valuation model to incorporate more realistic assumptions that may

be important in determining optimal patent values: (1) the option to exercise before expiry

(American option assumption), (2) the co-dependency of cash-�ow duration and post-patent

investment duration, and (3) the value of the embedded option to remove patented trees

and replace them with alternatives. Each of these additional assumptions implies that the

standard risk-neutral valuation method must be extended to include path-dependency in

a manner similar to Longsta¤ and Schwartz (2001). We then describe the Longsta¤ and

Schwartz (2001) least-squares Monte Carlo (LMS) technique as it applies to the valuation of

agricultural patents as complex-options.

3.2 Modeling the Returns Process

If patents are nothing more than real options, then patent prices are based on the value of

an underlying returns index. There are �ve essential elements that contribute to the value

of a patent: (1) the cash �ows to the patented innovation, (2) the length of time to patent

expiration, (3) the post-patent investment required to generate cash �ows, (4) the volatility of

the underlying cash �ows, and (5) the risk-free interest rate. How these elements interaction

to in�uence patent value, and the model used to price the patent, however, depends on the

nature and timing of the cash �ows and post-patent investment. If investment, and hence

option exercise, is assumed to be a one-time event with a speci�c date, then pricing models

for European options are appropriate. If, however, exercise can occur at any date chosen by

the patent purchaser, then the value of the option is path-dependent and valuation models

for American-type options are more appropriate.

Regardless of the valuation method, however, the core of each approach involves assump-

tions regarding the path of returns to the innovation (the underlying security in options

terminology). Others assume returns to the innovation evolve according to a Geometric
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Brownian Motion (GBM) process that is standard in the options-valuation literature, but

often not descriptive of the actual process followed by returns. For each model, we assume

instead that returns to a demand-side agricultural innovation evolve according to a mean-

reverting GBM with a poisson jump process (Merton 1976; Jorion 1989, Naik and Lee 1990;

Schwartz 2004). Returns are likely to be mean-reverting as GBM assumes returns can vary

away from the mean without bound �an assumption that is untenable in a relatively com-

petitive commodity market in which new innovations are constantly coming to the market

and driving prices back toward the average cost of production. Returns are also likely to ex-

perience Poisson jumps for both biological and economic reasons. Biologically, new varieties

often experience problems only after they have been in the ground for a certain amount of

time. Pests, post-harvest degradation or unsuitability to speci�c soil types are all examples

of problems in the past that have reversed the fortunes of once-promising new specialty crop

varieties. Economically, the most important reason why returns may experience a negative

jump is the development of a new variety that proves to be superior to the previous inno-

vation. Almost by de�nition, hybrid crops are developed from the best traits of all existing

varieties, so success is only achieved if old varieties are rendered obsolete in the consumer�s

mind.

Consequently, the most general form of the returns equation is written as:

dRt=Rt = (�(R
m
t �Rt)� ��)dt+ �dz + �dq; (1)

where � is the rate of mean reversion per unit of time, dt, � is the standard deviation of

the di¤usion process, dz is an increment of a standard Weiner process with zero mean and

variance equal to dt, Rt is the cash �ow from the new product with mean Rmt , jumps occur

according to a Poisson process q with average arrival rate � and a random percentage shock,

'. The random shock, in turn, is assumed to be log-normally distributed with mean '�0:5�2

and variance, �2. The Poisson process q describes a random variable that assumes a value
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of 0 with probability 1� � and 1 with probability �.

Estimates of (1) are obtained by maximum likelihood estimation over the entire sample

data set, using the likelihood function:

L(Rtj�) = �T�� T

2
ln(2�) (2)

+
TP
t=1

ln

"
NX
n=0

�n

n!

1p
�t + �2n

exp

�
�((dRt=dt)=Rt � �(Rmt �Rt)� n�+ �=2 + n�2=2)2

2(� + �2n)

�#
;

where n is a number of jumps that spans the number of observed shocks in the data (Jorion

1989). In (2) we approximate the change of dRt=dt with a discrete change: dRt = R(t) �

R(t� 1). In the next section, we show how parameter estimates from (2) are then used to

forecast returns to the new variety and, hence, determine equilibrium prices for patents on

the innovation. Given this stochastic returns process, the real option implied by this process

is then valued using well-understood Monte Carlo option valuation techniques as explained

next.

3.3 Patent Pricing Under Risk-Neutral Valuation

Proper pricing of patents is critical for their successful trade. If the prices at which patents

are licensed is somehow wrong from the perspective of the buyer or seller, then the likelihood

of an active market for agricultural innovations developing in the future is very low. If the

uncertainty inherent in licensing a new variety represents a hedgeable risk, or one that

growers can transfer by trading an underlying futures contract, then it would be possible

to price patents using a traditional, no-arbitrage, Black-Scholes pricing model. However,

innovations are not tradable assets. Without an e¤ective hedge, it is necessary to consider

the market price of risk and devise a way of estimating its impact on patent prices.

We account for the market price of risk using the risk-neutral valuation model of Cox,

Ingersoll and Ross (1985). Applying this model involves a three-stage algorithm. First, the
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returns process must be reduced to a martingale, Q, (essentially, a zero-drift stochastic

process) by estimating the distribution governing the di¤usion of returns and removing all

systematic components from the observed process. This step �"risk neutralzing" the process

�means that the best guess of returns at time t1is its value at t0, or: E[Rt1 ] = Rt0. By

removing the predictable components of each part of the returns process, we change the

Weiner process dz to dv, where v is a Q-Weiner process (Alaton, et al. 2004). The second

step consists of forming an expectation of the intrinsic value of the patent under the Q

measure de�ned by the risk-neutralized process. In the third step we discount the expected

payo¤ value back to the current date at the risk-free rate. This discounted expected payo¤

is the market equilibrium price of the patent.

More formally, given a constant market price of risk, the martingale that de�nes total

(deterministic and random) time-variation in the underlying returns index becomes:

dRt=Rt = dRmt =R
m
t + (�(R

m
t �Rt)� ���  t�)dt+ �dv + �dq; (3)

where dv is now a Q-Wiener process and  t is the market price of risk, expressed on a

per unit basis. With this function, we then use the parameters estimated above to �nd the

expected returns value at an "expiry" date T , given a value for the market price of risk.

Finding the market price of risk, however, represents a signi�cant empirical problem.

Typically, researchers attempt to calibrate the market price of risk using price series

from similar instruments that are traded on organized exchanges. For new apple varieties,

however, no such exchange exists, nor do we anticipate that the market will develop su¢ cient

to support such an exchange. Nonetheless, we are able to simplify the problem somewhat.

It is a basic tenet of asset pricing that a portfolio of two derivatives written on Rt can be

constructed such that their combined return is equal to the risk-free rate. Thus, if we de�ne

the rate of drift in (3) as � = dRmt =R
m
t +(�(R

m
t �Rt)���), the return to the risk-neutralized

process must be equal to the risk-free rate: �� t�t = r. Using any asset pricing model �the
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discrete-time capital asset pricing model (CAPM) for example �it must also be the case that

the return to any particular asset must be equal to the risk-free rate plus a security-speci�c

market-risk premium: � = r + �(rm � r);where rm is the return to the market portfolio,

and � measures the systematic risk of the security. In the CAPM, however, we know that

rm � r =  t so the risk premium to any asset is determined by the market price of risk

and the security-speci�c measure of systematic risk. Systematic risk, in turn, depends on the

covariance of asset and market returns and the variance of market returns: � = �BM=�
2
m;

so any security with returns that are statistically independent of the market must have a

zero market price of risk. Because this is indeed likely to be case for the returns to new

varieties of apple, we set  t = 0 in (3) and calculate the equilibrium price by discounting

the expected terminal value of the patent at the risk free discount rate. This terminal value,

however, depends critically upon the assumed expiry date and, in fact, if one exists.

3.4 Empirical Patent Pricing Model: European-Option

The theoretical framework described in the previous section is used to price a complete chain

of patent prices for a hypothetical new apple variety, where the chain is de�ned over a number

of discrete expiry dates. Given the underlying returns index and a time to expiration, the

other elements needed to price patents on new apple varieties are the designated "strike"

returns level and the risk-free rate. For any real option, the strike returns level is de�ned as

the amount of the investment required to exercise the option, or to plant trees and generate

positive returns. In this section, we assume this decision is made at one point in time. In the

next section, we consider a more general model in which the option to invest, or to abandon

the license, can be made at anytime. For illustrative purposes, we use investment amounts

estimated for a new variety of apple in Washington State (Gallardo and Galinato 2012) and

estimate cash �ows using net returns for Cripps Pink apples in Washington State (WGCH

2012) . We assume a risk-free rate of interest, r, of 3%, which is re�ective of short-term
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interest rates in the fall of 2012. However, it is important to note that the choice of the

risk-free interest rate is not one of the more important variables in�uencing the value of the

option.

In the absence of a closed-form solution to the option pricing problem, Monte Carlo

simulation procedures are used to estimate the fair value of call options at each strike level

for various times to expiry. Monte Carlo simulation has been used extensively in the literature

in valuing options as it is an e¤ective and easily generalizable way to value an option where

the underlying index follows a complex process. The steps in the Monte Carlo simulation are

as follows. First, the temporalQ-Wiener process in equation (3), dv, is speci�ed as �t
p
twhere

�t~N(0; 1) and t is the time to expiration of the option expressed in days. Second, the jump

di¤usion process described in equation (3) is also modeled within the same Monte Carlo

algorithm, where the two stochastic elements of the jump di¤usion process are the arrival

rate and the distribution of the random shock. Hence, for a given time to expiration t, a

Monte Carlo simulation is run using 10,000 draws from the distribution of �t, the distribution

governing the arrival rate of the jumps in the jump di¤usion process, and the distribution

of the random shock. The Monte Carlo simulation produces a distribution of option payo¤

values as expressed in equation (3). The mean of the payo¤ distribution is then discounted

back to the present by the time to maturity t using rate r yielding the option value. Therefore,

in general, the value of the call option at a given expiry date t and strike level x, C(t), can

be expressed as:

C(t) = e�rt
1Z
x

f(Rt)(Rt � x)dRt; (4)

where the integral is approximated using the Monte Carlo algorithm. We calculate the value

of the option for a range of parameter values: For the expiry date, the mean rate of returns

growth, the rate of mean reversion and the volatility of the returns series. In this way,

we determine the "Greeks" for our numerical option procedure and compare to the values
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obtained under a continuous-exercise alternative.

3.5 Empirical Patent Pricing Model: American-Option

If the option can be exercised at any date chosen by the patent holder, then the valuation

problem becomes an optimal stopping problem. In other words, at each potential exercise

date the holder is assumed to compare the immediate returns to exercise with the discounted

value of cash �ows under continuation (non-exercise). As soon as the returns to exercise

exceed the expected present value of returns from continuation, the holder will optimally

exercise the option, or use his or her right to invest in the new apple variety. Because the

exercise date depends upon current versus expected discounted future returns, the option

is path-dependent so the standard approach for European options descrbed above cannot

be used. Rather, we use the Least Squares Monte Carlo Simulation (LMS) approach of

Schwartz and Moon (2001), Longsta¤ and Schwartz (2001), Schwartz (2004) and Miltersen

and Schwartz (2004) to generate approximate values for the patent under a number of dif-

ferent parametric assumptions.2 We compare the value of the patent calculated this way

to the value calculated under the European expiry assumption above in order to obtain an

estimate of the value of the "early exercise" option inherent in a patent for any long-lived

investment in a new plant variety.

LMS valuation is by now well understood as an accepted approach to path-dependent

option valuation so we only describe the intuition that underlies the algorithm here.3 The

fundamental problem addressed by the LMS algorithm is that when exercise is at the dis-

cretion of the holder, the value of the option depends on the conditional expectation of cash

�ows under continuation. Simulating the path of net returns using Monte Carlo methods

2Others developed similar approximation models for pricing path-dependent options (Carriere 1996;
Broadie and Glasserman 1997a, b, c; Broadie, Glasserman and Jain 1998; Broadie et al. 1998) but the
LMS algorithm represents the simplest and fastest algorithm to date.

3Interested readers are referred to Longsta¤ and Schwartz (2001) for formal proofs that the option values
that emerge approximate arbitrage-free prices consistent with the logic underlying any option value model
(Black and Scholes 1973; Merton 1973).
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and using least squares to estimate the cash �ows under continuation produces best, linear,

unbiased estimates of the conditional expectation of returns across the entire distribution

of possible returns paths. Once the incremental investment required to continue the project

is greater than the present value of the present value of expected returns, the option to

abandon is exercised the value of the project is zero from there forward. Determining the

value of the option under each path using backwards induction solves the optimal stopping

problem and, when these values are discounted back to the present at the risk-free rate of

interest and averaged across all returns paths, produces an approximation to the current

value of the option. When the number of possible exercise dates is large, the algorithm is

relatively complex and the values likely to diverge signi�cantly from those expected under a

�xed-exercise (European) assumption. In our application, however, we assume a relatively

small number of potential exercise dates (monthly), both for realism and tractability.

Speci�cally, growers are assumed to be able to exercise their option under the patent on

the �rst of each month under patent-expiry assumptions of one year, three years, �ve years,

ten years and �fteen years. Although these expiry choices are admittedly arbitrary, they

re�ect the range of dates at which a decision must be made whether to continue to invest in

developing the new variety, or abandoning the patent in favor of either an existing or another

new variety. In our stylized model, therefore, we have exercise dates of t = 1; 2; 3:::T , after

which time the new trees become fully bearing and cash �ows re�ect the full pro�tability of

the new variety.

Our assumed process for cost-to-completion is based on Schwartz (2004). Because actual

costs are not observable, the process cannot be estimated as it is for returns. Therefore,

we base our cost process on reasonable assumptions regarding volatility and single-period

observations of establishment and production costs for a similar type of apple (Gallardo and

Galinato 2012). Speci�cally, the cost-to-completion process is assumed to be stochastic and

is written:
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dK = �Idt+ �(IK)1=2dt; (5)

where I is the periodic investment (control) and K is the cost to completion, or the total

amount of capital required (Schwartz 2004). In this expression, cost-to-completion falls at

a rate I, but varies according to the degree of "technical uncertainty" (Pindyck 1993) that

is resolved through further investment, learning and experience with the new variety. While

investing in a new apple variety involves less technical di¢ culty that developing a new drug

or electronic device, variation in soil type, moisture, pests and post-production problems

all represent sources of uncertainty that are unique to agricultural products. Uncertainty

of the agronomic form is nonetheless resolved in the same way as other types of technical

uncertainty: Through learning and experience.

Based on this cost process, the LMS algorithm proceeds as follows. In the �rst step,

we forecast N paths of T returns using the process described in (3).4 Next, we generate N

paths of T values for the cost-to-completion using (5). In the third step, for all paths in

which investment has not been completed, nor has the investment already been abandoned,

we estimate the conditional expected return at each possible exercise date by regressing

the value of the project (discounted) on a series of basis functions of the state variables of

the problem (current returns). While Longsta¤ and Schwartz (2001) describe a range of

basis functions that can serve this purpose, we follow Schwartz (2004) and use a high-degree

polynomial function (six terms). We then compare the �tted values from these regressions

to the incremental value of investment required to maintain the project at each possible

exercise date. If the amount of investment required is greater than the conditional expected

value, the option to abandon is exercised immediately and the value of the project is zero

from that point forward. We follow this process recursively, from the last exercise date to the

�rst, to determine the optimal stopping point for the investment. Fourth, we determine the

4Our Monte Carlo simulation uses 10,000 paths.
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value of the option along each path, which can take on three types of values: (1) a multiple

of the cash �ows expected at the expiry date of the patent if the project is never abandoned,

(2) the value of the project at the optimal stopping point, before the decision to abandon is

taken, or (3) zero if the project is abandoned immediately. For the �fth and �nal step, we

discount the value determined in step 4 to the current period at the risk-free rate, average

the present values across all paths and interpret the result as the optimal patent price.

As in the case of the �xed-exercise model, we calculate these "American" patent price over

a range of values for the returns growth rate, the rate of mean reversion, and the volatility of

the returns series. Although there are a number of other parameters that may be of interest,

these three (in addition to the expiry date) represented a minimal set that describe the

most important di¤erences between European and American-option assumptions for patent

prices.

4 Data Description

There are few fruit patented fruit varieties with a su¢ cient shipment history to allow esti-

mation of a representative price process. Pink Lady (also known as Cripps Pink) apples,

however, provide a unique opportunity to conduct a case-study of how proprietary rights to

an apple variety should be valued in the market. Our price data are from the Washington

Growers Clearning House (WGCH) which collects detailed, monthly data on FOB prices and

shipments from the Yakima Valley in Washington State. The WGCH price and shipment

data describe a sample period of 134 months between 2000 and 2011 �a period su¢ ciently

long to allow the Cripps Pink apple to establish a reputation in the consumer market, earn

super-normal pro�ts for growers licensing trees, and thereby to attract other new, competitive

apple varieties. In particular, our data spans the period during which the Honeycrisp apple

was introduced (beginning in September 2009). Honeycrisp is another proprietary variety

licensed by the University of Minnesota to a number of grower cooperatives throughout the
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U.S. Honeycrisp apples immediately established a reputation among consumers for a crisp

texture, sweet taste and large size that are apparently preferred. FOB prices for Honeycrisp

apples have averaged nearly three-times the levels achieved by Cripps Pink apples over a

similar time period, and have taken market share from all apples, whether proprietary or

not. In terms of the price process for Cripps Pink apples described above, the introduction

of Honeycrisp constitutes a discrete event that we model through the Poisson-jump term.

Table 1 provides some summary evidence regarding the price-path and shipment levels

for our new apple variety grown in Washington state, while �gures 1 and 2 show the price

and quantity paths, respectively, for both Cripps Pink and Honeycrisp apples. The data

in this table and �gures are relatively typical for a new apple variety: Both prices and

shipments begin from a low level and grow to somewhat of a steady-state level over time,

but exhibit considerable volatility both within and between years. Figure 1 suggests that the

introduction of Honeycrisp in 2009 may represent a signi�cant competitive event to growers

of Cripps Pink apples as Cripps Pink were no longer the newest apple in the store, but this

simple graphic may re�ect other factors as well. We test this more formally below.

[table 1 in here]

[�gures 1 and 2 in here]

We augment the price and shipment data with establishment and production cost data

for comparable apples (Gallardo and Galinato 2012). Although our focus is on Cripps Pink

and we parameterize the stochastic returns process with Cripps Pink data, no establishment

cost or production cost data were available for this variety. Therefore, we assume the cost per

tree values for Cripps Pink are the same as for Honeycrisp, and scale the per acre cost values

to observed densities for Cripps Pink. Conversations with extension economists suggested

that this was a reasonable way to proceed in the absence of data speci�c to Cripps Pink. We

assume that the cost-to-completion is entirely invested over a �ve-year period, and that the

patent expiry date is either 1, 3, 5, 10 or 15 years in the future. Since 1994, patents extend
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for a period of 20 years after initial �ling, but licenses are often not granted until well after

the initial �ling period. We demonstrate the sensitivity of patent prices to variations in the

expiry date in the results section that follows.

5 Results and Discussion

In this section, we present the results obtained from estimating the stochastic process for

Cripps Pink apple returns, and test the importance of the introduction of Honeycrisp apples.

After establishing the time-series properties for our focus variety (Cripps Pink) we then

present the results from the risk-neutral patent valuation algorithm and compare the results

with those obtained under alternative assumptions that require path-dependent valuation

methods (Longworthy and Schwartz 2001). We complete the section with a sensitivity

analysis to key process parameters, most importantly the timing and importance of the

development of a competing apple variety (Honeycrisp).

Table 2 presents the parameter estimates for the stochastic price-process in (2). We �rst

convert prices to per-tree net returns by subtracting the per-pound costs of production and

multiplying by a �xed per-tree yield value. We then remove the month-and-annual �xed

e¤ects that are evident from �gure 1 and test for the e¤ect of Honeycrisp introduction on

Cripps Pink apple returns. Whether accounting for the Honeycrisp introduction through

either a binary variable that assumes a value of 1 after Honeycrisp was �rst introduced, or

by including Honeycrisp volume directly, the result was the same. Namely, after controlling

for these other temporal factors, the introduction of Honeycrisp did not have a signi�cant

e¤ect on Cripps Pink returns. We interpret this result as implying not that Honeycrisp was

unimportant, but rather that the e¤ect is picked up by the month- and annual-�xed e¤ects.

[table 2 in here]

Consequently, the parameters in table 2 do not include a speci�c variable measuring the

introduction of a competitive apple, but rather a generic shock that captures either positive or
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negative shocks to the price process. We begin by estimating the most parsimonious version

of (2) and test against successively more comprehensive versions. Comparing a Brownian

motion to a mean-reverting Brownian motion process with a likelihood-ratio (LR) test yields

a chi-square statistic of 22.89 (critical value with 1 degree of freedom is 3.841) so we easily

reject the simpler speci�cation. Next, we compare a mean-reverting process to one that

includes a Poisson jump term, again using a LR test. This comparison yields a chi-square

statistic of 87.516 (critical value with 3 degrees of freedom is 7.815) so we again reject the

less-comprehensive speci�cation. Therefore, the last two columns in table 2 represent the

parameters used for our option-pricing algorithm. These parameters imply that Cripps Pink

returns diminish by approximately $0.10 per tree per month, variations away from the mean

returns diminish only very slowly over time, and that there is a roughly 36% probability of

returns falling by $0.34 per tree during any given month. In the analysis below, we conduct

sensitivity analysis with respect to these key parameters.

The results in table 3 show patent prices obtained under our base scenario, and their sen-

sitivity to variation in returns growth.5 We show both American and European patent prices

for comparison purposes. The base scenario is de�ned as the combination of expiry dates and

growth rates that most nearly approximates that observed in practice. By comparing our

estimated patent price with actual license contracts, we can get a sense of how growers are

actually bidding for patents, that is, whether they are bidding as if there is a �xed exercise

date, or whether the option is instead path-dependent. Although there is no public data base

of license prices, recent experience suggests that licenses are valued at approximately $2.15

per tree, which consists of a $1.00 �xed fee and 5% of revenues. Because licenses tend to be

sold several years after the patent is issues, the most realistic base scenario assumes a growth

rate of � = �0:10 and a time-to-expiry of T = 10: Based on these assumptions, the patent
5The growth rate in the base scenario is assumed to be -0.06, which is close to the estimated rate of -0.05.

These values were chosen as they present the best illustration of the option strings obtained over a large
number of growth-rate values.
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price under a �xed exercise date assumption (European) is $0.711, while it is $2.198 under

a continuous-exercise assumption. Clearly, the American-option assumption more nearly

approximates that observed in practice. Growers, however, appear to impute a faster rate of

returns-dimunition than that estimated with the Cripps Pink price process. Price estimates

for other growth rates and expiry dates show a similar, large di¤erence between the values

obtained under European and American exercise assumptions. We interpret this di¤erence

as measuring the value of the �exibility of being able to abandon the investment at any time

prior to completing the investment.

[table 3 in here]

Examining the pattern of option prices under alternative growth-and-expiry assumptions

reveals an interesting comparison between the European and the American models. While

the �xed-exercise assumption yields a very conventional pattern of prices as time to expiry

rises �patent prices fall uniformly �under continuous exercise we see something quite dif-

ferent. For low growth rates �10% or below �patent prices similarly fall with the time to

expiry as expected. However, when returns fall more slowly, the value of the patent can

actually rise as the time to expiry increases. After the investment is fully paid o¤ (5 years),

all returns to growing the apple are pure pro�t (over investment costs), so when returns

stay positive for a longer period of time, it is possible that the present value will in fact rise

with the expiry date. Said di¤erently, the option to abandon becomes more valuable as the

opportunity cost of doing so rises. Second, note how the patent price is concave in the rate

of growth for the 10 and 15-year expiry dates, but diminishes linearly for 1, 3 and 5 year

expiry dates, and all of the European-option scenarios. Linearly-declining patent prices with

the rate of growth is the conventional outcome, so what is di¤erent about the long-horizon

American option prices? When buying a patent, there are essentially two assets of value:

a right to the future stream of income to the variety, and the right to abandon the project

should it become unpro�table. For a �xed expiry date, and for dates prior to the pay-o¤
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date for continuous exercise, the value of the patent is dominated by the former: A smaller

stream of income will lower the value of the patent. After the cost-to-completion is paid o¤,

however, the value of being able to abandon the project rises as the growth rate of returns

falls. The larger the avoided-loss, the larger the value of the option to do so.

Other sensitivities also highlight the sharp contrast between path-dependent and non-

path-dependent patent prices. We allow the rate of mean reversion (�) to vary in table 4,

and observe a similar pattern to that shown in table 3. Namely, with a �xed expiry date,

prices fall uniformly as the rate of mean reversion rises across all expiry dates. This is to be

expected as negative reversion to the mean implies that returns can grow without bound in

response to a positive shock. Because the optionality of a patent allows growers to avoid the

opposite occurence �returns that fall �the option price must be higher for negative rates of

mean reversion. If we allow for continuous exercise, however, we again see that patent prices

fall and then rise in the rate of mean reversion for expiry dates of 10 and 15 years. As in

the previous case, these expiries are beyond the point where the cost-to-completion is paid

o¤, so option prices can be higher with faster mean-reversion because this implies greater

stability. Option values are generally lower with less volatility.

[table 4 in here]

We examine how general this volatility e¤ect is by varying the standard deviation of the

returns process over a range of plausible values. These results are shown in table 5. Again,

the non-path-dependent prices show very conventional sensitivities in most cases. Greater

volatility leads to higher license prices at all expiry dates, but prices rise with time to expiry

for the highest volatility rates in the table (0.20 and 0.25). Beyond a certain point, the higher

option premium associated with truncating the distribution of returns at the negative end

outweighs the e¤ect of discounting. Path-dependent prices, on the other hand, show highly

non-linear sensitivities with respect to volatility. At each expiry date, prices are concave in

volatility. That is, prices rise to a certain point and then fall if volatility becomes too great.

21



Two e¤ects are at work here. First, note that all prices are higher than their corresponding

non-path-dependent values because of the value of the ability to exercise the option any time

the conditional expected returns fall below the incremental investment required. This value

rises in volatility because the probability of the conditional expected return falling below

the incremental investment value higher for greater levels of volatility. Beyond a threshold

point, however, the likelihood of abandoning a potentially-viable project early rises. Recall

that the value of an abandoned project is zero. Therefore, the higher the level of volatility,

the more abandonded projects are averaged into the Monte Carlo pricing algorithm and the

value of the option falls accordingly. Prices are also concave with respect to expiry. With

zero volatility, the conventional result obtains: Longer times to expiry cause the option

price to fall due to the discounting process. At higher levels of volatility, and low rates of

mean-reversion, however, there is a greater probability that returns will grow quickly in the

future. Higher conditional expected returns increase the value of continuation, or of not

abandoning the project, and hence, the higher threshold value before the option is exercised.

[table 5 in here]

Our �ndings hold many implications for both innovators and licensors. Because most

markets for licenses to agricultural innovations are thin, there is no "market" price as there

is no liquidity without competitive bidding. Consequently, innovators need a model to de-

termine what an economically-justi�able price would be. Our model provides an estimate of

what a justi�able price would be. Moreover, we show that simple application of conventional,

European-option pricing models like the Black-Scholes, would dramatically undervalue the

innovation if growers are indeed able to exercise their option under the patent in a continuous

way. Under our "most likely" parametric assumptions, innovators would earn roughly three-

times the revenue under an American-option pricing model relative to an European-option

alternative. On the buying side, growers should enter negotiations similarly well-informed

of the true value of what they are bidding on. Because our model provides a transparent,
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mutually-agreeable accounting for the economic value of licenses, our �ndings may allow

for greater liquidity in the market for university technology licenses. Our comparative sta-

tic results also inform participants on both sides of the market the precise consequences of

faulty assumptions regarding the market for the innovation. Bidders cannot assume simple

linear (or even monotonically increasing or decreasing) relationships between prices and such

variables as volatility, drift, mean-reversion and time to expiry. Rather, bidding on licenses

requires that bidders obtain accurate information and adjust their bids accordingly.

6 Conclusion

This study investigates the optimal pricing of licenses on university-created agricultural

innovations. Our pricing model relies on the assumption that patents provide the holder

the right but not the obligation to either undertake the investment required to bring the

innovation to market, or to abandon it before fully committing the necessary capital. As

such, patents are derivative securities, or options, on the underlying innovation. Unlike

options with a �xed exercise date, however, the option implied by holding a patent can be

exercised any time at the discretion of the holder. Consequently, the value of licenses on

patents to an agricultural innovation are path-dependent, or depend on the entire history of

returns and not just those that prevail on one speci�c day.

We develop risk-neutral option pricing models under both a �xed-exercise (European) and

a path-dependent (American) assumption, and compare their values both to each other and

to those observed in real-world bidding. We estimate the stochastic process that underlies

each model using data from a proprietary apple variety that was developed a number of years

ago (Cripps Pink) and has been sold commercially for over 10 years. Because the process that

best �ts the Cripps Pink data is a mean-reverting Brownian motion with drift and a Poisson

jump term, standard Black-Scholes option pricing models are not available. Therefore, for

the �xed-exercise model, our pricing model uses a Monte Carlo solution algorithm, while
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we use a least squares Monte Carlo (LMS, Longsta¤ and Schwartz 2001) model for the

path-dependent option.

We �nd that the path-dependent model most nearly approximates the license prices ob-

served in reality. If this is indeed the case, then neither buyers nor sellers in the license

market can rely on conventional option "Greeks" or comparative statics to key model para-

meters. While conventional sensitivities tend to be monotonic in either volatility (except in

the case of volatility smiles), mean-reversion or growth-rates, we �nd that the sensitivities

for path-dependent option prices are highly non-linear and are indeed convex (concave) over

ranges that likely span values that can arise in the real-world. Consequently, developing a

more liquid market for licenses to agricultural innovations requires broad dissemination and

agreement on a model similar to ours.

Future research in this area should consider other agricultural products beyond the apple

variety considered here. Many di¤erent types of innovation are being licensed by universities,

and the license prices will be unique to each. Further, our model makes many parametric

assumptions in the absence of speci�c data on cost-to-completion and production cost. More

accurate data on the fundamental pro�tability of each variety and the investment required

to bring each to production would be necessary for wide-spread application of this type of

pricing model. Finally, more institutional data on the nature of the licensing process would

be helpful. While we understand that licenses are sold many years after the patent is applied

for, we have no speci�c information on the actual lag between �ling the patent and selling the

license. This information will be critical in determining license prices su¢ ciently accurate

to allow a trade to develop.
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Table 1: Summary of Pricing Data and Parameter Assumptions

Units Mean Std. Dev. Min. Max N
Volume 40 lb. cartons 83.851 82.192 0.000 301.00 134
Price $ / carton 27.507 10.514 11.31 65.53 134
Production Cost $ / carton 8.28
Establishment Cost $ �000 over 5 years 85.82
Yield lbs. / tree 35.03
Density trees / acre 723
Risk Free Rate % / year 3.00
Cost-to-Completion Volatility % / year 0.200
Source: Gallardo and Galinato (2012) and Washington Growers Clearing House (2012).

Table 2: Returns Process Estimates: Cripps-Pink Apples, WA State

Brownian Motion BM / Mean Reversion BM / MR / Jump
Estimate t-ratio Estimate t-ratio Estimate t-ratio

Growth Rate 0.3642* 24.6800 0.0056 0.1188 -0.1030* -2.2556
Volatility 0.0056 0.1060 0.3066* 8.3881 0.0249* 4.5934
Mean Reversion N.A. N.A. -0.3127* -5.0841 0.0030 1.4736
Poisson Probability N.A. N.A. N.A. N.A. 0.3648* 8.6636
Variance of Jump N.A. N.A. N.A. N.A. 0.9429* 6.5949
Magnitude of Jump N.A. N.A. N.A. N.A. -0.3448 -1.8197
LLF -121.5420 -110.0970 -66.3390
Note: A single asterisk indicates signi�cance at a 5% level.
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Table 3: Patent Price Estimates and Growth Sensitivity

American Exercise Option Pricing Model
Time to Expiry

Growth Rate 1 Year 3 Years 5 Years 10 Years 15 Years
-0.14 5.473 4.553 2.772 2.286 2.228
-0.12 5.705 5.224 3.548 1.627 1.505
-0.10 5.812 5.808 5.613 2.198 1.232
-0.08 5.998 6.217 7.065 6.424 4.354
-0.06 6.124 6.483 7.912 9.493 9.580
-0.04 6.136 6.637 8.251 10.040 10.044

Fixed-Expiry Date Option Pricing Model
Time to Expiry

Growth Rate 1 Year 3 Years 5 Years 10 Years 15 Years
-0.14 1.237 0.999 0.805 0.464 0.263
-0.12 1.261 1.063 0.893 0.575 0.367
-0.10 1.285 1.129 0.991 0.711 0.508
-0.08 1.310 1.201 1.098 0.877 0.701
-0.06 1.335 1.275 1.216 1.081 0.962
-0.04 1.361 1.354 1.347 1.331 1.321
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Table 4: Patent Price Estimates and Mean Reversion Sensitivity

American Exercise Option Pricing Model
Time to Expiry

Rate of Mean Reversion 1 Year 3 Years 5 Years 10 Years 15 Years
0.15 5.801 5.424 3.823 1.658 1.522
0.1 5.805 5.584 4.431 1.454 1.283
0.05 5.806 5.706 5.034 1.538 1.152
0 5.813 5.816 5.649 2.256 1.247

-0.05 5.819 5.898 6.109 3.542 1.936
-0.1 5.829 5.967 6.439 5.288 3.989
-0.15 5.836 6.041 6.653 6.401 5.973

Fixed-Expiry Date Option Pricing Model
Time to Expiry

Rate of Mean Reversion 1 Year 3 Years 5 Years 10 Years 15 Years
0.15 1.283 1.098 0.896 0.421 0.131
0.1 1.284 1.109 0.933 0.532 0.246
0.05 1.284 1.121 0.965 0.632 0.385
0 1.285 1.129 0.992 0.715 0.515

-0.05 1.286 1.139 1.015 0.779 0.616
-0.1 1.287 1.147 1.034 0.828 0.685
-0.15 1.288 1.154 1.051 0.863 0.731
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Table 5: Patent Price Estimates and Volatility Sensitivity

American Expiry Option Pricing Model
Time to Expiry

Volatility 1 Year 3 Years 5 Years 10 Years 15 Years
0 5.445 5.161 4.038 1.531 1.216
0.05 5.892 5.921 6.343 4.473 3.087
0.1 6.027 6.138 6.985 6.599 6.227
0.15 6.119 6.211 6.432 8.109 7.013
0.2 5.990 6.006 6.585 6.890 6.809
0.25 5.879 5.832 5.411 6.723 6.600

Fixed-Expiry Date Option Pricing Model
Time to Expiry

Volatility 1 Year 3 Years 5 Years 10 Years 15 Years
0 1.269 1.086 0.928 0.623 0.416
0.05 1.301 1.175 1.058 0.811 0.621
0.1 1.334 1.272 1.204 1.051 0.923
0.15 1.368 2.377 1.369 1.359 1.337
0.2 1.402 1.492 1.554 1.759 2.066
0.25 1.437 1.616 1.762 2.283 3.224
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Figure 1: Price Paths for Cripps Pink and Honeycrisp Apples: 2001 - 2012

Figure 2: Shipments for Cripps Pink and Honeycrisp Apples, 2001 - 2011
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