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Nonparametric Analysis of Technology and Productivity under Non-Convexity 

 

by 

Jean-Paul Chavas 

University of Wisconsin, Madison, WI 53706 

and 

Kwansoo Kim 

Seoul National University, Seoul, Korea. 

 

 

Abstract: This paper investigates the nonparametric analysis of technology under non-convexity. 

The analysis extends two approaches now commonly used in efficiency and productivity 

analysis: Data Envelopment Analysis (DEA) where convexity is imposed; and Free Disposal 

Hull (FDH) models. We argue that, while the FDH model allows for non-convexity, its 

representation of non-convexity is too extreme. We propose a new nonparametric model that 

relies on a neighborhood-based technology assessment which allows for less extreme forms of 

non-convexity. The distinctive feature of our approach is that it allows for non-convexity to 

arise in any part of the feasible set. We show how it can be implemented empirically by 

solving simple linear programming problems. And we illustrate the usefulness of the approach 

in an empirical application to the analysis of technical and scale efficiency on Korean farms.  

 

Keywords: technology, productivity, nonparametric, non-convexity  
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Nonparametric Analysis of Technology and Productivity under Non-Convexity 

 

1. Introduction 

Nonparametric analysis of technology and productivity has been the subject of much 

interest (e.g., Afriat, 1972; Färe et al., 1994; Varian, 1984). It has provided the basis for Data 

Envelopment Analysis (DEA) now commonly used in the investigation of productivity and firm 

efficiency (e.g., Banker, 1984; Banker et al., 1984; Ray, 2004; Cook and Seiford, 2009). DEA has 

been seen as an attractive approach for three reasons: it allows for a flexible representation of 

multi-input multi-output technology; it involves solving simple linear programming problems; and 

it can provide firm-specific estimates of productivity and efficiency. Yet, it has one significant 

limitation: it assumes that the feasible set is always convex (where diminishing marginal 

productivity applies everywhere). As such, DEA is not appropriate in the investigation of non-

convex technologies. How important are non-convexity issues in the analysis of productivity and 

firm efficiency? There are situations where non-convexity has significant implications for 

economics and management. For example, it is an important issue in the analysis of multi-product 

firms: non-convexity contributes to generating productivity benefits from specialization (e.g., 

Bogetoft, 1996; Chavas and Kim, 2007). This implies a need to develop empirical methods that 

can support the analysis of non-convex technology. Such methods are needed to examine 

empirically when and where non-convexity may arise.  

The objective of this paper is to propose a refined nonparametric method for the analysis of 

technology under non-convexity. Note that non-parametric representations of technology under 

non-convexity are not new. Relaxing convexity assumptions in DEA has been explored by 

Deprins et al. (1984), Petersen (1990), Bogetoft (1996), Kerstens and Eeckaut (1999), Bogetoft et 

al. (2000), Briec et al. (2004), Podinovski (2005), Leleu (2006, 2009), De Witte and Marques 
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(2011) and others. The most common approach is the “free disposal hull” (FDH) representation 

investigated by Deprins et al. (1984) and Kerstens and Eeckaut (1999). But while the FDH model 

allows for non-convexity, we argue that its representation is too extreme: it tends to find evidence 

of non-convexity "too often". Note that other approaches have also been used to relax the 

convexity assumption in nonparametric analyses. They include Petersen (1990), Bogetoft (1996), 

Agrell et al. (2005) and Podinovski (2005). Petersen (1990) and Bogetoft (1996) have proposed to 

restrict convexity only to the input space or the output space. Agrell et al. (2005) have considered 

technology represented by unions of pairs of convex input and output sets. And Podinovski (2005) 

has put forward an approach where convexity is evaluated individually for each input or output.  

In this paper, we propose a new nonparametric model that relies on a neighborhood-based 

assessment of technology. Our approach allows for non-convexity to arise in any part of the 

feasible set. As such, it extends previous nonparametric analyses of non-convex technology. Our 

model nests as (restrictive) special cases both the DEA model and the FDH model. We show how 

it can be implemented empirically by solving simple linear programming problems. As such, our 

new nonparametric approach extends the related literature both theoretically and empirically. Its 

usefulness is illustrated in an application to the analysis of technical and scale efficiency on 

Korean farms.  

The new model and its neighborhood-based assessment of technology is presented in 

section 2. Its use in the evaluation of non-convex technologies is discussed in section 3. Using a 

directional distance function, section 4 presents productivity analysis under non-convexity and 

proposes a new measure to evaluate the extent of non-convexity. Section 5 examines the 

evaluation of returns to scale and scale efficiency under non-convexity. In section 6, we show how 

our approach can be implemented easily by solving simple optimization problems. The usefulness 

of the method is illustrated in an application presented in section 7. Finally, section 8 concludes.  
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2. The Model 

Consider the observation of production activities on a set of N firms in an industry. Each 

firm produces m netputs z  Rm and faces a production technology represented by the feasible set 

T  Rm. We use the netput notation where inputs are negative and outputs are positive. Let zi  

(z1i, …, zmi)  Rm be the netput vector produced by the i-th firm, where zji is the j-th netput 

used/produced by the i-th firm, and zi  T means that netputs zi are feasible, i  N {1, …, N}. 

The technology T may exhibit different scale properties. It is said to exhibit  

non-decreasing returns to scale (NDRS)

constant returns to scale (CRS)

non-increasing returns to scale (NIRS)

 
 
 
 
 

 if T =

 
 
 
  

  T for any scalar  > 1. And the 

technology is said to exhibit variable returns to scale (VRS) if no a priori restriction is imposed on 

returns to scale. Throughout the paper, we assume that the technology T satisfies free disposal, 

where free disposal means that T = T – m

+R .  

First, consider the case where T is convex.1 Then, under free disposal, a nonparametric 

representation of the technology is given by 

Tv = {z: z  ii zi; i  R+, i ; ii = 1}.   (1) 

Tv in (1) is the smallest convex set containing all data points {zi: i  N} under free disposal and 

variable returns to scale (VRS) (e.g., Afriat, 1972; Varian, 1984). It is the representation 

commonly used in Data Envelopment Analysis (DEA) (e.g., Banker, 1984; Banker et al., 1984; 

Ray, 2004; Cook and Seiford, 2009).  

Alternative representations have been proposed depending on the scale properties of the 

technology. Following Färe et al. (1994) and Banker et al. (2004), they are  

Ts = {z: z  ii zi; i  R+, i , ii  Ss},  (2) 
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where s  {v, c, ni, nd}, with Sv = 1 under variable returns to scale (VRS), Sc = [0, ∞] under 

constant returns to scale (CRS), Sni = [0, 1] under non-increasing returns to scale (NIRS), and Snd 

= [1, ∞] under non-decreasing returns to scale (NDRS). Indeed, when Sv = 1, Tv in (2) reduces to 

equation (1) under variable returns to scale (VRS). Alternatively, when Sc = [0, ∞], Tc in (2) 

provides a representation of a convex technology under constant returns to scale (CRS). Tc is the 

smallest convex cone containing all data points {zi: i  N}. When Sni = [0, 1], Tni in (2) provides a 

representation of a convex technology under non-increasing returns to scale (NIRS). Finally, when 

Snd = [1, ∞], Tnd in (2) represents a convex technology under non-decreasing returns to scale 

(NDRS). Since Sv  Sni  Sc and Sv  Snd  Sc, it follows from (2) that Tv  Tni  Tc and Tv  Tnd 

 Tc. Also, Sc = Sni  Snd implies that Tc = Tni  Tnd. Note that the sets Tv, Tni, Tnd and Tc are all 

convex.  

Next, we want to introduce non-convexity in the analysis. For that purpose, consider the 

following nonparametric representation of technology 

TFDHv = {z: z  ii zi; i  {0, 1}, i ; ii = 1}, (3) 

where FDH stands for “free disposal hull” (Deprins et al., 1984; Kerstens and Eeckaut, 1999). 

Under free disposal, TFDHv is the smallest set containing all data points {zi: i  N} under variable 

returns to scale (VRS). It provides a non-convex representation of the technology under VRS.  

Alternative non-convex representations have been proposed depending on the scale 

properties of the technology. Following Kerstens and Eeckaut (1999), they include  

TFDHs = {z: z  i i zi; i  {0, }, i ; ii = ;   Ss}.  (4) 

where s  {v, c, ni, nd}, and the Ss’s are as defined above. When Sv = 1, TFDHv in (4) reduces to 

equation (3) under variable returns to scale (VRS). Alternatively, when Sc = [0, ∞], TFDHc in (4) 

provides a representation of a FDH technology under constant returns to scale (CRS). TFDHc is the 

smallest cone containing all data points {zi: i  N}. When Sni = [0, 1], TFDHni in (4) provides a 
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representation of a FDH technology under non-increasing returns to scale (NIRS). Finally, when 

Snd = [1, ∞], TFGHnd in (4) represents a FDH technology under non-decreasing returns to scale 

(NDRS). Since Sv  Sni  Sc and Sv  Snd  Sc, it follows from (4) that TFDHv  TFDHni  TFDHc 

and TFDHv  TFDHnd  TFDHc. Also, Sc = Sni  Snd implies that TFDHc = TFDHni  TFDHnd. Note that 

each of the sets Tv, Tni, Tnd and Tc is in general non-convex. Finally, note that the 's are restricted 

to take discrete values in (4) but not in (2). It follows that TFDHs  Ts, i.e. that TFDHs is a subset of 

Ts, for s  {v, c, ni, nd}.  

The sets Tv, Tc and TFDHv are illustrated in Figure 1. Figure 1 shows that these sets satisfy 

TFDHv  Tv  Tc. Note that the sets Tv and Tc are convex, but that the set TFDHv is in non-convex. 

This indicates that DEA is clearly inappropriate in the analysis of non-convexity. Indeed, since Tv 

is always convex, DEA offers no prospect to uncover any evidence of non-convexity and produces 

biased estimates of technical efficiency under a non-convex technology. In contrast, FDH can 

provide a basis to represent a non-convex technology. Yet, it has a rather undesirable 

characteristic: it has a tendency to find non-convexity at many places. This can be seen in Figure 

1, where the frontier technology is given by the line ABDHJ under Tv and by ABCDEFGHJ under 

TFDHv. While the frontier line ABDHJ is concave, the frontier line ABCDEFGHJ is not. The two 

lines coincide only along the segments AB and HJ, where marginal products are either zero or 

infinite under Tv. At all other points, the two lines differ. It means that, under FDH, the frontier 

technology would basically exhibit non-convexity at all points where marginal products are 

positive and bounded under Tv. Yet, we are usually interested in situations where marginal 

products are positive and bounded. The fact that FDH would always reveal non-convexity in these 

situations seems undesirable. In other words, while TFDHv can provide a representation of non-

convexity, it may reveal it "too often". This indicates a need to develop alternative representations 

of technology that can capture non-convexity in a more useful and credible way. Below, we 
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explore alternative formulations that allow for flexible representations of the technology T under 

non-convexity.  

Define a neighborhood of z  (z1, …, zm)  Rm as Br(z, ) = {z': Dp(z, z')  r: z'  Rm}  

Rm, where r > 0 and Dp(z, z')  
m

j=1 [(|zj – zj'|/j)
p]1/p is a weighted Minkowski distance between 

z and z', with weights  = (1, …, m)  m

++R and based on a p-norm 1  p < .2 Let I(z, r) = {i: zi 

 Br(z, ), i N}  N, where I(z, r) is the set of firms in N that are located in the neighborhood 

Br(z, ) of z.3 Define a local representation of the technology T in the neighborhood of point z as: 

Trv(z) = {z: z  i(z,r)i zi; i  R+, i (z, r); i(z,r)i = 1}.   (5) 

Equation (5) corresponds to equations (1) except that it applies locally using information limited 

to points in the neighborhood Br(z, ) of z under variable returns to scale (VRS). Using (2), 

alternative local representations of the technology can be obtained depending on its scale 

properties. They are  

Trs(z) = {z: z  i(z,r)i zi; i  R+, i (z, r); i(z,r)i  Ss}.   (6) 

where s  {v, c, ni, nd}, and the Ss’s are as defined above. When Sv = 1, Trv(z) in (6) reduces to 

equation (5) under variable returns to scale (VRS). Alternatively, when Sc = [0, ∞], Trc(z) in (6) 

provides a local representation of the technology under constant returns to scale (CRS). When Sni 

= [0, 1], Trni(z) in (6) is a local representation of the technology under non-increasing returns to 

scale (NIRS). Finally, when Snd = [1, ∞], Trnd(z) in (6) gives a local representation of the 

technology under non-decreasing returns to scale (NDRS). Since Sv  Sni  Sc and Sv  Snd  Sc, 

it follows from (6) that Trv(z)  Trni(z)  Trc(z) and Trv(z)  Trnd(z)  Trc(z). Also, Sc = Sni  Snd 

implies that Trc(z)= Trni(z)  Trnd(z). Finally, note that, for a given z, the sets Trv(z), Trni(z), Trnd(z) 

and Trc(z) are all convex.  
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Definition 1: Consider the following neighborhood-based representation of the technology T:  

Trs
* = i Trs(zi),  (7) 

for s  {v, c, ni, nd}.  

 

Equation (7) defines the set Trs
* as the union of the sets Trs(zi), i  N. In the neighborhood 

of point zi , the set Trs(zi) is convex and provides a local representation of the technology T under 

free disposal and returns to scale characterized by s  {v, c, ni, nd}. Since the union of convex 

sets is not necessarily convex, it follows that Trs
* defined in (7) is not necessarily convex for each 

s  {v, c, ni, nd}.  

Equation (7) is our proposed neighborhood-based representation of technology. It allows 

for non-convexity to arise in any part of the feasible set. It differs from the approaches proposed 

by Petersen (1990), Bogetoft (1996), Agrell et al. (2005) or Podinovski (2005), who explored 

departures from non-convexity based on inputs and/or outputs. As showed below, Trs
* has three 

useful characteristics: 1/ it provides a flexible representation of non-convexity; 2/ it nests as 

(restrictive) special cases both the DEA model and the FDH model; and 3/ it is easy to implement 

empirically.  

 

3. Evaluating Non-Convexity 

Our evaluation of non-convexity of the technology relies on the properties of the 

representations Ts and Trs
*. The following properties will prove useful. .  

Lemma 1: For s  {v, c, ni, nd}, the set Trs
* satisfies  

limr→ Trs
* = Ts.  (8) 

Proof: Note that limr→ I(z, r) = N for any finite z  Rm. Using equations (2), (6) and (7), it 

follows that Ts = limr→ Trs(zi) = limr→ Trs
* for any i  N and s  {v, c, ni, nd}.  
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Lemma 2: For s  {v, c, ni, nd}, the set Trs
* satisfies  

limr→0 Trs
* = TFDHs.  (9) 

Proof: Note that limr→0 Br(zi, ) = {zi} and limr→0 I(zi, r) = {i} for any i  N. Using 

equation (6), we have limr→0 Trs(zi) = {z: z  γ zi, γ  Ss}. Equation (7) can be 

alternatively written as Trs
* = {i i Trs(zi): i  {0, 1}, i ; ii = 1}. Letting 

ηi = αi γ, this implies that limr→0 Trs
* = {z: z  i ηi zi; ηi  {0, γ}, i ; iηi = γ, 

γ  Ss}. Using equation (4), this gives (9).   

 

Given s  {v, c, ni, nd}, equations (8) and (9) show that Trs
* includes two important special 

cases. From equation (8), the set Trs
* reduces to the set Ts when r  , i.e. when the neighborhood 

Br(z, ) of any z becomes “very large”. And from equation (9), the set Trs
* reduces to the set TFDHs 

when r 0, i.e. when the neighborhood Br(zi, ) become “very small” for any i  N.  

Proposition 1: For s  {v, c, ni, nd}, the sets satisfy  

TFDHs  Trs
*  Tr’s

*  Ts, for any r’ > r > 0.  (10)  

Proof: Note that limr→0 Br(zi, ) Br(zi, ) Br’(zi, ) limr→  Br(zi, ) for any r’ > r > 

0. Thus, for any r’ > r > 0, limr→0 I(zi, r) I(zi, r)  I(zi, r’)  limr→ I(zi, r) = N. Then, 

equation (6) implies that limr→0 Trs(zi)  Trs(zi)  Tr’s(zi) limr→ Trs(zi) for any r’ > r 

> 0 and any i  N. Using equations (7), (8) and (9), this proves (10).  

 

Proposition 1 states that TFDHs is in general a subset of Ts: TFDHs  Ts, for s  {v, c, ni, nd}. 

It also establishes that the set Trs
*, our neighborhood-based representation of technology, is 

bounded between TFDHs and Ts, with TFDHs as lower bound and Ts as upper bound. Noting that the 
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set Ts is convex, and the set TFDHs is in general non-convex, it means that Trs
* provides a generic 

way of introducing non-convexity in production analysis. The sets Tv, TFDHv and Trv
* are 

illustrated in Figure 2 under VRS. Figure 2 shows that these sets satisfy TFDHv  Trv
*  Tv. Note 

that the set Tv is convex, but that the sets Trv
* and TFDHv are non-convex. These representations 

apply under alternative scale properties: under VRS when s  v (with Sv = 1), under CRS when s 

= c (with Sc = [0, ∞]), under NIRS when s = ni (with Sni = [0, 1]), as well as under NDRS when s 

= ni (with Snd = [1, ∞]). Finally, equation (10) states that the set Trs
*
 becomes larger when r 

increases, i.e. when the neighborhoods used to evaluate Trs
* become larger. As further discussed 

below, this provides some flexibility in the empirical analysis of non-convexity issues.   

 

4. Productivity under Non-Convexity 

Let g  +

mR be a reference bundle satisfying g  0. Following Chambers et al. (1996), 

consider the directional distance function4 

D(z, T) = sup: (z +  g) } if there is a scalar  satisfying (z +  g) },  (11)

 otherwise. 

The directional distance function is the distance between point z and the upper bound of 

the technology T, measured in number of units of the reference bundle g. It provides a general 

measure of productivity. In general, D(z, T) = 0 means that point z is on the frontier of the 

technology T. Alternatively, D(z) > 0 implies that z is technically inefficient (as it is below the 

frontier),5 while D(z, T) < 0 identifies z as being infeasible (as it is located above the frontier). 

Luenberger (1995) and Chambers et al. (1996) provide a detailed analysis of the properties of D(z, 

T). First, by definition in (11), z  T implies that D(z, T)  0 (since  = 0 would then be feasible 

in (11)), meaning that T  {z: D(z, T)  0}. Second, D(z, T)  0 in (11) implies that (z + D(z, T) 

g))  T. When the technology T exhibiting free disposal, it follows that D(z, T)  0 implies that z 
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 T, meaning that T  {z: D(z, T)  0}. Combining these two properties, we obtain the following 

result: under free disposal, T = {z: D(z, T)  0} and D(z, T) provides a complete representation of 

the technology T. Importantly, besides being convenient, this result is general: it allows for an 

arbitrary multi-input multi-output technology; and it applies with or without convexity.  

Using (10) and (11), we obtain the following key result.  

Proposition 2: For any point z  Rm where D(z, Ts) > -, the directional distance function satisfies 

D(z, TFDHs)  D(z, Trs
*
)  D(z, Tr’s

*
)  D(z, Ts), for any r’ > r > 0,    (12) 

for s  {v, c, ni, nd}.  

 

Proposition 2 shows that D(z, Trs
*) is bounded between D(z, TFDHs) and D(z, Ts), with D(z, 

TFDHs) as lower bound and D(z, Ts) as upper bound. When s = v, equation (12) implies that DEA 

(relying on Tv) is more likely to find evidence of technical inefficiency than FDH. This is 

illustrated in Figure 1, which shows that the production frontier tends to be higher under DEA 

compared to FDH. With s  {v, c, ni, nd}, equation (12) shows that this result applies under 

alternative characterizations of returns to scale. It also shows that D(z, Trs
*) tends to increase with 

r, where Trs
* is our neighborhood-based representation of technology given in (7). Finally, as 

discussed next, Proposition 2 provides a basis to evaluate the role of non-convexity in productivity 

analysis.  

Definition 2: At point z, define the following measure of non-convexity  

Crs(z)  D(z, Ts) - D(z, Trs
*),   (13) 

for s  {v, c, ni, nd}.  

Proposition 3: At point z where D(z, Tv) > -,   

limr→0 Crs(z)  Crs(z)  Cr’s(z)  limr→ Crs(z) = 0, for any r’ > r > 0,      (14) 

for s  {v, c, ni, nd}.  
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Proof: The inequalities in (14) are obtained from combining (12) and (13), and using 

equations (8) and (9).  

 

Proposition 3 applies under alternative characterizations of returns to scale: under VRS 

(when s = v), CRS (when s = c), NIRS (when s = ni), as well as NDRS (when s = nd). Equation 

(13) defines Crs(z) as a measure of non-convexity, evaluated in number of units of the reference 

bundle g. From equation (14), this measure is always non-negative: Crs(z)  0. Equation (14) states 

that limr→ Crs(z) = 0. This is intuitive: DEA assumes convexity and does not provide any 

opportunity to uncover the presence of non-convexity. It means that the search for non-convexity 

must rely on the case where r < . Then, for a given r < , finding Crs(z) > 0 at some point z 

implies that the set Trs
* is non-convex. In addition, (14) states that limr→0 Crs(z) is an upper bound 

measure for Crs(z). This reflects the fact that, under free disposal, FDH offers the greatest 

prospects to uncover non-convexity. Finally, equation (14) shows that Crs(z) tends to decrease with 

r, indicating that the opportunity to uncover non-convexity declines with the size of the 

neighborhoods used to evaluate Trs
*. The effects of r on the evaluation of non-convexity are 

further discussed below.  

 

5. Evaluating Returns to Scale 

Since our analysis applies under alternative scale characterization, it can also be used to 

investigate returns to scale. While evaluating scale efficiency is well known under convexity (e.g., 

Färe et al. 1994; Banker et al. 2004), this section explores how this can be done under non-

convexity.  

 Proposition 4: The sets satisfy  

Trv
*  Trni

*  Trc
*,   (15a)  
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Trv
*  Trnd

*  Trc
*.  (15b) 

Proof: We have seen that Trv(z)  Trni(z)  Trc(z) and Trv(z)  Trnd(z)  Trc(z). Then, (15a) 

and (15b) follow from (7).  

 

Definition 3: At point z, define the following measure of scale efficiency  

SErs(z)  D(z, Trc
*) - D(z, Trs

*),   (16) 

for s  {v, c, ni, nd}.  

 

Proposition 5: At point z where D(z, Tv) > -, the scale efficiency measures SErs(z) satisfy 

SErv(z) ≥ SErni(z) ≥ 0,  (17a) 

SErv(z) ≥ SErni(z) ≥ 0.  (17b) 

Proof: Equations (11), (15a) and (15b) imply that D(z, Trc
*) ≥ D(z, Trni

*) ≥ D(z, Trv
*), and 

D(z, Trc
*) ≥ D(z, Trnd

*) ≥ D(z, Trv
*). Using (16), this gives (17a) and (17b).  

 

Equation (16) defines SErs(z) as a measure of departure from constant returns to scale 

(CRS), evaluated in number of units of the reference bundle g. From equations (17a)-(17b), 

evaluated under VRS (with s = v), the measure is always non-negative: SErv(z) ≥ 0. This is 

intuitive: it follows from the fact that the set Trc
* is always at least as large as Trv

*, as stated in 

(15a)-(15b). In addition, (17a) states that, under NIRS (with s = ni), SErni(z) is also non-negative 

but has SErv(z) as an upper bound. This follows from the fact that the set Trni
* is always at least as 

large as Trv
* but never larger than Trc

*, as stated in (15a). And (17b) establishes a similar result 

under NDRS (with s = nd): SErnd(z) is non-negative but has SErv(z) as an upper bound. This shows 

how SErs(z) in equation (16) provides a basis to measure scale efficiency under non-convexity. 

Indeed, finding SErs(z) > 0 at point z implies that the set Trs
*
 exhibits a departure from CRS and 
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that point z is scale inefficient. The effects of r on the evaluation of scale efficiency will be 

evaluated below. 

 

6. Empirical Assessment 

Consider a data set involving observations of m netputs chosen by N firms: {zi = (z1i, …, 

zmi): i  N}, where zji is the j-th netput used by the i-th firm. As suggested in propositions 2-5, we 

want to find some convenient way to solve for the directional distance function D(z, T) under 

alternative representations of the technology T.  

 

6.1. Empirical evaluation of directional distance functions 

This section examines empirical applications using the data {zi = (z1i, …, zmi): i  N}. First 

consider the optimization problem (11) under Ts in (2), where s {v, c, ni, nd}, Sv = 1, Sc = [0, ∞], 

Sni = [0, 1] and Snd = [1, ∞1]. For each s {v, c, ni, nd} and assuming that a solution exists, this 

gives the standard linear programming (LP) problems D(z, Ts) = max: z +  g  ii zi; i 

 R+, i , ii  Ss}. In all these cases, convexity is imposed. Second, consider the 

optimization problem (11) under TFDHa in (4) for s {v, c, ni, nd}. Assuming that a solution exists, 

this gives D(z, TFDHs) = max: z +  g  i i zi; i  {0, }, i ; ii = ;   Ss}, 

which is a mixed integer linear programming (MILP) problem for s = v (where Sv = 1), but a 

mixed integer nonlinear programming (MINLP) problem for s {c, ni, nd}.6  

Below, we explore how to solve (14) under Trv
*, the neighborhood-based representation of 

technology given in (7). For s  {v, n, ni, nd}, note that equation (7) can be alternatively written 

as  

Trs
* = {j j Trs(zj); j  {0, 1}, j ; jj = 1},  (18) 

for s {v, c, ni, nd}. Let ij be the weight i associated with z = zj in (7). Letting ij  j ij, it 
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follows from (6), (11) and (18) that  

D(z, Trs
*) =Max,: (z +  g)  j iI(zj,r)

ij zi: ij  j ij, ij  R+,  

iI(zj,r)
ij  Ss, j  {0, 1}, jj = 1, i I(zj, r), j  N } if a solution exists, (19)

= - otherwise,  

for s {v, c, ni, nd}. Equation (19) is a mixed integer nonlinear programming (MINLP) problem. 

Solving it numerically can provide a way to assess the directional distance functions D(z, Tra
*) for 

s {v, c, ni, nd}.   

Yet, dealing with non-linear constraints in (19) can be empirically challenging. In this 

context, alternative formulations that avoid non-linear constraints are of interest. One such 

formulation is the following optimization problem  

D+(z, Trs
*) =Max: (z +  g)  j iI(zj,r)

ij zi: ij  R+, iI(zj,r)
ij  j Ss,  

j  {0, 1}, jj = 1, i I(zj, r), j  N } if a solution exists,  (20)

= - otherwise.  

for s {v, c, ni, nd}. Equation (20) is a mixed integer linear programming (MILP) problem. 

Because it does not include the nonlinear restrictions ij  j ij, solving (20) is simpler than 

solving (19). But the absence of the restrictions ij  j ij in (20) implies that D+(z, Trs
*) is in 

general an upper bound to D(z, Trs
*): D+(z, Trs

*) ≥ D(z, Trs
*). When would the two objective 

functions coincide? They would coincide (with D+(z, Trs
*) = D(z, Trs

*)) when the solution to (20), 

(*, *), satisfies ij
* = 0 for all i when j

* = 0, j  N. Otherwise, they would differ, and D+(z, Trs
*) 

would be strictly larger than D(z, Trs
*): D+(z, Trs

*) > D(z, Trs
*). In this later case, solving the 

simpler problem (20) would provide upward biased estimates of D(z, Trs
*).  
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6.2. Linear programming formulation 

Given the potential empirical difficulties in solving the nonlinear optimization problem 

(19), we now explore a simpler way to evaluate D(z, Trs
*) in (19). From (7), note that Trs

* is 

defined from Trs(zj), j  N. This suggests obtaining D(z, Trs
*) using the following two-step 

approach.  

In step one, solve (11) under Trs(z’) in (6). For s {v, c, ni, nd}, this corresponds to the 

(primal) linear programming (LP) problem  

D(z, Trs(z’)) = Max: (z +  g)  iI(z’,r)i zi ; i  R+, i I(z’, r); iI(z’,r)i  Ss}, (21) 

if a solution exists, 

= - otherwise,      

or its dual LP formulation   

D(z, Trs(z’)) = Minu,v {v – zT u: zj
T u  v, j I(z’, r); gT u = 1; u  m

+R ; v  Vs},   (21’) 

if a solution exists, 

= - otherwise,     

where u and v are the Lagrange multipliers associated with the constraints [(z +  g)  iI(z’,r)i 

zi] and [iI(z’,r)i  Ss] in (21), with Vv = [-∞, ∞], Vc = 0, Vni = [0, ∞] and Vdi = [-∞, 0].  

Then, in step two, assuming that D(z, Trs(zi)) > - for some i  I, and using (18), D(z, Trs
*) 

can be obtained as 

D(z, Trs
*) = Maxi {D(z, Trs(zi)): i  N}.  (22) 

In this two-step approach, step one involves solving linear programming (LP) problems in 

(21) or (21’). And step 2 stated in (22) is a simple maximization problem. This shows how (21)-

(22) can be used to obtain D(z, Trs
*) by solving simple linear programming problems. This 

provides a convenient way to solve (11) under Trs
*, our neighborhood-based representation of 

technology given in (7).  
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6.3. Defining the neighborhood Br(z, ) 

As discussed in section 2, our analysis relies on the definition of a neighborhood Br(z, ) = 

{z': Dp(z, z’)  r: z'  Rm}  Rm, where Dp(z, z') is a weighted Minkowski distance with 1  p < 

. Below, it will be convenient to rely on a weighted Chebyshev distance defined as limp Dp(z, 

z') = Maxj {|zj – zj'|/j: j = 1, …, m}. In this context, Br(z, ) can be written as Br(z, ) = {z': –r j 

 zj – zj'  r j; j = 1, …, m; z'  Rm} and I(z, r) can be written as I(z, r) = {i: –r j  zj – zjj'  r j; 

j = 1, …, m; i N}.  

We can choose this neighborhood in at least two ways. Sometimes, we may have a priori 

information about the regions where non-convexity is likely to arise. Assume that one of these 

regions is region A(z) around point z. In general we want to choose the neighborhood of Br(z, ) 

to be no larger than A(z). Indeed, choosing Br(z, )  A(z) may just “hide” the non-convexity in 

A(z) within the larger region Br(z, ). This generates the following rules:  

Rule R1: Around point z, choose a neighborhood Br(z, ) that is no larger than the region A(z) 

where non-convexity is suspected: Br(z, )  A(z).  

 

Rule R1 assumes that we do have a priori information about the presence of non-

convexity. What if we do not have such information? Then we need to find other ways to identify 

the neighborhood Br(z, ). In this context, we can use the data to help choose these 

neighborhoods. To see that, let Mj  [MaxiN {zji} - MiniN {zji}] be the range of observations for 

zj, j = 1, …, m. For the j-th netput, consider partitioning the line [MiniN {zji}, MaxiN {zji}] into k 

intervals, j = 1, …, m, where k is an integer satisfying 1  k  N. One way is to choose these 

intervals to be equally spaced.7 Then, for the j-th netput, the width of an interval is Mj/k. Given 
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Br(z, ) = {z': –r j  zj – zj'  r j; j = 1, …, m; z'  Rm}, associate these intervals with a 

neighborhood of point z by letting r j = Mj/k, k being a positive integer, j = 1, …, m. For a given 

k, it follows that the neighborhood of z can be written as Br(z, ) = {z': – Mj/k  zj – zj'  Mj/k; j = 

1, …, m; z'  Rm}. When z ad z’ are points within the range of the data, then choosing k = 1 

implies that Br(z, ) is a “large neighborhood” of z which includes all data points. And choosing k 

> 1 means that we partition the range of each netput into k equally-spaced intervals, the 

neighborhood Br(z, ) of z becoming smaller as k becomes larger.   

Next, we propose the following rule to guide us in the choice of neighborhoods.   

Rule R2: Around point z, choose a neighborhood Br(z, ) that includes more than one data point.   

 

R2 has important implications. First, it implies that point z cannot be outside the range of 

the data. That is intuitive: in any analysis, we should always try to avoid extrapolating beyond the 

data. Second, Rule 2 requires that there are sufficient data points to support the analysis. It hints 

that the number of observations N should be “large enough” to provide credible evidence on non-

convexity in the neighborhood of point z. Third, R2 rules out FDH. Indeed, from equation (9) in 

Lemma 2, FDH is obtained when r  0, implying that the neighborhood of any point zj would 

include just the point zj. This would be inconsistent with R2. As discussed in section 2, the FDH 

approach seems undesirable as it can find evidence of non-convexity “too often”. Intuitively, R2 

stresses the importance of having a minimal number of observations (more than 1) to evaluate the 

characteristics of technology in any neighborhood within the data. As such, R2 can help improve 

the credibility of finding evidence that a technology is non-convex. Fourth, Rule 2 puts some 

upper bound on the number of intervals k discussed above. Indeed, increasing k would also reduce 

the number of observations in each interval. Again, to be credible, evidence of non-convexity in 

the neighborhood of point z should rely on a sufficient number of data points. Overall, Rule R2 
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implies that the number of observations N should be “large enough” while the number of intervals 

should “not be too large”. As such, it provides useful guidance to support productivity analysis 

under non-convexity.  

 

7. Empirical Illustration 

To illustrate the usefulness of our proposed approach, we apply it to a data set on 

production activities from a sample of Korean farm households.  

 

7.1. Data 

The data were collected in 2007 in a Farm Household Economy Survey conducted by the 

Korean National Statistical Office. Our analysis focuses on a sample of farms classified as paddy 

rice farms located in the Jeon-Nam province, a rice-producing province in the southern part of 

Korea. Being in the same region, all farms face similar agro-climatic conditions. The sample 

includes 122 rice farms. It provides data on ten outputs: rice, vegetable, soybean, fruit, potato, 

barley, miscellaneous, specialty, livestock, and others; and four inputs: labor, size of paddy land, 

size of upland, and other inputs. Labor input is measured in hours, and land inputs are measured in 

hectares (ha). Other netputs are measured in value, assuming that all farmers face the same prices.  

Descriptive statistics on the variables used in our analysis are presented in table 1. The 

average revenue from rice production is 15,398.81 (measured in 1,000 won8), accounting for 62.7% 

of total farm revenue. The second largest source of revenue is vegetable production: 3,608.15 

(measured in 1,000 won), accounting for 14.7% of total farm revenue. The average size of a farm 

is 1.31 ha (including both paddy land and upland).  
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7.2. Results 

Our analysis uses data on production activities from our sample of 122 Korean farms. It 

covers 14 netputs: 10 outputs treated as positive, and 4 inputs treated as negative. For the i-th 

farm, the netputs are zi = (zji: j = 1, …., 14), i  N  {1, 2, …, 122}. 

The estimation of the directional distance function in (11), (19) or (21)-(22) produces a 

nonparametric estimate of the distance between point z and the boundary of the feasible set, as 

measured by the number of units of the reference bundle g. When z is the netput vector for the i-th 

farm, then the distance function D(zi, T)  0 provides a measure of technical inefficiency for the i-

th farm, with D(zi, T) > 0 when the i-th farm is technically inefficient. The reference bundle g = 

(g1, …, g14) is chosen as follows. We let gj = 0 when j is an input, and gj = sample mean for the j-

th output when j is an output. Thus, our reference bundle g = (g1, …, g14) is the typical bundle 

associated with the outputs of an average farm. This choice leads to a simple interpretation of our 

directional distance estimates. For example, for a given T, finding that D(zi, T) = 0.2 would mean 

that the i-th farm is technically inefficient: it could move the production frontier and increase its 

outputs by a maximum of 20 percent of the average outputs in our sample by becoming 

technically efficient. Note that this interpretation remains valid under alternative characterizations 

of the technology T.  

We evaluate the directional distance function D(zj, T) in (11) for each farm under 

alternative representations of the technology. First, we start with DEA analysis and solve for D(zj, 

T) under technologies Tv under VRS and Tc under CRS (as given in equations (1) and (2)).  

Second, using TFDHv in (3), we obtain FDH measures D(zj, TFDHv) under VRS technology by 

solving the corresponding mixed integer programming problems. The results are reported in the 

Appendix for each farm. Since our neighborhood-based representation of technology allows for 

non-convexity to arise in any part of the feasible set, it can provide a basis to evaluate productivity 
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and non-convexity for different firm types. We investigate this issue for three categories of farms: 

small farms, medium farms, and large farms.9 The results are summarized in Table 2 Table 2 

presents the average technical inefficiency estimates D(zj, T) for each group of farms under 

alternative representation of the technology. It shows that DEA finds evidence of technical 

inefficiency across all farm sizes. The mean value of D(zj, Tv) is 0.063 for small farms, 0.159 for 

medium farms, and 0.119 for large farms. Table 2 also reports that FDH finds that all farms are 

technically efficient, with D(zj, TFDHv) = 0 for all j = 1, …, 122. Note that this is consistent with 

Proposition 2, which showed that DEA (relying on Tv) is more likely to find evidence of technical 

inefficiency than FDH (as the production frontier tends to be higher under DEA compared to 

FDH). But in this case, allowing for non-convexity under FDH eliminates all evidence of 

technical inefficiency. This has two implications. First, there can be a large difference between the 

DEA measure of technical inefficiency D(zj, Tv), and its FDH counterpart D(zj, TFDHv). Second, 

this difference is due entirely to relaxing the convexity assumption. One must wonder whether this 

difference is "credible". As discussed in section 2, this raises the question: Does the FDH 

approach finds non-convexity "too often"? We believe that it does (as further discussed below).  

Next, using the neighborhood-based representation of technology Trs
* in (7) or (18), we 

obtain estimates of the directional distance D(zj, Trs
*) by solving the linear programming problems 

in (21)-(22). Assuming equally spaced intervals, we let r j = Mj/k, where Trv
* is defined using 

Br(z, ) = {z': – Mj/k  zj – zj'  Mj/k; j = 1, …, m; z'  Rm} as neighborhood of z, k denoting the 

number of intervals within the data range. The analysis is repeated for alternative numbers of 

intervals k: k = 1, 2, 4, 6, 8, 10, 12. The distances D(zj, Trs
*) are estimated under VRS (with s = v) 

for each farm. The results are reported in the Appendix for each farm. Summary measures are 

presented in Table 2 for our three farm sizes: small farms, medium farms, and large farms. The 

results are consistent with Proposition 2. First, as expected, D(z, Trv
*) is bounded between D(z, 
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TFDHv) and D(z, Tv), with D(z, TFDHv) as lower bound and D(z, Tv) as upper bound. Second, D(z, 

Trv
*) tends to increase with the size of the neighborhood r, or equivalently decrease with the 

number of intervals k (given r j = Mj/k). Third, Table 2 shows that our estimates D(z, Trv
*) nest 

DEA estimates and FDH estimates as special cases. Indeed, D(z, Trv
*) becomes equal to D(z, Tv) 

when neighborhoods become "large" (in our case, when k = 1), and it becomes equal to D(z, 

TFDHv) when neighborhoods become "small" (in our case, when k = 12). Yet, neither case seems 

realistic. Indeed, choosing k = 1 imposes a convex technology and prevents any possibility of 

uncovering evidence of non-convexity. Alternatively, choosing k = 12 likely finds non-convexity 

"too often". As noted above, FDH does not satisfy our "Rule 2". In this case, 12 intervals are "too 

many" as there are not enough points in each neighborhood to obtain a reliable estimate of 

marginal productivity around each data point. And this has adverse effects on the ability to find 

evidence of technical inefficiency. Indeed, in this case FDH or k = 12 fails to find any evidence of 

technical inefficiency. These results help document why FDH does not provide a reasonable 

approach in the analysis of non-convexity.  

One advantage of our approach is that it allows us to choose neighborhoods that satisfy our 

Rules R1 and R2. These rules seek a balance between finding evidence of technical inefficiency 

versus finding evidence of non-convexity. In our application, we believe that choosing k = 4 is a 

good choice: it is between k = 1 (corresponding to DEA) and k = 12 (corresponding to FDH). It 

identifies neighborhoods that are "not too large" to allow us to uncover evidence of non-convexity, 

and "not too small" to generate a more reliable estimate of the production technology around any 

data point. Indeed, with 122 data points, choosing k = 4 means that there are on average about 30 

data points per interval, points that provide sample information used to evaluate our 

neighborhood-based representation of technology. Interestingly, when k = 4, we still find evidence 

of technical inefficiency. Indeed, Table 2 reports mean estimates of technical inefficiency of 0.025 
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for small farms (with 62.2% of small farms being technically efficient), 0.035 for medium farms 

(with 75.5% of medium farms being technically efficient), and 0.003 for large farms (with 100.0% 

of large farms being technically efficient). In addition, Table 2 reports estimates of the non-

convexity measure Crv(z) given in equation (13). When k = 4, the mean estimates of Crv(z) are 

0.039 for small farms, 0.123 for medium farms, and 0.116 for large farms. For example, it means 

that, for medium farms, the effects of non-convexity amount to a 12.3 percent change in average 

outputs. These estimates indicate that the technology facing Korean farmers exhibit significant 

non-convexity. They also show that the extent of non-convexity is larger on medium and large 

farms (compared to small farms). As analyzed by Chavas and Kim (2007), non-convexity 

contributes to increasing the productivity benefits of specialization. This would indicate that large 

farms have stronger incentives to specialize than smaller farms. To our knowledge, this is the first 

evidence that non-convexity appears to vary with firm size.  

Finally, we evaluate returns to scale under non-convexity. Using (16), we use our 

neighborhood-based representation Trv
*
 under VRS to evaluate scale efficiency SErv(z). The 

results are summarized in in Table 3 for our three farm sizes. Recall that SErv(z) = 0 when point z 

is scale efficient, and SErv(z) > 0 implies a departure from CRS and measures the magnitude of 

scale inefficiency. The evidence against CRS is in general modest. Under DEA (obtained when r is 

large and k =1), the average SE is 0.026 for small farms, 0.024 for medium farms, and 0.13 for 

large farms. Alternatively, under FDH (obtained when r is large and k = 12), all farms are found to 

be scale efficient (with all SE = 0). Using our neighborhood-based representation of technology 

with k = 4, the average SE is 0.02 for small farms, 0.041 on medium farms, and 0.030 on large 

farms.  

These results have several implications. First, Korean farms exhibit a high level of scale 

efficiency. This is consistent with the dominant small-scale rice farming system commonly found 
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in Korea. Second, introducing non-convexity affects the estimate of scale effects. Table 3 shows 

that the relationship between SE and k is not always monotonic. For example, in the case of 

medium farms, the average SE first rises then declines with k. This indicates that there is no 

general relationship between non-convexity and returns to scale. Yet, our results indicate that non-

convexity matters in the analysis of scale effects. Indeed, table 3 shows that neglecting non-

convexity (by using DEA) would generate upward-biased estimates of SE, while relying on FDH 

would likely generate downward-biased estimates of SE. Finally, table 3 indicates that these biases 

vary with farm size. In particular, the estimate of SE is found to be more sensitive to the choice of 

k for large farms. This is likely due to the fact that non-convexity effects are more important on 

large farms. This stresses the need to account for non-convexity in the evaluation of returns to 

scale. This also illustrates the usefulness of our approach in understanding and evaluating the 

technical and scale efficiency of firms under non-convexity.  

 

8. Concluding Remarks 

This paper has presented a new nonparametric approach to the analysis of technology and 

productivity under non-convexity. Our approach relies on a neighborhood-based representation of 

technology. We investigate the general properties of our model and its use in the evaluation of 

technology and productivity under non-convexity. Our approach nests two well-known approaches 

as special cases: Data Envelopment Analysis (DEA), and Free Disposal Hull (FDH) models. Yet 

either of these two approaches is overly restrictive: DEA because it does not allow for any non-

convexity; and FDH because it allows for "too much" non-convexity. We argue that our new 

nonparametric model allows for non-convexity in a more flexible way. Its neighborhood-based 

representation of technology allows for non-convexity to arise in any part of the feasible set. In 

this context, we propose a measure capturing the extent of non-convexity. We also use our 
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approach to evaluate scale efficiency under non-convexity. We show how our approach can be 

applied by solving simple optimization problems. Finally, we illustrate its usefulness through an 

empirical application to Korean farms.  

Note that our proposed approach could be extended in number of directions. First, 

exploring linkages with stochastic frontier analysis (e.g., Kumbhakar et al. 2007; Simar and 

Zelenyuk, 2011) is a good topic for further investigation. Second, the economics and management 

implications of non-convexity need to be examined in more details. For example, evaluating the 

productivity effects of firm specialization is a good topic for further research. Finally, empirical 

applications to different industries are needed to uncover evidence of situations where non-

convexity may be important.  
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Table 1. Descriptive statistics 

 
 

Variable 

  

Obs. 

Sample 

mean 

Std. 

deviation 

 

Min. 

 

Max. 

      

rice revenue (in 1,000 won) 122 15398.81 20251.10 892.04 133825.21 

vegetable revenue (in 1,000 won) 122 3608.15 4470.39 0 24964.58 

soybean revenue (in 1,000 won) 122 448.82 689.75 0 4471.78 

fruit revenue (in 1,000 won) 122 255.16 663.12 0 5272.20 

potato revenue (in 1,000 won) 122 592.49 3444.29 0 37230.10 

barley revenue (in 1,000 won) 122 1536.48 4212.75 0 26533.03 

miscellaneous revenue (in 1,000 

won) 
122 19.02 52.03 0 402.40 

specialty revenue (in 1,000 won) 122 579.57 1510.00 0 9897.81 

other revenue (in 1,000 won) 122 92.33 445.88 0 4292.03 

livestock revenue (in 1,000 won) 122 2014.37 4325.63 0 21604.84 

production costs (in 1,000 won) 122 13863.11 16470.88 868.75 115432.24 

family labor (hours) 122 641.25 469.48 71.50 3112.10 

paddy land (in ha) 122 1.07 1.36 0 9.71 

upland (in ha) 122 0.24 0.30 0 1.61 

      

Note: Note that 1,000 won (the Korean currency) is approximately equivalent to 0.89 US dollar. 
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Table 2. Average Technical Inefficiency D(z, T) and Non-Convexity C(z) under Alternative 

Representations of the Technology, by Farm Size.  

 

Farm Sizea Small farm Medium farm Large farm 

Technology  

T 

technical  

inefficiency 

D(z, T) 

non- 

convexity 

Crv(z) 

technical  

inefficiency 

D(z, T) 

non- 

convexity 

Crv(z) 

technical  

inefficiency 

D(z, T) 

non- 

convexity 

Crv(z) 

Tv (DEA) 0.063 (51.4)c  0.159 (49.0)  0.119 (61.1)  

TFDHv (FDH) 0.000 (100.0) 

 

0.000 (100.0) 

 

0.000 (100.0) 

 

Trv
* 

(Neighborhood 

-based 

representation 

of technology) 

 

 

k=1b 0.063 (51.4) 0.000 0.159 (49.0) 0.000 0.119 (61.1) 0.000 

k=2 0.038 (62.2) 0.025 0.082 (65.3) 0.077 0.017 (86.1) 0.103 

k=4 0.025 (62.2) 0.039 0.035 (75.5) 0.123 0.003 (100) 0.116 

k=6 0.013 (64.9) 0.050 0.009 (89.8) 0.150 0.000 (100) 0.119 

k=8 0.011 (70.3) 0.052 0.001 (95.9) 0.158 0.000 (100) 0.119 

k=10 0.000 (94.6) 0.063 0.000 (100) 0.159 0.000 (100) 0.119 

k=12 0.000 (100) 0.063 0.000 (100) 0.159 0.000 (100) 0.119 

Notes: a/ Farm size is identified by the size of total land. Small farms are defined as farms being in the 0 to 30 

percentile of the sample distribution of farm size, medium farms are between the 30 percentile and 70 percentile, and 

large farms are in the 70 to 100 percentile.  

b/ Assuming equally spaced intervals, we let r j = Mj/k, where Trv
* is defined using Br(z, ) = {z': – Mj/k  zj – zj'  

Mj/k; j = 1, …, m; z'  Rm} as neighborhood of z, and k denotes the number of intervals within the data range.  

c/ Next to the average technical inefficiency in each group, the number in parentheses is the percentage of technically 

efficient farms within the group.  
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Table 3. Scale Efficiency SErs(z) under Alternative Representations of the Technology, by 

Farm Size.  

 

Farm Sizea Small farm Medium farm Large farm 

Technology  

T 

scale 

 efficiency 

SErs(z, T) 

% of scale- 

efficient 

farms 

scale 

 efficiency 

SErs(z, T) 

% of scale- 

efficient 

farms  

scale 

 efficiency 

SErs(z, T) 

% of scale- 

efficient 

farms 

Tv (DEA) 0.026 35.1 0.024 49.0 0.130 50.0 

TFDHv (FDH) 0.000 81.1 0.000 95.9 0.000 100.0 

Trv
* 

(Neighborhood 

-based 

representation 

of technology) 

 

 

k=1b 0.026 35.1 0.024 49.0 0.130 50.0 

k=2 0.034 43.2 0.050 57.1 0.156 66.7 

k=4 0.020 45.9 0.041 63.3 0.030 77.8 

k=6 0.014 54.1 0.033 69.4 0.011 88.9 

k=8 0.013 56.8 0.022 69.4 0.004 94.4 

k=10 0.000 70.3 0.000 79.6 0.000 97.2 

k=12 0.000 81.1 0.000 95.9 0.000 100.0 

Notes: a/ Farm size is identified by the size of total land. Small farms are defined as farms being in the 0 to 30 

percentile of the sample distribution of farm size, medium farms are between the 30 percentile and 70 percentile, and 

large farms are in the 70 to 100 percentile.  

b/ Assuming equally spaced intervals, we let r j = Mj/k, where Trv
* is defined using Br(z, ) = {z': – Mj/k  zj – zj'  

Mj/k; j = 1, …, m; z'  Rm} as neighborhood of z, and k denotes the number of intervals within the data range.  
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Figure 1- Representations of Technology under Tv, Tc and TFDHv. 
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Figure 2- Representations of Technology under Tv, TFDHv and Trv
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Appendix 1. Technical Inefficiency D(z, T) for Each Farm under TFDHv, Tv and Trv
*
.  

 D(z,Tv) D(z,TFDH) D(z, Trv
*)  (Neighborhood-based representation of technology) 

Farm (DEA) (FDH) k=1a k=2 k=4 k=6 k=8 k=10 k=12 

1 0.05807 0 0.05807 0.0479 0.03516 0.03384 0.01293 0 0 

2 0.10923 0 0.10923 0 0 0 0 0 0 

3 0.18831 0 0.18831 0.07778 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 

7 0 0 0 `0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0.31028 0 0.31028 0.22411 0.19119 0 0 0 0 

10 0.05524 0 0.05524 0.04318 0.02931 0.02182 0.0169 0 0 

11 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 

14 0.26196 0 0.26196 0.20173 0.0349 0 0 0 0 

15 0.51059 0 0.51059 0.39757 0.17102 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 

17 0.02883 0 0.02883 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 

20 0.21193 0 0.21193 0.16466 0.12403 0.09727 0.09617 0 0 

21 0.18871 0 0.18871 0.12015 0.09719 0.03407 0 0 0 

22 0.07299 0 0.07299 0.05625 0.05354 0.04957 0.03771 0 0 

23 0.39656 0 0.39656 0.28693 0.19527 0.00464 0 0 0 

24 0.18342 0 0.18342 0.11953 0.06646 0.05183 0.04381 0 0 

25 0.53594 0 0.53594 0.23268 0.10263 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 

27 0.02422 0 0.02422 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 

32 0.08687 0 0.08687 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 0 0 

35 0.44221 0 0.44221 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 0 0 

37 0.12865 0 0.12865 0.05661 0.03722 0 0 0 0 

38 0 0 0 0 0 0 0 0 0 

39 0.00554 0 0.00554 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 

41 0.20641 0 0.20641 0.16212 0 0 0 0 0 

42 0 0 0 0 0 0 0 0 0 

43 0 0 0 0 0 0 0 0 0 

44 0.57311 0 0.57311 0.36557 0.20672 0.16115 0 0 0 

45 0 0 0 0 0 0 0 0 0 

46 0 0 0 0 0 0 0 0 0 

47 0 0 0 0 0 0 0 0 0 

48 0.57423 0 0.57423 0.44153 0 0 0 0 0 

49 0.0673 0 0.0673 0.05051 0.04933 0.01082 0.00971 0.00002 0 

50 0.31944 0 0.31944 0.25168 0.21994 0.16052 0.0001 0 0 

51 0.06644 0 0.06644 0 0 0 0 0 0 

52 0 0 0 0 0 0 0 0 0 

53 0.12894 0 0.12894 0.08894 0.05457 0.04748 0.04748 0 0 

54 0.16182 0 0.16182 0.13281 0.11595 0.06936 0.03247 0 0 

55 0 0 0 0 0 0 0 0 0 

56 0 0 0 0 0 0 0 0 0 

57 0.22042 0 0.22042 0.14666 0.11822 0.07754 0.07754 0.00008 0 

58 0.06441 0 0.06441 0 0 0 0 0 0 

59 0 0 0 0 0 0 0 0 0 

60 0.20663 0 0.20663 0.02283 0 0 0 0 0 
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61 0.42666 0 0.42666 0.13009 0 0 0 0 0 

62 0.27122 0 0.27122 0 0 0 0 0 0 

63 0.42611 0 0.42611 0.0579 0 0 0 0 0 

64 0.11448 0 0.11448 0 0 0 0 0 0 

65 0.10595 0 0.10595 0 0 0 0 0 0 

66 0.1534 0 0.1534 0.10582 0.02841 0.02265 0.02012 0 0 

67 0 0 0 0 0 0 0 0 0 

68 0 0 0 0 0 0 0 0 0 

69 0.06306 0 0.06306 0.03721 0.03029 0.02786 0.00003 0 0 

70 0 0 0 0 0 0 0 0 0 

71 0.28092 0 0.28092 0.17012 0.14187 0 0 0 0 

72 0 0 0 0 0 0 0 0 0 

73 0.34399 0 0.34399 0.1714 0.12672 0 0 0 0 

74 0 0 0 0 0 0 0 0 0 

75 1.01598 0 1.01598 0.50718 0.14919 0 0 0 0 

76 0 0 0 0 0 0 0 0 0 

77 0 0 0 0 0 0 0 0 0 

78 0 0 0 0 0 0 0 0 0 

79 0.3037 0 0.3037 0 0 0 0 0 0 

80 0 0 0 0 0 0 0 0 0 

81 0 0 0 0 0 0 0 0 0 

82 0 0 0 0 0 0 0 0 0 

83 0 0 0 0 0 0 0 0 0 

84 0 0 0 0 0 0 0 0 0 

85 0 0 0 0 0 0 0 0 0 

86 0.06372 0 0.06372 0 0 0 0 0 0 

87 0 0 0 0 0 0 0 0 0 

88 0.41894 0 0.41894 0 0 0 0 0 0 

89 0.02432 0 0.02432 0 0 0 0 0 0 

90 0 0 0 0 0 0 0 0 0 

91 0.05367 0 0.05367 0.05293 0.03424 0.02802 0.00002 0 0 

92 0.53044 0 0.53044 0.37717 0 0 0 0 0 

93 0 0 0 0 0 0 0 0 0 

94 0.38548 0 0.38548 0.09954 0.01607 0 0 0 0 

95 0 0 0 0 0 0 0 0 0 

96 0.05229 0 0.05229 0 0 0 0 0 0 

97 0.05395 0 0.05395 0.02783 0.01066 0.009 0 0 0 

98 0.74293 0 0.74293 0 0 0 0 0 0 

99 0 0 0 0 0 0 0 0 0 

100 0.13083 0 0.13083 0.00503 0 0 0 0 0 

101 0.30122 0 0.30122 0 0 0 0 0 0 

102 0 0 0 0 0 0 0 0 0 

103 0 0 0 0 0 0 0 0 0 

104 0 0 0 0 0 0 0 0 0 

105 0.43983 0 0.43983 0 0 0 0 0 0 

106 0.20599 0 0.20599 0 0 0 0 0 0 

107 0.00137 0 0.00137 0 0 0 0 0 0 

108 0.69812 0 0.69812 0.31127 0.17893 0 0 0 0 

109 0 0 0 0 0 0 0 0 0 

110 0 0 0 0 0 0 0 0 0 

111 0 0 0 0 0 0 0 0 0 

112 0.43043 0 0.43043 0.30188 0.15191 0.00995 0 0 0 

113 0 0 0 0 0 0 0 0 0 

114 0 0 0 0 0 0 0 0 0 

115 0 0 0 0 0 0 0 0 0 

116 0 0 0 0 0 0 0 0 0 

117 0 0 0 0 0 0 0 0 0 

118 0 0 0 0 0 0 0 0 0 

119 0 0 0 0 0 0 0 0 0 

120 0 0 0 0 0 0 0 0 0 

121 0 0 0 0 0 0 0 0 0 

122 0 0 0 0 0 0 0 0 0 

Note: a/ Assuming equally spaced intervals, we let r j = Mj/k, where Trv
* is defined using Br(z, ) = {z': –Mj/k  zj – 

zj'  Mj/k; j = 1, …, m; z'  Rm} as neighborhood of z, and k denotes the number of intervals within the data range.   
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Footnotes 

 

                                                 
1
 The technology T is convex if, for any z and z'  T, then (θ z + (1-θ) z')  T for any scalar θ  [0, 1].  

2
 For example, when p = 2, this corresponds to the Euclidean distance: D2(z, z’)  

m

j=1 [(|zj – zj'|/j)
2
]

1/2
. 

And when p → , this corresponds to the Chebyshev distance: limp Dp(z, z’) = Maxj {|zj – zj'|/j: j = 

1, …, m}.   

3
 The choice and evaluation of the neighborhood Br(z, ) will be further discussed in section 4.2 below.   

4
 The directional distance function D(z, T) in (11) is the negative of Luenberger’s shortage function (see 

Luenberger, 1995). 

5
 Note that D(z, T) includes as special cases many measures of technical inefficiency that have appeared in 

the literature. Relationships with Shephard’s distance functions (Shephard, 1953) or Farrell’s measure 
of technical efficiency (Farrell, 1957) are discussed in Chambers et al. (1996) and Färe and Grosskopf 
(2000).   

6
 Since dealing with non-linear constraints can be empirically challenging, note that alternative 

formulations have been proposed avoiding non-linear constraints in productivity analysis (e.g., 

Podinosvki, 2004; Leleu,, 2006; Soleimani-Damneh and Reshadi, 2007; De Witte and Marques, 2011).  

7
 An alternative way to choose the intervals would be to rely on the empirical distribution of netputs. In 

this context, one option would be to choose the intervals such that, for each netput, each interval 
includes the same number of sample observations.  

8
  Note that 1,000 won (the Korean currency) = 0.89 US dollars. 

9
 Farm size is measured by the total amount of land (in ha). Small farms are defined as farms being in the 0 

to 30 percentile of the sample distribution of farm size, medium farms are between the 30 percentile 
and 70 percentile, and large farms are in the 70 to 100 percentile. The average farm size of small, 

medium and large farms are 0.574 ha, 1.624 ha, and 5.965 ha, respectively. 


