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Abstract 
 
 

Previous studies that analyzed multiple imputation using survey data did not take into 

account the survey sampling design. The objective of the current study is to analyze the impact 

of survey sampling design missing data imputation, using multivariate multiple imputation 

method. The results of the current study show that multiple imputation methods result in lower 

standard errors for regression analysis than the regression using only complete observation. 

Furthermore, the standard errors for all regression coefficients are found to be higher for multiple 

imputation with taking into account the survey sampling design than without taking into account 

the survey sampling design. Hence, sampling based estimation leads to more realistic standard 

errors.   
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Although statistical theory has been developed for missing data imputation, the use of 

these methods has been relatively rare by agricultural economists (Robbins and White, 2011). 

Majority of the existing studies measured the impact of imputation techniques on the distribution 

of univariate missing variables using arbitrarily created missing data patterns (e.g., Robbins and 

White, 2011). Among the few studies that analyzed missing data imputation in agricultural 

economics, Robbins and White (2011), Ahearn et al (2011), and Moss and Mishra (2011) used 

ARMS data for their analysis on missing data imputation. These studies can be thought of 

simulation studies, as they generate missing data randomly from a complete dataset. Robbins and 

White (2011) analyze how the distribution of the variable “farm commodity payments received” 

changes between two imputation methods when some of the observations for this variable are 

randomly removed from the data. One of the imputation methods used their analysis is the 

method used by the USDA, which is the conditional mean imputation (a non-model-based 

estimation method). The second method is based on Data Augmentation (DA), which is a 

Markow Chain Monte Carlo method (Robbins and White, 2011). This paper applied DA to 

conduct a single imputation, rather than multiple imputation. Their results show that the method 

of imputation impacts the distribution of the variable imputed. As ARMS date set does not 

include missing observations, missing data for this study was created by random removal of 

observations from the dataset, this is referred to as Missing Completely at Random (MCAR). 

This is an important limitation of the Robbins and White (2011) research, because it is likely that 

there may be systematic reasons why data are missing. Hence, in general it is difficult to observe 

MCAR in actual survey data. 

The study by Ahern et al. (2011) provides a comparison of the USDA’s conditional mean 

imputation method with sequential regression multivariate imputation (SRMI), using the ARMS 
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dataset. SRMI is based on imputing missing observations for each variable separately, based on 

the observed distribution of each variable (Ahearn et al., 2011) 1

One of the major limitations of the studies reviewed was generating missing data randomly from 

a complete dataset and not accounting for survey sampling design. The objective of this paper is 

to evaluate the impact of survey sampling design on multiple imputation.  

. Missing data for this study was 

also created by random removal of observations from the ARMS dataset. Their results showed 

that the method used by the USDA has mimicked the distribution of some variables more closely 

to the full dataset than the SRMI method, while the opposite is true for some other variables. 

Hence, no definite general conclusion was made on which imputation method is preferable. 

Although the studies by Robbins and White (2011) and Ahearn et al (2011) analyzed the impact 

of missing data imputation on certain variables, neither of these studies analyzed the impact of 

missing data imputation on regression coefficient estimates. Lastly, the study by Moss and 

Mishra (2011) applies Gibbs Sampling (a MCMC method), which is different than the  multiple 

imputation method developed by Rubin (1987), to estimate a Leontief production function using 

the ARMS data, using also synthetically generated missing data. They find that results using 

imputed data and results using only complete observations did not differ significantly for 

regression coefficient estimates. However, multiple imputation resulted in higher standard errors 

than using only complete observations, which is unexpected as multiple imputation should 

decrease the standard errors by using more observations. Authors conclude that this unexpected 

result was due to the collinearity problem caused by the arbitrarily created missing data pattern.   

Multiple Imputation  

 Multiple imputation methods, both multivariate and univariate, are based on simulation 

from a Bayesian posterior predictive distribution of missing data (Rubin, 1987: Schafer, 1997). 
                                                 
1 See Little and Rubin (2002) for a detailed review of each imputation method. 
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The univariate imputation method uses noniterative techniques for simulation from the posterior 

predictive distribution of missing data, whereas multivariate methods use an iterative Markow 

Chain Monte Carlo (MCMC) technique (Rubin, 1987). Multiple imputation consists of three 

steps: imputation step, completed-data analysis step, and the pooling step. During the imputation 

step, M imputations (completed datasets) are generated under the chosen imputation model. The 

econometric model is performed separately on each imputation m=1,2,…,M in the completed-

data analysis step. In the current study, a univariate logistic model is used to represent the 

adoption of soil testing. Lastly, during the pooling step, the results obtained from M completed-

data analyses are combined into a single multiple imputation based estimation results. Below we 

provide the detailed description for each step of multiple imputation. 

Imputation Step  

M imputations are generated under the chosen imputation model. The imputation model 

can be a univariate model or a multivariate model based on the number of variables to be 

imputed and the correlation among the variables. In the current study both univariate and 

multivariate models are used to evaluate the differences. In the current study there are three types 

of data: binary and ordinal (discrete variables), and continuous. Although multivariate normal 

imputation is originally developed for imputing continuous variables, studies show that a 

multivariate normal model can be used for discrete variables, given that imputed observations are 

again converted to categorized form after the imputation (Schafer, 1997; Lee and Carlin, 2010). 

For example, for binary variables, values smaller than 0.5 can be converted to 0, and others are 

converted to 1.  
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Multivariate Normal Multiple Regression 

The basic multivariate normal regression model for imputing missing variables can be 

represented as follows. Let 𝐱1, 𝐱2, … , 𝐱N  be a random sample from a p-variate normal 

distribution, where p represents the number of variables with missing values for observation i = 

1,…,N. The multivariate normal regression can be represented as: 

  𝐱𝑖 = 𝚯′𝐳𝑖 + 𝝐𝑖,  i = 1,…,N 

where 𝐱𝑖 = ( x𝑖1,  x𝑖2, … ,  x𝑖𝑝) is the vector of values of the variables to be imputed for 

observation i, 𝒛𝑖 is a q x 1 vector of values of the complete (independent) variables for 

observation i, 𝚯 is a q x p matrix of regression coefficients, and 𝝐𝑖 is a p x 1 vector of random 

errors from a p-variate normal distribution with mean zero and a p x p variance-covariance 

(positive definite) matrix Σ. 𝚯 and Σ are referred as the model parameters. Next we provide the 

information on data augmentation.  

Data Augmentation 

 Multivariate normal multiple regression model uses Data Augmentation, which is an 

iterative MCMC method, to impute missing values (Rubin, 1987). Data Augmentation consists 

of two steps, an I step (imputation step) and a P step (posterior step), which are preformed at 

each iteration t = 0,1,…,T (Schafer, 1997). Consider the partition of 𝐱𝑖 = �𝒙𝑖(0),𝒙𝑖(𝑚)� 

corresponding to observed and missing values of imputation variables in observation i. At 

iteration t of the I step, the missing values in 𝐱𝑖 are replaced with draws from the conditional 

posterior distribution of 𝐱𝑖(𝑚)
(𝑡+1) given observed data and the current values of model parameters 

𝚯(𝑡) and 𝚺(𝑡) independently for each observation (Little and Rubin, 2002).  Following Little and 

Rubin (2002), in the current study, T is set as 100 following (Little and Rubin, 2002). Next, 

during the P step new values of model parameters 𝚯(𝑡+1) and 𝚺(𝑡+1) are drawn from their 
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conditional posterior distribution given observed data and data imputed in the previous I step  

𝐱𝑖(𝑚)
(𝑡+1). These procedures can be represented as (Schafer, 1997; Little and Rubin, 2002): 

 I step:   𝐱𝑖(𝑚)
(𝑡+1)~ 𝑃�𝒙𝑖(𝑚)�𝒛𝑖,𝒙𝑖(0),𝚯(𝑡),𝚺(𝑡)�, 𝑖 = 1, … ,𝑁 

 P step:   𝚺(𝑡+1)~ 𝑃 �𝚺�𝒛𝑖,𝒙𝑖(0), 𝐱𝑖(𝑚)
(𝑡+1)� 

   𝚯(𝑡+1) ~ 𝑃 �𝚯�𝒛𝑖,𝒙𝑖(0), 𝐱𝑖(𝑚)
(𝑡+1)� 

the I and P steps are repeated until the MCMC sequence {(𝐗𝑚
(𝑡), 𝚯(𝑡),𝚺(𝑡)) : t = 1,2,…,T}, where 

𝐗𝑚
(𝑡) denotes all values imputed at iteration t, converges to the stationary distribution 

𝑃(𝐗𝑚,𝚯,𝚺|𝒁,𝑿0, ). The functional form of the conditional posterior distribution in the I and P 

steps above depends on the distribution of the data and a prior distribution of the model 

parameters. We use an improper uniform prior distribution for 𝚯, to reflect the uncertainty about 

𝚯, and an inverted Wishart distribution W𝑝
−1(𝜆,𝛬)  for 𝚺 (Rubin, 1987). In frequentist theory, 

Wishard distribution appears as the sampling distribution for the sample covariance matrix. The 

parameters 𝜆 and 𝛬 are called degrees of freedom and scale, respectively (Johnson and Wichern, 

2002). The prior joint density function can be represented as: 

 𝑓(𝚯,𝚺) ∝ |𝚺|−�
𝜆+𝑝+1

2 �exp �− 1
2

tr𝛬−1𝚺−1�       

Wishard prior distribution is a natural conjugate to the multivariate normal likelihood function, 

which makes Bayesian inference to be conducted easily (Johnson and Wichern, 2002).  Using the 

Bayes rule   𝑃(𝚯,𝚺|𝑿) ∝ 𝐿(𝚯,𝚺|𝑿)𝑓(𝚯,𝚺), where 𝐿(𝚯,𝚺|𝑿) is the standard multivariate normal 

likelihood function, the I and P steps become (Schafer, 1997):  

 I step:   𝐱𝑖(𝑚)
(𝑡+1)~ 𝑁𝑝𝑖�𝒙𝑖(𝑚)�𝝁𝑚.𝑜

(𝑡) ,𝚺𝑚𝑚.𝑜
(𝑡) �, 𝑖 = 1, … ,𝑁 

 P step:   𝚺(𝑡+1)~ 𝑊−1(𝜦∗
(𝑡+1), 𝜆∗) 
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   vec �𝚯(𝑡+1)�~ 𝑁𝑝𝑞�vec �𝚯�(𝑡+1)�,𝚺(𝑡+1) (𝒁′𝒁)−1� 

where pi is the number of imputation variables containing missing values in observation i,  is 

the Kronecker product, and vec(.) is the vectorization of a matrix into a column vector. 

Submatrices 𝝁𝑚.𝑜
(𝑡)  and 𝚺𝑚𝑚.𝑜

(𝑡)  are the mean and variance of the conditional distribution of 

𝒙𝑖(𝑚)given 𝒙𝑖(0) based on 𝐱𝑖~𝑁𝑝(𝚯(t)′𝒛𝑖,𝚺(t)). The matrix 𝚯�(𝑡+1) = (𝒁′𝒁)−1𝒁′𝑿(𝑡+1) is the 

ordinary least squares estimate of regression coefficients based on the augmented data 𝑿(𝑡+1) =

(𝐗𝑜 ,𝐗𝑚
(𝑡+1)) from iteration t. The posterior scale matrix 𝛬∗

(𝑡+1) and the posterior degrees of 

freedom  for the inverted Wishart distribution 𝜆∗ are defined as (Johnson and Wichern, 2002): 

 𝛬∗
(𝑡+1) = �𝛬−1 + �𝑿(𝑡+1) − 𝒁𝚯�(𝑡+1)�′�𝑿(𝑡+1) − 𝒁𝚯�(𝑡+1)��

−1
 

 𝜆∗ =  𝜆 + 𝑁 − 𝑞  

Values for the degrees of freedom and the scale parameter are determined based on the requested 

prior distribution for 𝚯. For the uniform prior distribution for 𝚯, the values are 𝜆 = -(p+1) and 

𝛬−1 =  𝟎𝑝𝑝 , where 𝟎𝑝𝑝 is a zero matrix (Johnson and Wichern, 2002). In the current study, to 

reflect uncertainty about model parameters, noninformative uniform prior distribution is used. 

Expectation-Maximization Algorithm 

The initial values 𝜣(0) and 𝜮(0)for the Data Augmentation above are obtained from the 

Expectation-Maximization (EM) algorithm (Schafer, 1997). The EM algorithm iterates the 

expectation step (E step) and maximization step (M step) to maximize the log-likelihood 

function. The observed-data likelihood function is (Schafer, 1997): 

 𝑙𝑙(𝚯,𝚺|𝑿𝒐) = ∑ ∑ �−0.5ln(|𝚺𝐬|) − 0.5(𝐱𝑖(𝑜) − 𝚯′(s)𝐳𝑖)′𝚺−𝟏s(𝐱𝑖(𝑜) − 𝚯′(s)𝐳𝑖)�𝑖𝜖𝐼(𝑠)
𝑆
𝑠=1   

where S is the number of unique missing-value patterns in the full-data, I(s) is the set of 

observations from the same missing-value pattern s, and  𝜣𝒔 and 𝜮𝒔 are the submatrices of 𝜣 and 
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𝜮 that correspond to the imputation variables, which are observed in pattern s. In the current data 

set S is 87. Using the prior joint density function and the log-likelihood function above, the log-

posterior function is obtained as (Schafer, 1997): 

  𝑙𝑝(𝚯,𝚺|𝑿𝒐) = 𝑙𝑙(𝚯,𝚺|𝑿𝒐) + ln{𝑓(𝚯,𝚺)} − 𝜆+𝑝+1
2

ln (|𝚺|) − 1
2

tr(𝛬−1𝚺−1) 

  The E step and M steps are processed using the sufficient statistics for the multivariate 

normal distribution. Let 𝑇1 = ∑ 𝒛𝑖𝒙′𝑖𝑁
𝑖=1  and 𝑇2 = ∑ 𝒙𝑖𝒙′𝑖𝑁

𝑖=1  denote the sufficient statistics for 

the multivariate normal model. The submatrices 𝚯𝑖(s)and 𝚯𝑖(m) of 𝚯, and the submatrices 

𝜮𝑖(mm),𝜮𝑖(mo), and 𝜮𝑖(oo) of 𝜮 correspond to the observed and missing column of 𝒙𝑖. Let O(s) 

and M(s) correspond to the column indexes of the observed and missing parts of 𝒙𝑖 for each 

missing-values pattern s (Little and Rubin, 2002; Rubin, 1987).   

  E Step: The expectations E(∑ 𝒛𝑖𝒙′𝑖)𝑁
𝑖=1  and E(∑ 𝒙𝑖𝒙′𝑖𝑁

𝑖=1 ) are computed with respect to 

the conditional distribution 𝑃�𝐗𝑚�𝚯(t),𝚺(t),𝑿0� (Little and Rubin, 2002):  

  𝐸�𝑥𝑖𝑗�𝚯(t), 𝚺(t),𝑿0� = �
 𝑥𝑖𝑗 , for 𝑗𝜖 𝑂(𝑠)
𝑥𝑖𝑗∗ , for 𝑗𝜖 𝑀(𝑠)

�  

and  

  𝐸�𝑥𝑖𝑗𝑥𝑖𝑙�𝚯(t),𝚺(t),𝑿0� = �
𝑥𝑖𝑗𝑥𝑖𝑙 , for 𝑗, 𝑙 𝜖 𝑂(𝑠)

𝑥𝑖𝑗∗ 𝑥𝑖𝑙 , for 𝑗𝜖 𝑀(𝑠), 𝑙 𝜖 𝑂(𝑠)
𝑐𝑖𝑗 + 𝑥𝑖𝑗∗ 𝑥𝑖𝑙∗ , for 𝑗, 𝑙 𝜖 𝑀(𝑠)

� 

where 𝑥𝑖𝑗∗  is the jth element of the vector 𝚯′𝑖(m)𝒛𝑖 + 𝜮𝑖(mo)𝜮𝑖(oo)
−1 (𝐱𝑖(𝑜) − 𝚯′

(s)𝐳𝑖), and 𝑐𝑖𝑗 is the 

element of the matrix 𝜮𝑖(mm) − 𝜮𝑖(mo)𝜮𝑖(oo)
−1  𝜮𝑖(oo)

′  (Little and Rubin, 2002; Rubin, 1987).    

  M step:  During the M step, the model parameters are updated using the computed 

expectations of the sufficient statistics: 

  𝚯(𝑡+1) = (𝒁′𝒁)−1E(∑ 𝒛𝑖𝒙′𝑖)𝑁
𝑖=1   



10 
 

  𝚺(t+1) = 𝟏
𝑁+𝜆+𝑝+1

{E(𝑇2) − (E(∑ 𝒛𝑖𝒙′𝑖)𝑁
𝑖=1 )′(𝒁′𝒁)−1E(𝑇1) + 𝛬−1 } 

The EM iterates between the E step and M step until the maximum relative difference between 

the two successive values of all parameters is less than the specified tolerance (in this paper it is 

1e-5) (Little and Rubin, 2002; Rubin, 1987).  

Completed-data Analysis Step 

   Promoting adoption of new technologies is an important policy issue in agricultural 

economics. In the current study we analyze adoption of soil testing. The adoption decision of 

farmers can be represented using a logistic regression as (Greene, 2008): 

  Pr ( 𝑦𝑖 = 1|𝒙𝑖) � = exp (𝒙𝒊′𝒒) 1 + exp (𝒙𝒊′𝒒)⁄ ,  i = 1,..,N  

where 𝑦𝑖 = 1 if the farmer adopts soil testing and 𝑦𝑖 = 0 if the farmer does not adopt soil testing. 

𝒒 is the vector of coefficients in interest, in the completed-data analysis, to be estimated and 𝒙𝑖 is 

the vector of independent variables. This model is performed separately on each set of imputed 

data (completed data) m = 1,…,M (Gelman et al, 2004).  

Pooling Step 

  The results obtained from M completed-data analyses are combined into a single 

multiple-imputation based estimation results (Enders, 2010). Let ��𝒒𝒊� ,𝐔ı��: i = 1,2, … ,𝑀� be the 

completed-data estimates of q and the respective variance-covariance estimates U from M 

imputed datasets (Enders, 2010). The multiple imputation estimate of q is 𝒒�𝑀 =  1
𝑀
∑ 𝒒𝒊�𝑀
𝑖=1 . The 

variance-covariance estimate of  𝒒�𝑀(total variance) is 𝐓 = 𝐔� +  �1 + 1
𝑀
�𝐁, where 𝐔� =

 1
𝑀
∑ 𝑼𝒊�/𝑀𝑀
𝑖=1  is the within-imputation variance-covariance matrix and 𝐁 =  1

𝑀
∑ (𝒒𝒊 −𝑀
𝑖=1

 𝒒�𝑀)(𝒒𝒊 −  𝒒�𝑀)′/(𝑀− 1) is the between-imputation variance-covariance matrix (Enders, 2010). 
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Sampling Based Estimation  

In sample surveys, observations are selected through a random process, but different 

observations may have different probabilities of selection. Weights are equal to (or proportional 

to) the inverse of the probability of being sampled. Various postsampling adjustments to the 

weights are sometimes made, as well. A weight of wj for the jth observation means, roughly 

speaking, that the jth observation represents wj elements in the population from which the 

sample was drawn. Omitting weights from the analysis results in estimates that may be biased, 

sometimes seriously so.  

Results 

The data for the current study is obtained through a mail survey of 2995 farm operations 

in Iowa and Missouri in spring 2011. The questions were designed to discover if the farmers had 

adopted new technologies and how the farmers’ and the farm’s characteristics impacted the 

adoption decision. The survey was sent out to a test group of 100 farmers and was revised before 

developing the final survey instrument. The final survey was sent out with a cover letter and a 

postage paid return envelope. A reminder postcard was sent after two weeks. The effective 

response rate for the survey was 21 percent. Before calculating the response rate, the farmers 

who had stopped farming, farmers who had returned the survey due to not being the farm 

operator, and undeliverable surveys to farmers (due to an address change) were subtracted from 

the original number of surveys that were sent out.  The effective rate is the number of returned 

surveys divided by the adjusted number of surveys sent, times 100.  

Table 1 provides the comparison of logistic regression results between the no imputation 

case and MVN multiple-imputation with M set as 10.  The hypothesis that all the regression 

coefficients except the constant term is rejected for both regressions with the p-values of 0.000. 
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Hence, both the no-imputation and MVN imputation regressions are significant. For the 

individual variables in the regression, two of the variables that were not significant in the no-

imputation case became significant at 10 percent significance level in the multiple-imputation 

case (e.g., age and owned land). It is important to see that almost all of the variable estimates 

have lower standard error in the MVN imputed regression than in the no-imputation regression. 

Hence, MVN imputation significantly increased the efficiency of the estimates.  

Table 2 provides the comparison of logistic regression results between the MVN 

imputation (non-sampling based) and MVN imputation (sampling based). The results show that 

MVN imputation (sampling based) leads to larger standard errors than MVN imputation (non-

sampling based) for the variables other than farm sales. This is expected, as stratification was 

done based on farm sales, which leads to lower standard errors. Hence, overall sampling based 

MVN imputation leads to more realistic standard errors.    

Conclusion 

Multiple imputation results have important policy implications. Policy makers can end up 

enforcing different policies based on whether they used no-imputation regression or the multiple 

imputation regressions. This is because multiple imputation based regression and the regression 

using only complete observations can have differences in the sign, magnitude, and statistical 

significance of coefficient estimates. Since multiple-imputation methods provides unbiased 

estimates and increase the efficiency of the regression estimates, it is recommended that policy 

recommendation should be made using multiple imputation methods rather than using a 

regression with missing observations. 
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Table 1. Regression Results for Adoption of Soil Testing  

  Variables                                                    No-Imputation                               Multivariate Normal Imputation  

 

Coeff.           Std. Err.  p-Value  Coeff.       Std. Err.           p-Value       DOF        Inc. S.E. (%)  

Age  1.001 0.015 0.948 0.024 0.010 0.021 12358 1.38 

Owned Land  1.001 0.001 0.174 0.001 0.001 0.056 639 6.52 

Land Rented Out  0.999 0.002 0.819 -0.001 0.001 0.302 4247 2.38 

Land Rented In  1.003 0.001 0.005 0.002 0.001 0.032 243 11.29 

Missouri (Base=Iowa)  0.319 0.118 0.002 -1.037 0.261 0.000  4210 2.4 

Non-Family Labor  1.301 0.494 0.488 -0.260 0.294 0.378 1749 3.79 

Environmental Perceptions  

        Water Quality 0.746 0.133 0.100  -0.250 0.129 0.053 429 8.13 

Managing Manure  1.130 0.209 0.510  0.226 0.151 0.135 140 15.77 

Global Warming 0.868 0.111 0.271 -0.135 0.091 0.138 24002 0.98 

Farm Sales  

        $50,000-$99,999  3.586 1.630 0.005 0.955 0.329 0.004 4274 2.38 

$100,000-$249,999  7.554 4.030 0.000  1.368 0.374 0.000  3419 2.67 

$250,000-$499,999  16.078 12.982 0.001 2.169 0.569 0.000  653 6.44 

$500,000 or more  9.137 11.341 0.075 2.263 0.964 0.019 576 6.91 
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Table 2. Regression Results for Adoption of Soil Testing 

  Variables                                               Multivariate Multiple   Imputation                             Multivariate Multiple Imputation (Sampling Based)  

 

Coeff.        Std. Err.    p-Valu      DOF    Inc. S.E. (%)  Coeff.        Std. Err.  p-Value      DOF           Inc. S.E.(%) 

Age  0.024 0.010 0.021 12358 1.38 0.014 0.013 0.276 374 2.63   

Owned Land  0.001 0.001 0.056 639 6.52 0.002 0.001 0.094 88 17.32   

Land Rented Out  -0.001 0.001 0.302 4247 2.38 -0.004 0.002 0.050  155 10.54   

Land Rented In  0.002 0.001 0.032 243 11.29 0.002 0.001 0.073 56 24.95   

Missouri (Base=Iowa)  -1.037 0.261 0.000  4210 2.4 -1.192 0.351 0.001 410 1.51   

Non-Family Labor  -0.260 0.294 0.378 1749 3.79 -0.019 0.400 0.962 325 3.95   

Environmental Perceptions  

          

  

Water Quality -0.250 0.129 0.053 429 8.13 -0.219 0.152 0.149 365 2.86   

Managing Manure  0.226 0.151 0.135 140 15.77 0.159 0.183 0.385 95 16.21   

Global Warming -0.135 0.091 0.138 24002 0.98 -0.102 0.128 0.428 399 1.89   

Farm Sales  

          

  

$50,000-$99,999  0.955 0.329 0.004 4274 2.38 1.156 0.485 0.018 431 0.64   

$100,000-$249,999  1.368 0.374 0.000  3419 2.67 1.720 0.547 0.002 401 1.81   

$250,000-$499,999  2.169 0.569 0.000  653 6.44 2.541 0.929 0.007 291 4.93   

$500,000 or more  2.263 0.964 0.019 576 6.91 1.921 1.468 0.192 336 3.67   

 


