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DISTORTED PRICES AND PRODUCER EFFICIENCY – ROMANIAN MAIZE 

Borbala Balint∗, Johannes Sauer** 

Abstract 

This research aims at shedding empirical light on the relative efficiency of small-scale maize producers in 
Romania. Farmers in transition countries still face heavily distorted price systems resulting from imperfect 
market conditions and socioeconomic and institutional constraints. To capture such distortions we 
formulate a stochastic shadow-cost frontier model to investigate the systematic input-specific allocative 
inefficiency. We further adjust the underlying cost frontier by incorporating shadow price corrections and 
subsequently reveal evidence on farm specific technical inefficiency. Different models are estimated due to 
the imposition of curvature correctness and the effects on the individual efficiency estimates are shown. The 
empirical results show a relative high technical efficiency of the small-scale farmers but relatively poor 
scores on systematic input price efficiency. The usage of extension services as well as agricultural training on 
the farm level are found to have a positive effect on the technical efficiency level of the farms. All model 
specifications further agree on the negative effect on efficiency with respect to the use of insecticides. The 
imposition of functional concavity on the shadow cost frontier leads to relative differences in the efficiency 
estimates of up to 240%. 
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1 - INTRODUCTION 

Profound structural changes are still taking place in the process of transition from a command to a 

market oriented economy in Romania. This is especially true for the agricultural sector where the 

structural reforms are concentrated on the privatization of land and the downsizing of agricultural 

enterprises and led to the emergence of numerous small farms (Lerman 1999, OECD 2000). These 

farmers – so-called individual farmers – are currently the most important actors with respect to 

land and output markets (OECD 2000, Leonte 2002). However, they are still heavily constrained 

with respect to an insufficient factor endowment and the lack of developed input and output 

markets. As a result, most technology intensive crops have been substituted by the cultivation of 

more traditional crops and the importance of subsistence farming increased (Tesliuc 2000). The 
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production of maize as one of the main traditional crops in Romania increased in its importance 

which is also related to its relatively simple way of production and storage (Tesliuc 2000). This 

research aims to assess the relative efficiency of small-scale maize production and tries to 

determine different factors for maize farms’ inefficiency. To the background of the restructuring in 

the Romanian agriculture the individual farmers’ decisions are often made with respect to shadow 

prices as the prices the decision maker actually has to pay rather than those observed as prevailing 

market prices (see Toda 1976, Atkinson and Halvorsen 1980, 1984 and 1986, Kumbhakar and 

Bhattacharyya 1992 and Wang et al. 1996). The following study therefore uses such shadow prices 

to model and analyze the relative efficiency of small-scale Romanian maize producers. After briefly 

outlining the case of small-scale maize production in Romania subsequently the applied model is 

described as a combination of the shadow price approach to reveal systematic allocative efficiency 

and the error components approach to obtain producer specific technical efficiency estimates. The 

estimated models are tested and corrected for theoretical consistency and further bootstrapping 

techniques are applied to investigate the statistical robustness of the most consistent model. Finally 

the relative efficiency scores and possible factors for their variance over the sample are discussed. 

2 – THE CASE STUDY – SMALL-SCALE MAIZE PRODUCTION IN ROMANIA 

The majority of the restructuring measures in the Romanian agricultural sector since 1989 were 

concentrated on the privatization of land aiming at changing collective agriculture to individual 

agriculture as well as on the downsizing of the farms (Lerman 1999). The majority of farmers chose 

individual farming and thus, in 2002, 4.7 million individual farms cultivated 62% of the arable land 

with an average size of 1.6 hectares per farm (NIS 2004). However, by reestablishing the situation 

before collectivization, the privatization hence led to the fragmentation of the agricultural land 

and consequently the farms could not be adjusted to their efficient size because the restituted land 

was banned from selling till the year 1998 and a simplification of the complex law on leasing was 

only conducted in the same year. 

Furthermore the new individual producers lacked the necessary know-how to cultivate their land. 

They had no cash to invest and rarely access to credit as well as agricultural equipment. Up and 

downstream sectors had not been restructured to suit the needs of the small farmers which led to 
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high transactions costs by using the different input and output makets. Such transaction costs and 

the lack of capital reinforced the decline in the use of inputs like fertilizer and certified seed 

(Kenneth 2003, OECD 2000, Tesliuc 2000). By responding to these difficulties producers diversified 

their production, substituted commercial by non-commercial crops, technical crops by traditional 

crops and increased subsistence production. The latter finally further promoted the stagnation in 

the development of input and output markets and led to a kind of vicious circle. The increase in 

maize cultivation in Romania during this period is basically linked to these developments in the 

agricultural sector. 

Although the economic reforms in Romanian agriculture have reduced direct state control over 

production decisions, various interferences in the input and output markets still distort farmers’ 

production decisions. Despite some studies on the economic efficiency of farming in transitional 

countries (see e.g. Hughes 1998, Mathijs/Swinnen 2000) none considers the effects of distorted 

input and output price relations with respect to the relative efficiency of agricultural production in 

Romania. Due to the vast literature on shadow prices (see for an overview e.g. Kumbhakar/Lovell 

2000) non-observable shadow price ratios have to be considered as the relevant ones for producer 

decisions in distorted agricultural markets. The divergence between the analysed (i.e. estimated) 

shadow prices and the observed market prices can be interpreted as the sum of allocative 

inefficiency due to the prevalence of various market constraints as well as optimization failure by 

the farm management. Different approaches to model this divergence can be found in the 

literature: The usual method consists of additively translating observed prices to create shadow 

prices. Alternatively shadow prices can be modeled by multiplicatively scaling observed prices into 

shadow ones (Lau/Yotopoulos 1971). We follow the latter approach here and define the 

relationship between the normalized shadow prices for the inputs *w  and the normalized market 

prices w  as 

*     i i iw wθ=    [1] 

where iθ  are (non-negative) price efficiency parameters and i  is an index for inputs. If no bending 

market restrictions are the case then iθ  equal unity, if market distortions restrict optimizing 

behaviour then 0 1θ θ≥ ∧ ≠ . Consequently, a Romanian maize farmer can be regarded as 
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allocatively efficient with respect to observed market prices only if observed market prices reflect 

the farmer’s opportunity cost with respect to inputs. It has to be considered that the price 

efficiency parameters iθ  may reflect both effects of market distortions as well as optimization 

errors. 

 

 

3 – THE MODEL – A COMBINATION OF SHADOW PRICES AND ERROR COMPONENTS 

We start our modeling efforts by assuming a simple single-output translog cost function and its 

associated cost-minimizing input cost share equations (see e.g. Atkinson/Halvorsen 1980, 1984 and 

1986, Kumbhakar 1989, Wang et al., 1996, Kumbhakar/Bhattacharyya, 1992). Incorporating 

shadow prices and following the input-oriented approach with respect to technical efficiency, 

observed expenditure and observed input cost shares can be expressed in terms of shadow cost and 

shadow input cost shares as 
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respectively, where symmetry and homogeneity of degree +1 in input prices are imposed and 

where y = maize output; the inputs’ prices w = labour, fertilizer, land, organic fertilizer; and the 

control variables herbicide used, insecticides used, seed applied, subsidies received, extension 

services used, agricultural training received. Hence, total expenditure is expressed as the sum of the 

original translog cost function, the cost differential due to input oriented technical efficiency, and 

the cost of systematic allocative inefficiency (the last term in equation [2]) depending on data as 

well as parameters. The shadow input cost shares in [3] are obtained by applying the usual 
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derivation procedure as well as adjusting for input specific allocative inefficiency (see 

Kumbhakar/Lovell 2000). Classical error terms are appended, one input cost share equation is 

deleted, and the remaining system of 3 equations is estimated. χ  includes the relative technical 

inefficiency with respect to a group of farmers defined along different characteristics following the 

control variables, θ  gives the systematic allocative inefficiency for the respective input. 

Different recent contributions point to the crucial importance of considering the consistency of the 

estimated frontier with basic microeconomic requirements as monotonicity with respect to inputs 

as well as concavity of the function (see Ryan/Wales 1998 and the more technical discussion in 

Sauer 2006). Hence, with respect to our translog shadow cost model it has to be checked a 

posteriori for every input bundle that monotonicity and concavity hold. If these theoretical criteria 

are jointly fulfilled the obtained estimates are consistent with microeconomic theory and 

consequently can serve as empirical evidence for possible policy measures. Concavity can be 

imposed on our translog shadow cost model at a reference point (usually at the sample mean) 

following Jorgenson/Fraumeni (1981) and Ryan/Wales (1998). By this procedure the bordered 

Hessian is replaced by the negative product of a lower triangular matrix Δ times its transpose Δ’. 

Imposing curvature at the sample mean is then attained by setting 

( ) ( ') ( ) ( ) ( )rs rs r rs r sβ δ α δ λ α δ α δ= − ΔΔ + +    [4] 

where r = i, l and s = k, m and λrs = 1 if r = s and 0 otherwise and (ΔΔ’)rs as the rs-th element of ΔΔ’ 

with Δ as a lower triangular matrix (see in detail Sauer 2006). As our point of approximation is the 

sample mean all data points are divided by their mean transferring the approximation point to an 

(n + 1)-dimensional vector of ones. At this point the elements of H do not depend on the specific 

input price bundle. The estimation model of the normalized translog shadow cost frontier is then 

reformulated as follows: 
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However, the elements of Δ are nonlinear functions of the decomposed matrix and consequently 

the resulting normalized translog model becomes nonlinear in parameters. Hence, linear 

estimation algorithms are ruled out even if the original function is linear in parameters. By this 

“local” procedure a satisfaction of consistency at most or even all data points in the sample can be 

reached. The transformation in [5] moves the observations towards the approximation point and 

thus increases the likelihood of getting theoretically consistent results at least for a range of 

observations (see Ryan/Wales 2000). However, by imposing global consistency on the translog 

functional form Diewert and Wales (1987) note that the parameter matrix is restricted leading to 

seriously biased elasticity estimates. Hence, the translog function would lose its flexibility. 

In a second step the behavioural (shadow price) cost function in its constrained and unconstrained 

version is ‘adjusted’ by the estimated shadow price parameters θ  and hence corrected for 

systematic allocative inefficiency by using these shadow prices as direct arguments in the cost 

function. An adjusted cost frontier is then modeled by simply adding the error components 

i i iv uξ = +    [6] 

where iv  is the inefficiency component and iu as the usual stochastic noise and applying stochastic 

frontier techniques to obtain the shadow-cost frontier and finally estimates of relative cost 

efficiency on the farm level (see e.g. Coelli et al., 1998 and Khumbhakar/Lovell 2000). As the price 

efficiency parameters iθ  reflect both allocative effects of market distortions as well as optimization 

errors the relative inefficiency measured by the adjusted cost frontier consists solely of technical 

inefficiency (systematic and/or farm specific). The stochastic frontier decomposes the error term 

into a one-sided random error that captures the inefficiency component and the effects of factors 
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outside the control of the farmer. The theoretical foundation of such a model was first proposed by 

Aigner et al. (1977) and Meeusen and van den Broeck (1977). The two-sided random error is 

assumed to be identically and independently distributed with zero mean and constant variance and 

is independent of the one-sided error. The distribution of the inefficiency component of the error 

is assumed to be asymmetrical (the stochastic details are readily available in the relevant literature, 

see e.g. Battese/Coelli 1995). By following a single-equation cost frontier approach on this 

estimation stage we are able to avoid the ‘Greene’-problem with respect to the consistent 

specification of the individual error components (see Kumbhakar/Lovell 2000). 

Systematic allocative input-specific efficiency measures as well as group-wise technical efficiency 

measures are obtained by the translog shadow cost model. Measures of technical efficiency on farm 

level result from the error components model and finally such of farm-specific radial cost 

efficiency measures are obtained by simple calculation. As we are also interested in the effects of 

imposing theoretical consistency on the translog cost frontier we investigate the relative effect of 

such correction by using the simple index formula 

( )
*100

in con
i i

in
i

eff eff
eff
−

  [7] 

where in
ieff  and con

ieff  are the efficiency scores by the inconsistent and the consistent model 

respectively. To test for the robustness of our estimates by the adjusted shadow cost model (based 

on [5]) we further apply a simple stochastic resampling procedure based on bootstrapping 

techniques (see e.g. Efron 1979 or Efron/Tibshirani 1993). 

4 – DATA AND ESTIMATION 

We use data on 64 maize farmers based on a survey among agricultural households in 15 Romanian 

villages in 2003. The sample villages were chosen by a multistage representative random sampling 

procedure focused on seven regions defined by historical borders, landscape structure and distance 

to relevant input and output markets. The overall survey focused on data for 2002 with regard to 

various outputs, inputs and other household characteristics. The most frequently produced crop 

was maize, cultivated by about 92% of the households and only less than a quarter of all 
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households cultivated technical more demanding crops as sunflower, soya or sugar beet. Table 1 

gives the summary statistics on the sample data: 

TABLE 1: DESCRIPTIVE STATISTICS 

VARIABLE MEAN STDERR       MIN MAX 
TOTAL COSTS (IN EURO) 285.728     641.857 11.01    3,626.525 
OUTPUT MAIZE (IN KG) 4,696.313     8,510.552   56 42,000 
PRICE OF MAIZE (IN EURO/KG) 0.103 0.017 0.056 0.130 
QUANTITY OF LABOUR (IN MANDAYS/MONTH) 563.125     314.864    15 1,506.286 
PRICE OF LABOUR (IN EURO/MANDAYS) 0.699   1.259  0.0138  6.399 
QUANTITY OF FERTILIZER (IN KG) 18.198  37.083   1.176  264.706 
PRICE OF FERTILIZER (IN EURO/KG) 0.187  0.052 0.004 0.320 
QUANTITY OF LAND (IN HA) 1.909    3.921     0.08          30 
QUANTITY OF ORG. FERTILIZER (IN KG/HA) 3,527.145      7,202.45      0 34,188 
HERBICIDES USED (BINARY) 0.594 0.495          0 1 
INSECTICIDES USED (BINARY) 0.937  0.244       0 1 
COMMERCIAL SEED USED (BINARY) 0.406    0.495          0 1 
SUBSIDIES RECEIVED (BINARY) 0.297    0.460          0 1 
EXTENSION SERVICES USED (BINARY) 0.5 0.504         0 1 
TRAINING USED (BINARY) 0.187 0.393      0 1 

 

The estimation procedure is as follows: In a first step the translog cost system given by [5] is 

estimated (without imposing curvature correctness) using the cost function as well as the cost 

shares si derived from the non-distorted translog cost function lnC to obtain estimates for the 

allocative efficiency parameters θ  with respect to the individual inputs as well as group-wise 

technical efficiency effects χ . By using the estimates of the former and after adding the usual error 

components, in a second step the adjusted translog cost frontier is estimated by applying the usual 

decomposition formula to obtain estimates of producer-specific technical efficiency (see e.g. 

Battese/Coelli 1995). As we ‘corrected’ the cost frontier for price distortions the resulting efficiency 

estimates u  are soleley technical ones. Finally producer- and input-specific estimates of cost 

efficiency are obtained by simple calculation using the estimates for θ  and u . The two-stage model 

is estimated using a non-linear iterative seemingly unrelated regression (ITSURE) technique with 

symmetry and homogeneity conditions imposed. This two-stage model is then estimated again 

(model 2) by imposing curvature correctness (i.e. functional concavity) on the cost function in [5] 

by basically following the decomposition shown by [4]. By this we go beyond similar modelling 

efforts (see Atkinson/Halvorsen 1980, Kumbhakar 1989, Kumbhakar/Bhattacharyya 1992, Wang et 



 9

al. 1996) and also incorporate considerations on the consistency of the estimated frontier with basic 

microeconomic principles (i.e. cost minimisation). Finally the estimation results of the 

unconstrained and the constrained models are compared with respect to the relative differences in 

the individual efficiency scores. 

5 – RESULTS AND DISCUSSION 

All estimated cost systems show a relatively good overall fit with respect to the usual statistical 

criteria. However, in the unconstrained model I only 27% of all observations adhere to functional 

concavity contrasting to 80% in the constrained model II (due to space limitations the estimation 

results are not shown here but can be obtained from the author). The estimated shadow price 

parameters show a high significance over the models. Table 2 and 3 summarize the estimation 

results with respect to systematic input-specific allocative, producer-specific overall technical and 

producer- and input-specific cost efficiency. 

TABLE 2: SYSTEMATIC INPUT-SPECIFIC ALLOCATIVE EFFICIENCY 

 MODEL I MODEL II 
EFFICIENCY1 MEAN STD. ERR.2 MEAN STD. ERR. 
AE LABOR 0.476 0.007*** 0.320 0.010*** 
AE FERTILIZER 0.138 0.006*** 0.585 0.009*** 
AE LAND 0.380 0.001*** 0.503 0.001*** 
AE ORGANIC FERTILIZER 0.260 0.001*** 0.292 0.001*** 

1: allocative efficiency estimates are parameter based: no min and max values are available 
2: *,**,*** significance at the 1, 5, and 10% level 

TABLE 3: PRODUCER-SPECIFIC TECHNICAL AND COST EFFICIENCY 

 MODEL I MODEL II 
EFFICIENCY MEAN STD. 

ERR.1 

MIN MAX MEAN STD. 
ERR. 

MIN MAX 

TE 0.938 0.074*** 0.606 0.999 0.869 0.131*** 0.488 0.999 
CE LABOUR 0.447 0.035*** 0.289 0.476 0.278 0.042*** 0.156 0.320 
CE FERTILIZER 0.129 0.010*** 0.084 0.138 0.509 0.077*** 0.285 0.585 
CE LAND 0.357 0.028*** 0.230 0.380 0.438 0.066*** 0.245 0.503 
CE ORGANIC FERTILIZER 0.244 0.019*** 0.157 0.260 0.254 0.038*** 0.142 0.292 

1: *,**,*** significance at the 1, 5, and 10% level 

 
The systematic allocative efficiencies with respect to the inputs labour, fertilizer, land, and organic 

fertilizer were found to be moderately higher with respect to the constrained model II. However, 

in the unconstrained model the input labour shows the highest efficiency (about 48%) whereas the 

same holds for the use of the input fertilizer in the constrained model (about 59%). On the other 
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side the lowest allocative efficiency was found for fertilizer in the unconstrained (about 14%) and 

for the input organic fertilizer in the constrained model (about 29%). What can be generally 

concluded from these results is that price distortions prevail in the agricultural input markets for 

labour and inorganic fertilizer. Hence, the underlying modelling assumption that maize producers 

optimize their production decisions with respect to unobservable shadow price ratios does hold for 

the sample. This indicates that cost minimization based on observable market prices may be 

inappropriate, and thus, a model incorporating market distortions is more suitable in an 

agricultural transition context. The values for the shadow prices indicate that ‘prices’ actually paid 

by the farmers for the inputs used are far less than the observed market prices because of the 

existence of market distortions. These findings strongly suggest that there is a considerable gap 

between agricultural input market prices and farm input prices. Different factors could account for 

such a price gap with respect to labour and fertilizer: As the price for hired labour rises farmers 

tend to substitute family for hired labour. Due to a lack of data labour is used here as an aggregated 

measure consisting of hired and family labour, hence, an increasing amount of family labour leads 

to a decrease in the average individual shadow price at the farm level for the input labour. As with 

respect to fertilizer the price increases as a consequence of the availability of commercially 

produced and marketed high quality fertilizers in the market, the scope and demand for black 

market fertilizer increases also. Consequently the quantity of available ‘underpriced’ fertilizer 

increases leading to a lower shadow price for fertilizer with respect to the individual farmer. The 

estimated shadow parameters for the inputs land and organic fertilizer show that the farms’ 

resource endowment – i.e. land endowment as well as livestock size – crucially influences its 

relative allocative performance. In the case of land the evidence of the two models is mixed: for 

model I it was found evidence that increasing the amount of cultivated land leads to an increase in 

allocative efficiency, for model II the opposite holds. In the case of organic fertilizer the models 

show evidence for an efficiency gain as the farmers apply more of it in producing maize. 

Based on the estimated allocative efficiency parameters from the first step, a maximum-likelihood 

estimate of the corrected cost frontier is obtained and a technical efficiency index is derived for 
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both models. Table 4 contains the frequency distributions for the producer-specific technical 

efficiencies. 

TABLE 4: FREQUENCY DISTRIBUTION – PRODUCER-SPECIFIC TECHNICAL EFFICIENCY I AND II 

EFFICIENCY 

INDEX 
FREQUENCY1 PERCENTAGE CUMULATIVE 

FREQUENCY 
CUMULATIVE 

PERCENTAGE 
MODEL I II I II I II I II 
0.4 – 0.5 - 1 - 1.56  1  1.56 
0.5 – 0.6 - 4 - 6.25  5  7.81 
0.6 – 0.7 1 4 1.56 6.25 1 9 1.56 14.06 
0.7 – 0.8 2 6 3.12 9.37 3 15 4.69 23.44 
0.8 – 0.9 9 9 14.06 14.06 12 24 18.75 37.50 
0.9 – 1.0 52 40 81.25 62.50 64 64 100 100 

 

Mean 0.938 0.869    
St.Err. 0.074*** 0.131***    
Min 0.606 0.488    
Max 0.999 1.000    

1: *,**,*** significance at the 1, 5, and 10% level 

The mean of the estimated technical efficiency is about 94% (model I) and about 87% (model II) 

whereas the least technically efficient farm shows a value of about 61% (model I) and about 49% 

(model II). This implies that at average up to 13% of the profit is lost due to technical inefficiency 

which is rather moderat compared to the revealed levels of allocative inefficiency. The frequency 

distributions of the individual farm’s technical efficiency indices show that there is a moderate 

variation in the level among the farms in the sample: For both models the majority of farmers show 

a relative technical efficiency of more than 90%. Based on the estimated systematic input-specific 

allocative efficiency as well as the estimated producer-specific technical efficiency finally 

producer- and input-specific cost efficiency levels are computed (see table 3). With the exception 

of labour the cost efficiency levels are moderately higher for the constrained model (model II) 

compared to those for the unconstrained model (model I). For model I maize farmers most 

efficiently used the input labour and on the other side least efficiently the input fertilizer with 

respect to costs. For model II farmers in the sample most efficiently used fertilizer and least 

efficiently the input organic fertilizer. These cost efficiency results hence reveal partly mixed 

evidence for the different model specifications. 
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With regard to the effects of different production settings, institutional as well as policy related 

factors both estimation stages by construction delivered evidence, either with respect to groups of 

producers defined along such factors (shadow cost estimation stage) or with respect to individual 

producers (error components estimation stage). In the latter case the derived farm-specific 

efficiency index facilitates the decomposition of the efficiency performance at the individual maize 

farm level and allows for the identification of the factors that influence farmers’ efficiencies. Table 

5 and 6 summarize the different effects found. 

TABLE 5: GROUP-WISE TECHNICAL EFFICIENCY EFFECTS 

 MODEL I MODEL II 
FACTOR MEAN STD. ERR.1 MEAN STD. ERR. 
TE DIFFERENCE HERBICIDE -0.024 0.011** -0.042 0.016*** 
TE DIFFERENCE INSECTICIDE -0.022 0.014 -0.008 0.020 
TE DIFFERENCE SEED -0.013 0.009 -0.024 0.013* 
TE DIFFERENCE SUBSIDIES +0.018 0.007** -0.036 0.038 
TE DIFFERENCE EXTENSION +0.025 0.009*** +0.051 0.015*** 
TE DIFFERENCE TRAINING +0.029 0.013** +0.087 0.019*** 
1: *,**,*** significance at the 1, 5, and 10% level 

TABLE 6: PRODUCER-SPECIFIC TECHNICAL EFFICIENCY EFFECTS 

FACTOR MODEL I1,2 MODEL II 
HERBICIDE -* +** 
INSECTICIDE -*** -*** 
SEED - + 
SUBSIDIES - -*** 
EXTENSION -*** -*** 
TRAINING -*** +* 
1: *,**,*** significance at the 1, 5, and 10% level 
2: ‘-‘ – negative correlation with TE, ‘+’ – positive correlation 

 
The results for the shadow frontier show that the use of herbicides, the use of insecticides, and the 

application of commercial seeds are negatively correlated with the technical efficiency of the maize 

producing farms for both models. The use of extension services and agricultural training were 

found to be positively correlated to technical efficiency for both models, however, mixed evidence 

was found for receiving subsidies. These correlations are only partly confirmed by the results of the 

error components estimation: Here both the unconstrained as well constrained model specification 

agree on a negative effect on efficiency by the use of insecticides, the use of extension services, and 

receiving subsidies. Mixed evidence was found for the use of herbicides, the application of 
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commercial seeds, and the use of agricultural training. It can be concluded for this part of the 

analysis that only with respect to the use of insecticides all model specifications agree on the 

negative efficiency effect. 

The reported efficiency results of the unconstrained as well as constrained model specification 

point to the relevance of theoretical consistency of the estimated frontier. Table 7 delivers the 

relative differences in the efficiency scores for the unconstrained and the constrained specification. 

TABLE 7: RELATIVE DIFFERENCE IN EFFICIENCY SCORES UNCONSTRAINED VS. CONSTRAINED  
SPECIFICATION 

MEASURE MEAN (%)2 STDERR1       MIN MAX 
TECHNICAL EFFICIENCY 7.36 12.14 -18.06 41.45 
COST EFFICIENCY LABOUR 30.52 8.15*** 13.25 53.00 
CE FERTILIZER -131.41 51.49** -239.19 11.85 
CE LAND -94.09 16.06*** -127.71 -49.41 
CE ORGANIC FERTILIZER -86.62 13.63*** -115.14 -48.70 

1: *,**,*** significance at the 1, 5, and 10% level 
2: ‘+’ means underestimation of real efficiency, ‘-‘ overestimation of real efficiency 

 

The relative difference in the efficiency scores in absolute terms ranges at average from about 7.4% 

(producer-specific technical efficiency measure) to about 131.4% (producer- and input-specific cost 

efficiency measure for organic fertilizer). Hence, this is empirical evidence for the validity of our 

concerns about the appropriate functional form and its theoretical consistency (see Sauer 2006). 

Finally the results of the applied bootstrapp procedure confirmed the estimates for the theoretically 

consistent model (model II) on the estimation stage of the error-components specification. 

6 – SUMMARY AND IMPLICATIONS 

This study focuses on the relative efficiency of small-scale maize farmers in Romania by using a 

cost function modelling framework combining the stochastic frontier approach of shadow prices as 

well as the mainstream error components model. Various market distortions are adressed by 

adopting the concept of a shadow cost frontier delivering insights in the systematic input specific 

allocative efficiency. After correcting for shadow prices we subsequently reveal evidence on farm 

specific technical efficiency and develop an efficiency index for a sample of Romanian maize 

producers in 2002. Finally different transition policy relevant factors are investigated with respect 

to their impact on technical efficiency on group as well as individual farm level. By referring to the 

ongoing discussion on functional consistency of the stochastic frontier with respect to 
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microeconomic theory we formulated two basic model specifications – one without and one with 

functional concavity imposed - and estimated the individual cost system by means of iterated 

seemingly unrelated regression techniques (ITSURE). 

The empirical results show that price distortions prevail in the agricultural input markets in the 

Romanian economy and that a model incorporating such market distortions seems to be more 

suitable in an agricultural transition context than one solely based on observable market price 

ratios. The revealed relative difference in the efficiency scores of up to 240% on the individual 

farm level as a consequence of the imposition of curvature correctness confirmed the relevance of 

theoretically consistent modelling with respect to the stochastic measurement of efficiency. The 

empirical applications hence document the need for a posteriori checking the regularity of the 

estimated frontiers by the researcher and, if necessary, the a priori imposition of the theoretical 

requirements on the estimation models (see Sauer 2006). 
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