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Abstract

This study examines the convergence of energy-related carbon dioxide emissions among a panel of

U.S. states between the period 1960-2009. This examination is carried out by means of a two-stage

procedure. In the first stage, we conduct a novel regression-based convergence test. Unlike previous

studies, this methodology endogenously identifies groups of states with emissions that are converging to

a similar steady state growth path over time. In the second stage, we evaluate the rate of convergence

(beta-convergence) for the whole sample and for each club based on a panel data, fixed effects model

which controls for unobserved, time-invariant heterogeneous effects. More specifically, we examine how

structural and non-structural variables affect the rates of convergence. Results from stage one and stage

two suggest that two groups of states are converging to similar, relative growth paths: a high-emitting

group and a medium-emitting group. Finally, we discuss a differentiated policy approach to mitigating

carbon dioxide emissions based on the club convergence hypothesis.
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1 Introduction

Understanding the distribution of carbon dioxide emissions (CO2) through time and space can help policy

makers in designing policies to combat climate change. The geographic distribution of CO2 emissions does

not affect the global climatic impact, but it does affect the political economy of negotiating multilateral

agreements (Aldy, 2006). If the United States were to formulate a national climate change policy or agree

to ratify an international agreement such as the Kyoto protocol then it must begin to look inward to deter-

mine the sources and distribution of emissions. With this look inward, policy makers may be interested in

determining how the distribution of state-level emissions are changing over time. That is, do interregional

differences in emission levels tend to disappear or increase over time? If the differences diminish over time

(and we observe a decrease in the overall growth rate compared to some base year), then legislators may be

less worried about such a mitigation scheme. If, on the other hand, the differences tend to perpetuate over

time (i.e., high emitting states remain high emitters now and in the future) then legislators may want to enact

policies to reduce emissions.

One of the reasons perhaps that the U.S. has been slow to adopt a national mitigation scheme is due to

uncertainty in state-level abatement costs. For example, if a state is currently a high emitter then arguably

its marginal cost of reducing a unit of CO2 should be relatively low, whereas a low-emitting state arguably

would have higher relative marginal costs for reducing another unit. Current policy regimes often ignore

location and dispersion characteristics of the sources of emissions, and emissions are penalized at a single

permit price (Fowlie & Muller, 2013). Fowlie & Muller (2013) argue that in the presence of uncertainty in

abatement costs, differentiated policies may improve welfare. We will explore these differentiated policies

in the context of clubs of states whose emissions are converging through time.

Global climate change is an international problem in scope, yet domestic or regional policies can be im-

plemented to mitigate CO2 emissions. In the U.S., the federal government has not been able to successfully

formulate a national climate change policy that includes some mechanism to reduce CO2 emissions, but

various states have implemented programs. Renewable Portfolio Standards (RPSs), for example, have been

adopted by thirty-three states and the District of Columbia as of 2009 (US Environmental Protection Agency,

2009). RPSs are goals or requirements for electric utilities or other retail electric providers to supply a speci-

fied minimum percentage of customer base load with electricity from various renewable energy sources. The

goal of such programs is to not only develop sustainable forms of energy but also to reduce harmful green-
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house gases (GHGs) including CO2. Additionally, some groups of states have adopted regional programs

such as the Regional Greenhouse Gas Initiative (RGGI).1 According to Regional Greenhouse Gas Initiative

(2012), it is the first market-based regulatory program in the U.S. to reduce GHG emissions with the explicit

goal of reducing regional CO2 emissions from the power sector by ten percent by 2018. An understanding

of the distribution of emissions can aid further states and regional initiatives in setting emission reduction

goals and renegotiating emission obligations.

This study contributes to the literature in three ways. The first contribution is by offering a rigorous

analysis of the convergence of energy-related emissions through time and space by observing U.S. state-level

emissions for the period 1960-2009. This analysis differs from past studies by using a novel regression-based

test on the state-level emissions, and it differs from other convergence test studies by examining sub-national

data instead of comparing emissions across nations (e.g., Panopoulou & Pantelidis (2009)). This research

is particularly interesting because it examines carbon dioxide emissions within an advanced economy in

which no national climate policy exists. Examining sub-national emissions is consistent with the insights of

Barro & Sala-i-Martin (1991), who posited that convergence is more likely among regions within a country

than across different countries. To examine the convergence of state-level emissions, this analysis uses

a nonparametric regression-based convergence test to examine convergence of emissions among different

clubs of U.S. states. In other words, we seek to identify groups of states (clubs) with emissions that are

converging to a similar steady state growth path over time. The second contribution is by offering additional

years (i.e., extending the data to 2009) of state-level CO2 emissions in comparison to past studies of U.S.

state-level analysis (e.g., Aldy (2007)). The third contribution is by combining the club convergence analysis

with a beta convergence analysis to determine the structural characters that are responsible for the club

outcomes. In this regard, the approach is similar in nature to that of Durlauf & Johnson (1995), but the club

convergence test endogenizes groupings as opposed to choosing clubs a priori and then testing the rate of

convergence within clubs.

It is difficult to compare total carbon dioxide emissions across States because of the variation in their

sizes, so we analyze state-level, per-capita emissions. Per-capita measures normalize emissions across States

to offer a more compatible apples-to-apples comparison. Further, per-capita emissions offer a truer picture

of how wasteful regions are. For example, China is the largest aggregate emitter of CO2 emissions but
1The state participants in RGGI include Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York,

Rhode Island, and Vermont.
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Figure 1: U.S. Energy-related CO2 Emissions (metric tons per person), 1960-1980

(a) 1960 (b) 1970

(c) 1980

the U.S. is the largest emitter per capita (International Energy Agency, 2011). From a policy sense, an

analysis of per-capita emissions offers a more equitable measure for negotiating multilateral agreements.

The structural and non-structural factors we examine are climate, population density, income per capita, the

percentage of electricity from coal, and the percentage of electricity used in the industrial sector.

Chloropleth maps of state-level (aggregate) emissions for 1960-2009 (by decade) are offered in Figures 1

and 2. Each map’s scale is based on the bins of per-capita emissions in the year 2009. These maps show a

general increase in per-capita, state-level emissions, but a gradual easing of intensities in some states starting

after 2000.

Looking ahead, the club convergence test reveals that there are two clubs of states whose emissions

are converging to two unique steady state levels. Corroborating the findings within the first stage, the

beta-convergence regression results imply that the rates of convergence are higher for states within the two

separate clubs than with the entire sample – this suggests multiple regimes in emission convergence rates.

Finally, we discuss how a multi-stage mitigation approach could potentially improve welfare in a national
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Figure 2: U.S. Energy-related CO2 Emissions (metric tons per person), 1990-2009

(a) 1990 (b) 2000

(c) 2009
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GHG mitigation scheme.

This paper is organized as follows. In the next two sections will examine the existing literature and

discuss the various methodological approaches to test for convergence. In section four we will briefly

explore the data. In the final two sections we examine the club convergence and beta convergence results,

and then discuss potential mitigation policies.

2 Background

2.1 Climate Mitigation Commitment Regimes

Before discussing the economics literature on convergence it will be informative to first identify the different

types of climate mitigation commitment regimes. A commitment regime can be loosely defined as multi-

lateral or collective set of rules that a group of regions (e.g., countries) adopts to mitigate greenhouse gas

(GHS) emissions including carbon dioxide. The most popular of these multi-lateral commitments is the Ky-

oto Protocol, which is based on the United Nations Framework Convention on Climate Change (UNFCCC).

This protocol commits its signing parties to set internationally binding emission reduction targets. Countries

that commit to the Kyoto Protocol meet their targets through market-based “flexible mechanisms,” such as

an emission trading scheme, clean development mechanism, and joint implementation (U.N. Framework

Convention on Climate Change, 2012). In addition to the Kyoto Protocol, Höhne et al. (2003) analyze

seven other types of regimes, which are sometimes called post-Kyoto regimes (Bows et al. , 2006). The

analysis by Höhne et al. (2003) included the following regimes:

• Intensity targets. All regions reduce their greenhouse gas intensity (i.e., GHGs per unit of GDP) at

the same rate.

• Contraction and convergence. Contract GHG emissions in each country so that all per-capita emis-

sions are converging to the same level.

• Global triptych approach. Derive national targets from bottom-up sectoral targets (such as CO2 from

energy only).

• Multi-sector convergence approach. Derive national targets from converging per-capita sectoral tar-

gets.
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• Multi-stage approach. Regions participate in the commitment regime in four stages, “graduating”

from one to the next.

• Equal mitigation cost. Targets are set to distribute economic burden equally over all countries.

• Coordinated policies and measures. Regions are obligated to implement certain coordinated policies

and measures.

Höhne et al. (2003) argue that the multi-stage approach is the “future of the climate regime” as it allows

for flexibility in different groups of regions setting reduction targets. Such an approach could be especially

beneficial to the different groups of U.S. states which have different aggregate GHG emissions, emissions

per capita, GDP per capita, population growth rates, etc. There are other important implications about

strategic behavior between states to reduce emissions, but we abstract away from such issues in the current

study.

2.2 Economics Literature

2.2.1 Background of Convergence Hypothesis

The convergence hypothesis has received considerable attention over the past few decades. This concept

is split into three competing hypotheses: (i) absolute convergence, (ii) conditional convergence, and (iii)

club convergence (Galor, 1996). The first hypothesis implies that incomes across regions converge to one

another in the long run independent of their initial conditions. The second hypothesis, like the first, implies

convergence but conditional on the converging regions having similar structural characteristics; and, as in

the first hypothesis, this convergence is independent of the region’s initial conditions. Barro & Sala-i-Martin

(2004) point out that is important not to confuse conditional convergence with absolute convergence. In the

words of the authors, absolute convergence applies when economies with lower initial rates of per-capita

emissions have a tendency for their emissions to grow faster than economies with higher initial rates of

emissions – i.e., low-emitting states tend to “catch up” with higher emitting states. Conditional convergence

applies when the growth rate of emissions declines as it approaches its own steady state. The two concepts

are identical if a group of economies tend to converge to the same steady state (Barro & Sala-i-Martin,

2004).

The third hypothesis implies convergence if the regions have similar structural characteristics, as in
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the second hypothesis (conditional convergence), but the region’s initial conditions are similar as well.

Galor (1996) offered that theoretical models of club convergence are characterised by multiply steady state

equilibria – that is, regions that are similar in their structural characteristics (e.g., preferences, technologies,

population growth, government policies, etc.) converge to the same steady state equilibrium if their initial

conditions are similar. The difference, therefore, between conditional versus club convergence is that the

former may imply a globally stable, steady state equilibrium rather than multiple, locally stable steady state

equilibria.2

Empirically, the convergence tests have been carried out by three principal methods: σ-convergence

(sigma), β-convergence (beta), and club convergence. The first, σ-convergence refers to a decline in the

dispersion of the variable of interest across a group of economies over time (Barro & Sala-i-Martin, 2004;

Sala-i-Martin, 1996). This type of convergence then refers to the decline in cross-region inequality in the

variable of interest. The second, β-convergence implies a negative relationship between the growth rate

of emissions and the initial level of emissions – this is sometimes called “mean reversion.” Borrowing the

parlance of Sala-i-Martin (1996), both types of convergence are important because σ-convergence studies

whether state-level emissions are becoming more similar over time whereas β-convergence applies to a

state’s efforts (or lack thereof) to reduce emissions within the same distribution. It is worth noting, that there

are two different types of β-convergence. If the β-convergence model is regressed on the lagged values

of the dependent variable alone then it is an “unconditional” model, whereas if it is regressed on other

independent variables – that is, proxies for the steady-state level of emissions (Barro & Sala-i-Martin, 2004,

p. 467)– then it is a “conditional” β-convergence model. The third method, club convergence was initially

tested using the β-convergence method within subsamples of regions and tested against convergence rates

in the overall sample (see for example, Durlauf & Johnson (1995)). The problem with using β-convergence

to test for club convergence is that the groups of regions have to be determined a priori in the analysis.

Durlauf & Johnson (1995) determined group membership through a regression tree analysis. A criticism of

this approach is that the a priori selection of clubs can be somewhat arbitrary (Bartkowska & Riedl, 2012).

More recent developments in club convergence tests identify clubs by endogenized groupings, leaving other

factors unspecified that may have led to multiple steady states (Phillips & Sul, 2007). The latter methods

focus on the cross-sectional distribution of the variable which is more akin to the concept of σ-convergence
2The (economic) growth rate of neoclassical economies with similar tastes and technologies, such as regions within a country,

tend to converge to the same steady state Barro & Sala-i-Martin (2004).
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(Bartkowska & Riedl, 2012).

The difficulty with the club convergence hypothesis, is that the endogenous groupings tests can identify

convergence clubs, but these tests cannot confirm the club convergence hypothesis. Since the endogenous

groupings tests leaves other factor unspecified, it is not possible to determine which factors led to multi-

ple steady states. If only the structural characteristics are responsible for the club outcome, the outcome

may be misinterpreted wrongly as club convergence where conditional convergence applies (Bartkowska &

Riedl, 2012). Thus, it is empirically difficult to distinguish club convergence from conditional convergence.

Nevertheless, we will proceed in two stage by first determining club convergence through the endogenous

groupings test and second by conducting conditional β-convergence tests to see if the data provides a con-

sistent story about the formulation of clubs.

2.2.2 Literature on Convergence of CO2 Emissions

The analysis of the convergence of CO2 emissions seeks to determine mechanisms to foster the adoption

of multilateral carbon reduction agreements. Such studies have been regional and international in scope.

Empirical studies implement a variety of econometric methodologies to investigate the cross-region con-

vergence in carbon dioxide emissions. Each methodology examines the existence of a different type of

convergence (Strazicich & List, 2003; Westerlund & Basher, 2008; Nguyen-Van, 2005; Ezcurra, 2007;

Romero-Avila, 2008; Stegman, 2005).

For example, drawing from the economic growth literature, Strazicich & List (2003) were some of the

first authors to examine the phenomena of convergence of CO2 emissions. They examined emissions in

twenty-one industrialized countries for the period 1960-1997. Using panel unit root tests and cross-section

regressions, the authors found significant evidence for convergence in their estimated sample. A comple-

mentary study by Romero-Avila (2008) examined the existence of stochastic and deterministic convergence

of CO2 emissions in a panel of twenty-three countries over the period 1960-2002. Using recently developed

unit root testing procedures (and further tests for panel stationarity), the author found strong evidence to

support stochastic and deterministic convergence in CO2 emissions.

Aldy (2006) evaluated the historic and future distributions of CO2 emissions in a panel of over 100

countries (1960-2000) to determine if emissions are converging or will convergence in the future. He used σ-

convergence (sigma) tests and found convergence among twenty-three member countries within the OECD

but divergence among a 88 country global sample. His forecasted emissions provided little evidence of
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convergence and implied divergence in the near term over a large swath of the global sample. In a follow-

up study, Aldy (2007), using cross-sectional and stochastic convergence tests, conducted an analysis of

the convergence of U.S. state-level, per-capita CO2 emissions for the period of 1960-1990. Specifically,

he sought to determine, akin to the environmental Kuznets curve literature, whether state-level income

convergence is a sufficient driver of state-level emissions convergence. Using both historical and forecasted

data, he found convergence in incomes but stark divergence in CO2 per capita.

An analysis by Panopoulou & Pantelidis (2009) used a similar methodology as this study to examine

club convergence in CO2 emissions among 128 international countries for the period 1960-2003. Their

analysis suggested convergence in two separate clubs, one containing high per-capita emissions and another

containing low per-capita emissions, in which the emissions converge to two separate steady states. Fur-

thermore, they found evidence of transitioning between the two clubs suggesting perhaps slow convergence

between the two clubs.

A recent study by Criado & Grether (2011) investigated the convergence of per-capita emissions for a

panel of 166 world areas for the period 1960-2002. The authors analyzed the evolution of spatial distri-

butions of emissions through time. They assessed emissions in levels and in proportional deviations. The

proportional deviation measures indicated slight differences in the 1960s followed by stronger divergence

and then stabilization in the 1990s. Whereas the unscaled measures indicated strong divergence before the

oil shocks in the 1970s followed later by stabilization.

3 Methodological Approach

3.1 Club Convergence Approach

This econometric methodology in this study was introduced by Phillips & Sul (2007, 2009) (hereafter P&S).

This methodology, which the authors call the “log t test,” allows one to classify states into convergence

groups or clubs. The methodology has numerous advantages over other existing measures of convergence

including the fact that it is based on a general nonlinear time-varying factor model that incorporates the pos-

sibility of transitional heterogeneity (Panopoulou & Pantelidis, 2009). Given heterogeneity within the panel

data, standard unit root and cointegration tests are not suitable for testing for convergence (Phillips & Sul,

2007). This methodology is robust to heterogeneity and the stationarity properties of the series. According

to Panopoulou & Pantelidis (2009), this methodology can be interpreted as an asymptotic cointegration test
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that does not suffer from the small sample properties of traditional unit root and cointegration tests.

3.1.1 The log t Test

For this particular study we have a panel data set for state-level CO2 emissions which we represent by the

variable Xit, i = 1, . . . , N , t = 1, . . . , T , where N and T denote the number of states and the time periods

respectively. P&S illustrated the series as a single factor model

Xit = δiµit + εit, (1)

where δi denotes a measure of the idiosyncratic distance between a common factor µt and the systematic

part of Xit; εit denotes a noise term. Thus, the model seeks to examine the evolution of the individual Xit

in relation to the common factor, by means of two idiosyncratic elements: the systematic element (δi) and

the error (εit). P&S extended the model to allow the systematic element to have a random component which

subsumes εit in (1) and allow for convergence of the random systematic element in relation to the common

factor. The extension is represented as follows

Xit = δitµit, (2)

where now both components δit and µt are time varying. The authors model the time varying behavior of

δit in semi-parametric form as

δit = δi + σi · ξit · L(t)−1 · t−α, (3)

where δi is fixed, ξit is iid(0,1) across i and weakly dependent over t, and L(t) is a slowly varying function

(such as the log t) for which L(t) → ∞ as t → ∞. This formulation ensures that δit converges to δi for

all α ≥ 0 and forms the null hypothesis of interest. The model allows for transitional heterogeneity and

transitional divergence across the sample.

The sample counterpart of (2) can be represented by

Xit = git + ait, (4)

where git denotes the systematic component and ait represents the transitory component. Rewriting (4)
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yields

Xit =

(
git + ait
µt

)
µt = δitµt for all i and t, (5)

where Xit is now decomposed into the two components as outlined in (2) above. An interpretation of (5)

is that µt represents a common trend component in the panel and δit measures the relative share of µt

contributed by region i at time t.

Due to the incidental parameters problem, it is not possible to estimate (5) without imposing ex ante

restrictions on δit and µt. P&S devised a creative estimation scheme in which they eliminate the common

factor, µt (since it is common to all the regions), by transforming the data to consider the relative loading

coefficient of region i to the panel average at time t. This is formulated as

hit =
Xit

N−1
∑N

i=1Xit

=
δit

N−1
∑N

i=1 δit
. (6)

In this particular paper, the loading coefficient is interpreted as the measure of the transition path of carbon

dioxide emissions of state i relative to the panel average at time t. hit is therefore called the relative

transition parameter. By construction, the cross-sectional mean of hit is unity; and if the factor loading

coefficients δit converge to δ, then the relative transition parameters hit converge to unity (Phillips & Sul,

2007). Hence, in the long run the cross-sectional variance of hit converges to zero as follows

σ2t = N−1
N∑
i=1

(hit − 1)2 → 0 as t→∞. (7)

The property of (7) allows the test of the null hypothesis of convergence and to group regions into conver-

gence clusters. The null hypothesis is formulated as

H0 : δi = δ and α ≥ 0

against the alternative

HA : δi 6= δ for some i and/or α < 0.

The null hypothesis implies convergence for all regions, while the alternative implies no convergence for
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some regions. The alternative can accommodate both overall divergence or club convergence; i.e., one or

more subsets of the group of regions form convergent groups at different factor loadings (Panopoulou &

Pantelidis, 2009).

To test the null hypothesis, P&S constructed a ratio of cross-sectional variation, H1/Ht, where Ht is

defined as

Ht = N−1
N∑
i=1

(hit − 1)2 . (8)

H1 represents the variation at the beginning of the sample (i.e., t = 1), whereas Ht represents the variation

for every point in time (i.e., t = 1, . . . , T ). The authors take the log of the ratio of H1 to Ht to measure

the distance of the panel from the common limit. The null hypothesis is tested in context of the following

non-parametric regression

log(H1/Ht)− 2 · log L(t) = â+ b̂ log t+ û,

for t = [rT ], [rT ] + 1, . . . , T with r > 0,

where L(t) = log(t) and r denotes a fraction of the initial sample that is removed prior to running the

regression. This equation is what the authors define as the “log t” test. Following the advice P&S (based

upon their Monte Carlo simulations), we set r equal to 0.3, which implies that the first third of the time

series observations of the panel are omitted. Removing these observations helps alleviate against test results

which are sensitive to initial conditions. The fitted coefficient on log t is b̂ = 2 · α̂, where α̂ is the estimate

of α (the speed of convergence) in H0. To test the null hypothesis of convergence we determine if α ≥ 0 by

using b̂, and reject the null hypothesis of a one-sided t test if tb̂ < −1.65 (i.e., the five percent significance

level). Additionally, we employ heteroskedastic and autocorrelation (HAC) robust standard errors. More

specifically, we used regressions with Newey-West standard errors. These robust regressions were conducted

using Matlab code provided by James LeSages’ Econ Toolbox.

This study’s primary interest lies in the sign of the estimated coefficient b̂ because it provides us with the

test of convergence. If the t test suggests that b̂ is either positive or equal to zero, then we fail to reject the

null hypothesis of convergence. On the other hand, if b̂ is negative, we reject the null. This form of panel
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convergence is analogous to conditional sigma convergence (Phillips & Sul, 2007).

3.1.2 Club Convergence Algorithm

In order to examine convergence within subgroups of regions (states) under scrutiny, this study employs the

empirical algorithm suggested by P&S to determine subgroups of states that converge. The algorithm is as

follows, which is repeated here in abridged form:

1. Last Observation Ordering. The observations within the panel are ordered according to the last ob-

servation. In other words, the panel is arranged in descending order according to the state with the

highest level of CO2 emissions in the last period of observation. The data is ordered in this manner as

convergence behavior will generally be more apparent in recent years.

2. Core Group Formation. Identify a core group of states that converge by selecting the k highest states

in the panel to form the subgroup Gk for N > k ≥ 2. Run the log t regression and calculate the

convergence test statistic tk = t(Gk) for the subgroup. Choose the core group size k∗ by maximizing

tk over k; i.e., keep adding states into the core group until the null hypothesis of the log t test is

rejected. If there is a single convergence club with all states included then the size of the convergence

club is N . If the condition t(Gk) < −1.65 does not hold for the k = 2 states then the highest state

in Gk can be dropped from the subgroup. Continue identifying addition subgroups within the entire

panel.

3. Sieve Individuals for Club Membership. Let Gck∗ be a complementary set to the core group Gk∗ . Add

one individual at a time from Gck∗ to the k∗ core members of Gk∗ and run the log t test. If tb̂ > −1.65

then the addition of these members forms new subconvergence group.

4. Stopping Rule. Once the log t test results suggest rejection of the null, stop forming additional sub-

groups. From the existing groups, test to see if there are smaller subgroups of convergent states within

the panel. If there is no k in Step 2 from which tk > −1.65 then we assume that the remaining states

diverge.
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Figure 3: Quartiles of Per-Capita CO2 Emissions in the U.S. (1960-2009)

4 Data

The energy-related carbon dioxide data for this analysis were obtained from the Carbon Dioxide Information

Analysis Center (CDIAC) within the U.S. Department of Energy (Blasing et al. , 2004; US Energy Infor-

mation Administration, 2012). CDIAC estimates the emissions by multiplying state-level coal, petroleum,

and natural gas consumption by their respective thermal conversion factors. Therefore, the data is based on

estimates of CO2 emissions and not actual atmospheric emissions. Despite this deficiency, this measure of

emissions is one of the more common used in the literature as it is difficult to measure atmospheric emis-

sions of carbon dioxide. The energy emission estimates are extended by using more recent calculations of

energy-related carbon dioxide emission (2000-2009) offered by the US Energy Information Administration

(2012). The U.S. Energy Information Administration (EIA) calculates emissions identically to the CDIAC,

however, we visually inspected the data to ensure that new emission estimates are consistent with the pre-

vious estimates. The estimates are offered in units of a million metric tonnes for the forty-eight contiguous

states excluding the District of Columbia. A plot of the quartiles of aggregate U.S. CO2 emissions for the

period 1960-2009 is offered in Figure 3. Following the advise of Phillips & Sul (2007), we omit the initial

one-third of time series variables for the log t test which reduces the period of analysis to 1975-2009.

Itkonen (2012) offers the following simple explanation of how the energy emissions are estimated. The

CDIAC and EIA define carbon dioxide emissions as a linear function of fossil fuel combustion and cement

manufacturing. The amount of CO2 emissions is determined by the chemical composition of the fuel source.
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Emission estimates are calculated by multiplying the amount of fuel usage by a constant thermal conversion

factor as determined by the chemical properties of the fuel. Therefore, CO2 emissions are a linear combina-

tion of the usage of oil, Eoilt , solid fuels such as coal, Ecoalt , natural gas, Egast , and emissions from cement

manufacturing, St. Formally, this is expressed as

CO2,t ≡ αoil · Eoilt + αcoal · Ecoalt + αgas · Egast + αflare · Eflaret + St, (9)

where αoil, αcoal, αgas, αflare > 0 are the related thermal conversion factors.

The data on the percentage of electricity used in electricity consumption and the percentage of electricity

consumed in

The state-level income data were obtained from the Bureau of Economic Analysis (BEA) within the

U.S. Department of Commerce (US Bureau of Economic Analysis, 2012). The BEA offers annual state-

level income estimates from 1960 to the near present. The estimates are based on aggregate income by state.

The estimates were converted to real dollars by using the BEA’s implicit price deflater for GDP.

To model climatic influences on energy demand we use Cooling Degree Days (CDD) and Heating De-

gree Days (HDD), which were obtained from the National Climate Data Center within the National Oceanic

and Atmospheric Administration (US Nat’l Climate Data Center, 2010). CDD (or HDD) is a unit of measure

to relate the day’s temperature to the energy demand of cooling (or heating) at a residence or place of busi-

ness – it is calculated by subtracting 65 degrees Fahrenheit from the day’s average temperature (Swanson,

2010). Residential energy consumption has been found to be highly correlated with CDD and HDD (Diaz

& Quayle, 1980). Since the CO2 emissions are estimated from energy consumption, the CDD and HDD

data as quantitative indices should capture much of the year-to-year variation in energy consumption. CDD

and HDD are expected to be positively related to CO2 emissions as cooler (or hotter) days would induce

households or businesses to demand higher amounts of energy for heating (or cooling) a residence or place

of business.

Annual state population data were obtained from the US Census Bureau (2010). These population

estimates represent the total number of people of all ages (including military personnel) within a particular

state.
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5 Empirical Results

In this section we carry out the two separate analyses as outlined in the Introduction. In the first analysis

we employ the Phillips & Sul (2007) algorithm to determine the subgroup convergence and clustering of

state-level carbon dioxide emissions. In the second part we conduct the beta convergence analysis of the

full sample and each individual club – which are determined in the first step. The second stage helps to

determine if structural characteristics and the initial value of emissions play a role in convergence. If so,

then the results will help validate the club convergence hypothesis.

5.1 Empirical Results for the log t test

The first step of the club convergence algorithm begins with sorting the emissions in descending order

according to the largest state emitter in the last period of observation (2009). The ordering for the states is

given in the first two columns of Table 2. As can be ascertained from the Table 2, Wyoming was the largest

per-capita emitter and New York the lowest in 2009. Next, the relative transition paths were calculated

for each state and then the log ratio variation was constructed to estimate the log t test. As outlined in

Sections 3.1.1 and 3.1.2, the testing procedure begins by consecutively testing subgroups of states. We

began by testing club convergence for all the 48 states in our sample – the tests results indicated a rejection

(tb̂ = -11.0981) of the null of convergence, so we proceeded by testing states consecutively based on the

last T ordering. The log t testing procedure implies that the first subgroup (i.e., group of states in which

per-capita CO2 emissions are converging over time) constitutes Nebraska and Texas. In other words, the log

t tests indicated a rejection of the null hypothesis of convergence for the first eleven states, which implies

the growth paths of emissions are diverging for these states. Figure 5(a) illustrates the relative transition

paths of emissions for the first eleven states. The relative transition paths for the first (convergence) club

are displayed in Figure 4(a). As displayed in the left-most cell of Table 1, the coefficient on log t (tb̂) for

this first club is negative but statistically insignificant, implying that we fail to reject the null hypothesis of

convergence for Nebraska and Texas.

The initial classifications for the rest of the U.S. state clubs, based upon the log t algorithm, are listed

in the left-most cell of Table 1. The members of each corresponding club are listed in Table 2. Under this

initial classification, the coefficients on the log t terms for Club Two is positive which is consistent with the

null hypothesis. The log t coefficient for Club Three is negative which seems to violate the null condition
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Table 1: Club Convergence Classification for Aggregate Emissions, 1960-2009

Initial classification Test of club merger Test of club merger
Club One (2) Club One-Three (3)
log t t-stat Clubs One-Two (16) log t t-stat
-0.0346 -0.0189 log t t-stat -0.2766 -2.2123∗

-0.3219 -4.2064∗

Club Two (14)
log t t-stat Clubs Two-Three (21)
0.1858 1.6614 log t t-stat

-0.1055 -0.6232
Club Three (7)
log t t-stat
-0.2141 -1.0173
Note: * Rejection of the null hypothesis of convergence at the 5% level.
Numbers in parenthesis represent the number of states in the club.

that α̂ ≥ 0, but the t-stat is not significantly different from zero so we fail to reject the null. The log t results

suggest that any state that does not appear within a club (in Table 2) has diverging CO2 emissions. The

diverging states are listed in the “Notes” section under Table 2.

Based upon Step 3 of the algorithm, we sieved the club members to determine if there were any club

mergers. Within this step we tested for convergence among Clubs One and Two and then tested for con-

vergence among Clubs Two and Three. The results of this step indicated a failure to reject the null of

convergence for the second and third club, which implies a larger subgroup of the combined clubs. Other-

wise, additional club mergers were rejected according to the log t tests. The final classification therefore

consisted of testing for a club merger for among all the clubs in the initial classification – this test indicated

a rejection of the null hypothesis, which implies that the three separate clubs in the initial classification

are not converging. The members of each club are listed in Table 2, and graphics displaying the relative

transition paths of each member within the clubs (initial classification) are offered in Figures 4. The sieving

steps indicated two final clubs: Club One which consists of two states and Clubs Two-Three which consist

of twenty-one states.

Finally, the relative transition paths of the final convergence clubs, based upon the club averages, is

displayed in Figure 6. These average relative transition paths demonstrate the two different club types: high

and medium. These averages suggest that the relative transition paths (note these are relative paths not

absolute paths) of emissions is slightly increasing for the high emitting club and slightly decreasing for the

medium emitting clubs. Note that there seems to be more volatility in the relative path of Club One – this is
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Table 2: Club Convergence of Per-Capita CO2 Emissions among U.S. States based upon Initial Classification

All States First Second Third
Last T Convergent Convergent Convergent
Ordering Club Club Club
Wyoming S. Carolina Nebraska Missouri Arizona
N. Dakota Wisconsin Texas Arkansas Nevada
W. Virginia Georgia Ohio N. Carolina
Louisiana Michigan Mississippi Maine
Kentucky Tennessee Pennsylvania Virginia
Montana Arizona Colorado Delaware
Indiana Nevada S. Dakota N. Hampshire
N. Mexico N. Carolina Illinois
Oklahoma Maine Minnesota
Iowa Virginia S. Carolina
Kansas Delaware Wisconsin
Nebraska N. Hampshire Georgia
Texas N. Jersey Michigan
Alabama Maryland Tennessee
Utah Florida
Missouri Washington
Arkansas Massachusetts
Ohio Oregon
Mississippi R. Island
Pennsylvania Connecticut
Colorado California
S. Dakota Vermont
Illinois Idaho
Minnesota New York
Notes: The diverging states are Wyoming, N. Dakota, W. Virginia, Louisiana,
Kentucky, Montana, Indiana, N. Mexico, Oklahoma, Iowa, Kansas, Alabama,
Utah, N. Jersey, Maryland, Florida, Washington, Massachusetts, Oregon,
R. Island, Connecticut, California,Vermont, Idaho, and N. York.
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Figure 4: Relative Transition Paths (1975-2009)

(a) Club One (b) Club Two

(c) Club Three

because the average relative path is averaged only over two states in Club One whereas it is averaged over

twenty-one states in Club Two-Three. The averaging over more states smooths out the differences in relative

emissions among member states in Club Two-Three making it appear less volatile.

5.2 Beta-Convergence Tests

In the second stage of our empirical analysis we now estimate β-convergence regressions to ascertain if

state-level structural and non-structural factors help determine the growth rate of emissions. If so, then such

findings will help support the club convergence hypothesis in the first stage.

According to the US Energy Information Administration (2012), state-level, per-capita emissions are

driven by the structure of the State economy, population density, energy sources, building standards and ex-

plicit State policies to reduce emissions.3 To account for these factors we hypothesize that certain structural

and non-structural factors will have an effect on the growth rate of state-level carbon dioxide emissions.

The structural factors consist of state-level, per-capita income, population density, percentage of coal used

for electricity production, and the percentage of electricity consumed by the industrial sector in the state

economy. It is predicted a priori that each of these factors will have a positive effect on the growth rate of

emissions. The exogenous, non-structural factors, which account for climatic impacts on the growth rate
3In this study we do not attempt to assess the impact of individual State policies on carbon dioxide emissions to we exclude

building standards and explicit state policies.
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Figure 5: Relative Transition Paths of Diverging States (1975-2009)

(a) First set of diverging states (b) Second set of diverging states

(c) Third set of diverging states

Figure 6: Average Relative Transition Paths of the Final Convergence Clubs (1975-2009)
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of emissions, consist of state-level heating and cooling degree days. To test these hypotheses we specify a

panel-data, β-convergence regression.

According to (Barro & Sala-i-Martin, 2004), one advantage of panel data over cross sections is that one

does not need to hold constant the steady steady growth level because it is implicitly estimated using fixed

effects – i.e., by including a term (or controlling for) a time invariant, state-level heterogenous effect. One

potential problem with estimating beta convergence models using panel data is that one needs a sufficiently

large amount of time series observations in order to overcome dynamic panel data bias (Nickell, 1981;

Judson & Owen, 1999). Dynamic panel data bias occurs when a lagged dependent variable is specified

on the right hand side of the regression and the panel does not contain enough time series observations.

Another supposed drawback to estimating beta convergence with panel data is that such analyses tend to

have larger estimates of the speed of convergence than do cross-sectional analyses. However as Shioji

(1997) demonstrated, the estimated speed of convergence decreases as one examines greater time intervals

between observations. That is, the estimated speed of convergence was less for intervals of five and ten years

than with annual observations. Islam (1995) too identified that using annual observations may prove to be

problematic with convergence analysis because short-term disturbances (e.g., the natural business cycle)

loom large in brief time intervals, so the author choose a interval of five years between observations. We

experimented with difference beta-convergence regressions with annual data and data in five year intervals.

Our results (not included but available upon request), unlike convergence tests of economic growth as the

dependent variable, indicated lower rates of convergence for annual observations than with the observations

spaced over five year intervals. This is opposite of the findings of Islam (1995) and Shioji (1997), but

this is perhaps because we are examining state-level CO2 emissions rather than state-level GDP (indicator

of economic growth). The former is also arguably less affected by natural economic cycles. Therefore,

we eschew the prescription of Islam (1995) and analyze state-level carbon dioxide emissions in annual

observations.

For consistent estimates of the speed of convergence, one needs many time series observations to avoid

dynamic panel data bias. To help ensure that we getting efficient estimates of the speed of convergence we

compare fixed effects models with a bias-corrected least squares dummy variable (LSDVC) model. Judson &

Owen (1999) showed that the LSDVC model often performed best in Monte Carlo experiments with panel

data. In other words, the LSDVC model provided the least biased (versus standard least squares dummy

variable and general method of moment estimators) estimates of the coefficient on the lagged dependent
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variable.

Therefore, we proceed by estimating the β-convergence model using the LSDVC method, which we

compare to ordinary least squares (OLS), fixed effects (FE), and general method of moments (GMM) es-

timates for a sensitivity analysis. To evaluate the LSDVC model we used the Stata procedure ‘xtlsdvc’

(Bruno, 2005). To evaluate the OLS and FE models we used the Stata procedures ‘reg’ and ‘xtreg,’ re-

spectively. Finally, to evaluate the GMM model we used the Stata procedure ‘xtabond,’ which estimates a

difference GMM (Arellano & Bond, 1991).

Following the notation of Islam (1995), the general econometric specification is expressed in discrete

time (annual observations) as follows

log(yit) = γ log(yi,t−1) +Xitβ + ηt + µi + εit, (10)

where γ denotes a scalar parameter on the lag of the dependent variable, Xit denotes a (N ·T ×k) matrix of

explanatory variables, the parameter β denotes a (k × 1) matrix of coefficients on the explanatory variables

(also specified in natural logarithms), µi denotes the unobserved, time-invariant heterogeneous effect, ηt

denotes time-level fixed effects, and εit denotes a disturbance term. The time-level fixed effects capture

time-related shocks that affect all states within the given time period; such shocks may represent the passage

of the Clean Air Act or economic recessions. The coefficient on the lagged dependent variable is implicitly

equal to

γ = e−λ·τ , (11)

where λ is the speed of convergence, and τ is the time interval in between observations.4 We presuppose

the condition that γ > 0, which implies β-convergence because otherwise λ is negative which implies

divergence. Based on equation (11), the implied speed of convergence is given by

−λ =
1

τ
· ln(γ), (12)

which shows that a higher estimated value of γ̂ leads to a lower value of λ̂. The disturbance term in equa-
4In the convergence literature the convergence model is often specified with the parameter “β” instead of “λ” to denote the

speed of convergence and hence the name “beta convergence.” Our econometric approach is no different, only the notation differs
slightly.
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Table 3: Descriptive Statistics for the Entire Sample and for Each Club

Variable Mean Std. Dev. Min Max
Entire Sample

CO2 per capita 22.5088 0.3091 7.7065 131.1058
Income per capita 15,567.4325 243.4665 1229.4849 56,959.4148
Population density 157.1694 4.4319 2.5776 1123.9540
Percent coal 0.4820 0.0070 0.0000 0.9934
Percent industrial 0.3626 0.0024 0.0753 0.8456
CDD 1072.7204 15.7581 80.0000 3875.0000
HDD 5273.9771 41.7241 400.0000 10,745.0000

Club One
CO2 per capita 25.5794 0.6489 12.9491 36.4247
Income per capita 15,335.1852 1151.3805 1964.7790 40,396.0208
Population density 40.4095 2.3285 18.2396 92.9344
Percent coal 0.3671 0.0218 0.0000 0.6882
Percent industrial 0.3200 0.0073 0.1962 0.4556
CDD 1572.81 114.6288 181.0000 3218.0000
HDD 4595.45 267.8317 1512.0000 8074.0000

Club Two
CO2 per capita 18.7636 0.1187 8.7973 34.9315
Income per capita 15,385.5582 358.7401 1229.4849 44,691.4788
Population density 111.2478 2.7296 2.5776 440.1431
Percent coal 0.5521 0.0081 0.0000 0.9934
Percent industrial 0.3647 0.0032 0.0899 0.7056
CDD 1111.7610 20.6811 118.0000 3364.0000
HDD 5227.7191 59.0399 1685.0000 9594.0000

Note: Income is measured in millions of U.S. dollars and
population is measured in thousands of people.

tion (10) captures temporary shocks to energy consumption, income, population growth, etc. The descriptive

statistics for the entire sample and for each of the clubs is listed in Table 3.

In principle, equation (10) can be estimated by two models: least-squares dummy variable (LSDV) or

fixed effects (FE) estimator. The former utilizes dummy variables for the unobserved, time-invariant effects.

The fixed effects estimator is conducted by transforming the data to deviations from means within each

cross-section. Essentially, this filters out the fixed effects from the data, but omits the estimated coefficient on

the unobserved, time-invariant fixed effects. Asymptotically, the estimators should yield the same estimated

coefficients in a maximum likelihood estimation context, although the LSDV model can lead to an incidental

parameter problem if there is large number of cross-sections.

To test the hypothesis of absolute β-convergence we begin by plotting the average annual growth rates of

state-level, per-capita emissions against the log of per-capita emissions in the first year of observation, 1960.
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Figure 7: Convergence of per-capita emissions across U.S. states: 1960 emissions and 1960-2009 emissions
growth
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Log of 1960 per capita carbon dioxide emissions 

This plot is provided in Figure 7. A negative relationship between the average annual growth of emissions

and emissions in the first year of observation would imply absolute convergence. However as illustrated

in 7, the average growth rate of state per-capita emissions for 1960-2009, shown on the vertical axis, is

not negatively related (in fact, the figure depicts a positive relationship) to the log of per-capita emissions

in 1960, shown on the horizontal axis. Thus, absolute β-convergence does not appear to exit for the U.S.

states.

For a sensitivity analysis we compare the regression results of the LSDVC to pooled OLS, FE, and

GMM. The regression results for the full sample are offered in Table 4. The second set of results in Table 5

provide the estimates of the panel data models for the two clubs. To prevent simultaneity bias (i.e., a

contemporaneous relationship between the independent and dependent variable) we treat the explanatory

variables as predetermined, and therefore offer a distributed lag of the structural variables. The estimated

coefficients for the annual indicator variables (the yearly fixed effects) have been omitted for the sake of

25



Table 4: Panel Data Convergence Estimates for the Full Sample (U.S., 1960-2009)

Regressors Pooled OLS Fixed Effects LSDVC GMM
γ 0.9922*** 0.9126*** 0.9283*** 0.9032***

(0.0033) (0.0176) (0.0428) (0.0108)
Implied λ 0.0078 0.0915 0.0744 0.1018
Structural Factors

Income per cap -0.01364 0.0255 0.0222 -0.0024
(0.0087) (0.0181) (0.0407) (0.0247)

Pop density -0.0045*** -0.0471*** -0.0328 -0.0525***
(0.0011) (0.0079) (0.0538) (0.0120)

Percent coal 0.0135*** 0.0583*** 0.0393** -0.0114
(0.0040) (0.0127) (0.0195) (0.0124)

Percent ind 0.0084 0.0122* 0.0124 -0.0026
(0.0079) (0.0065) (0.0105) (0.0085)

Non-Structural Factors
CDD 0.0015 0.0127** 0.0121* 0.0181***

(0.0022) (0.0060) (0.0070) (0.0064)
HDD -0.00047 0.0114 0.0087 0.0558***

(0.0022) (0.0132) (0.0145) (0.0147)
Constant 0.1284 0.0190 – –

(0.0784) (0.1750) – –
Number of obs 2352 2352 2352 2304
Number of groups 48 48 48 48
R2 0.9910 0.9466 – –
Note: The terms “***,” “**,” and “*,” denote a statistical significance level
of one percent, five percent, and ten percent, respectively.

brevity but are available upon request.

Looking at Table 4 first, the differences between the estimated coefficient on the lagged dependent

variable does not vary tremendously across the different models. Based on Monte Carlo analysis, Judson

& Owen (1999, Table 2, p. 14) showed the following general biasedness of the lagged dependent variable,

γ: OLS is upward biased, FE/LSDV is downward biased, LSDVC is slightly downward biased, GMM

(Arellano and Bond) is downward biased. Following Judson & Owen (1999) as a rough guide, our estimated

results would imply that OLS is upward biased, FE is downward biased, and GMM is downward biased.

Therefore, we posit that the LSDVC model provides the most accurate estimate of the speed of convergence

which is approximately seven percent a year.5

Based on the estimated results in Table 4, we found that population density, the percentage of coal
5Note that the implied speed of convergence is larger than what is normally found in the economic growth convergence liter-

ature, which is generally around two percent (Barro & Sala-i-Martin, 2004). However, one must recall that we are examining the
convergence of carbon dioxide emissions not economic growth across states.
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Table 5: Panel Data Convergence Estimates for the Two Clubs (U.S., 1960-2009)

Club One Club Two
Regressors FE LSDVC GMM FE LSDVC GMM
γ 0.6338*** 0.6338*** 0.7812*** 0.8403 0.8793*** 0.8643***

(0.1356) (0.1674) (0.1457) (0.0458) (0.0756) (0.0194)
Implied λ 0.4560 0.4560 0.2469 0.1740 0.1286 0.1458
Structural Factors

Income per cap 0.0868 0.0799 0.0495 0.1264*** 0.0118 0.1510***
(0.1936) (0.8809) (0.1926) (0.0278) (0.0164) (0.0349)

Pop density -0.2015 -0.1943 -0.1225 -0.0496*** -0.0336 -0.0624***
(0.1266) (0.7372) (0.1277) (0.0120) (0.0602) (0.0124)

Percent coal 0.1529 0.1547 -0.0790 0.0841** 0.0571 0.0013
(0.1281) (0.6240) (0.1380) (0.0402) (0.0348) (0.0147)

Percent ind 0.3796 0.4029 0.3042 0.0416 0.0343 0.1074***
(0.3292) (2.2721) (0.3253) (0.0401) (0.0852) (0.0358)

Non-Structural Factors
CDD 0.0313 0.0305 0.0335 -0.0114 -0.0121 -0.0023

(0.0193) (0.1022) (0.0206) (0.0082) (0.0128) (0.0100)
HDD 0.0067 0.0038 0.0489 -0.0133 -0.0185 0.0008

(0.0757) (0.3229) (0.0823) (0.0169) (0.0419) (0.0207)
Number of obs 98 98 96 1029 1029 1008
Number of groups 2 2 2 21 21 21
Observations per group 49 49 48 49 49 48
R2 0.9832 – – 0.9224 – –
Note: The terms “***,” “**,” and “*,” denote a statistical significance level of one percent, five percent,
and ten percent, respectively.
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used in electricity consumption, and cooling degree days are more or less consistently significant across

the different models. Using the results from the LSDVC model, the estimated coefficient on population

density implies that a one percent increase in the population size per square mile leads to an approximate

five percent decrease in per capita emissions, but this estimate is not statistically significant. Interestingly,

the estimated coefficient on the percentage of coal implies that a one percentage increase in coal used for

electricity consumption leads to an approximate four percent increase in per capita emissions. Lastly, the

coefficient on cooling degree days implies that a one percent increase in CDD leads to an approximate

one percent increase in per capita emissions. The negative relationship between emissions and population

density could possibly be explained by agglomeration effects in densely populated urban areas. Masayuki

(2012) found that the efficiency of energy consumption is much higher for the service sector in densely

populated cities. If such agglomeration effects are present then the efficiency of energy consumption would

reduce carbon dioxide emissions.

Next we use the bias-corrected LSDV model to compare the speed of convergence across the two clubs

(based on the results of the “log t” tests in previous section). As outlined in the Background section, if

the speed of convergence is higher for the two clubs then it could perhaps suggest multiple equilibria of

convergence which may perhaps corroborate the findings of club convergence with the log t tests.

The results of the LSDV estimates for the clubs are presented in Table 5. Again for a sensitivity analysis,

we also include estimates of the fixed effects and the general method of moments models. The estimated

coefficients on the lag dependent variable does not vary too much within the two clubs. Based upon the

estimation results of the first club, the fixed effects and bias-corrected least squares dummy variable models

provide remarkable similar estimates of the speed of convergence with an implied rate of approximately

forty-five percent. For club one, the estimated coefficients on the structural and non-structural variables

are very similar across all three models, but none of the variables are statistically significant. This could

be perhaps due to the fact that the first club is only constituted by two cross-sections (or two states). For

club two, the estimated rate of convergence again is remarkably similar. The results for the bias-corrected

least squares dummy variable model indicates an implied speed of approximately thirteen percent – slightly

less than the results of the fixed effects and general method of moments estimators. The LSDVC model

yields statistically insignificant results for all the structural and non-structural variables, but the other two

estimators indicate that per-capita income and population density have an effect on per-capita emissions.

The fixed effects model suggests that a one percent increase in per-capita income increases per-capita emis-
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sions by approximately thirteen percent, whereas a one percent increase in population density leads to an

approximate five percent decrease in emissions.

The main thing to note is that the estimated speed of convergence is higher for the two clubs than for

the full sample. This may suggest, as with the club convergence (log-t) analysis, that certain groups (clubs)

of states are converging to different equilibria. Based upon the estimation results, club one appears to be

converging faster than club two, and both clubs are converging more quickly than the entire sample.

6 Conclusion

In this study we used a two-stage procedure to examine the convergence of state-level carbon dioxide emis-

sions in the U.S. The results of the club-convergence test in the first stage imply that there are two clubs

of states whose emissions are converging to unique steady states levels through time. Despite the nice sta-

tistical properties of the the club-convergence test, it endogenously groups states according to converging

emissions but omits factors that may lead to club formation. To overcome this problem we conducted condi-

tional, beta-convergence tests in the second stage in which we tested for beta-convergence across the entire

sample and among clubs identified in the first stage – in this regard it is relatively similar to the approach

offered by Durlauf & Johnson (1995). The beta-convergence tests allowed us to condition the growth rates

of emissions on certain structural and non-structural factors that are important determinants of state-level

energy consumption which in turn create CO2 emissions. The beta-convergence tests imply that emissions

are converging across the entire sample and among the clubs. Further, convergence rates are higher for the

individual clubs than for the entire sample which implies multiple regimes of convergence and corroborates

the findings within the first stage. The structural factors were found to be important determinants for the

growth rate of emissions in some cases, but the structural factors alone were not responsible for convergence

– i.e., we found robust evidence of convergence through the coefficients on the lagged dependent variable.

According to Bartkowska & Riedl (2012), this may suggest that we can correctly interpret our findings as

club convergence as opposed to conditional convergence. However, as clubs are identified endogenously in

the first stage it is still difficult empirically to distinguish between these two different types of convergence.

As pointed out by Fowlie & Muller (2013), if there is uncertainty with state-level abatement costs, then

differentiated policies to mitigate emissions may improve welfare. Current regulated pollution emissions

are often penalized at a single permit price. Understanding different clubs of states whose emissions are
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converging to similar levels will help policy makers to develop differentiated policies. For example, if the

marginal costs of reducing emissions in high emitting states exceeds that of low emitting states (as implied

by club convergence in which we observed higher convergence rates in the higher emitting club), then

perhaps different abatement costs could be applied to different sets of states.

This notion of a differentiated policy is consistent with the “multistage approach” policy discussed by

Höhne et al. (2003) and originally developed by den Elzen et al. (1999, 2001). In this particular regime

regions commit the mitigation policy in the following stages: (1) no commitment, (2) decarbonization, (3)

stabilization, and (4) reduction. In the first stage the region (state) is free to continue with business as usual.

In the second stage the region receives GHG intensity targets differentiated by per-capita GDP levels. In the

third stage regions are required to stabilize emissions, and in the final stage regions are required to reduce

emissions. Regions graduate into each stage if they exceed a certain threshold, e.g., state-level GDP per

capita grows beyond a certain level. According to this scheme each region is reviewed and re-evaluated

every five years, and if the region exceeds a certain threshold then it graduates into the next stage. This

notion could be consistent with the club convergence hypothesis. That is, if states have different marginal

costs of abatement (and the costs are uncertain and unobservable by other states) then a graduated program

may be more equitable than a ”one size fits all” policy in which all states are penalized at a single permit

price. The club convergence hypothesis is amenable to equity and this differentiated policy as our test results

indicate that state-level emissions are converging to unique steady state levels through time.

This study suffered from some limitations given data constraints. For example, Bartkowska & Riedl

(2012) did a similar analysis of club convergence but tested convergence in a second stage by regressing club

membership on the initial level of the dependent variable and other structural factors (specifically, the authors

used a multinomial logit model to test for convergence). The authors had access to panel data with large

observations within each cross-section (i.e., N was large) which allowed them to test for convergence in a

logit model context. Unfortunately, as we only have forty eight observations within each cross-section, we

simply lacked the data to follow a similar approach. We were somewhat able to circumvent this problem by

estimating fixed effects (least squares dummy variable) models, which according to Barro & Sala-i-Martin

(2004) implicitly control for the constant steady state. Future research should consider both the second stage

approach adopted in this study (conditional beta-convergence) as well as the innovative approach offered by

Bartkowska & Riedl (2012).
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