
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


1 

MONOTONICITY AND CURVATURE – A BOOTSTRAPPING APPROACH 

Johannes Sauer∗ 

 

Abstract 

This research contributes to the ongoing discussion on functional flexibility and theoretical 

consistency by comparing the empirical performance of two second order flexible functional forms 

- the Symmetric Generalized McFadden and the Transcendental Logarithmic. It proposes an 

estimation procedure to enhance the domain of applicability for the Translog by a combination of 

matrix decomposition, classical non-linear estimation techniques as well as bootstrapping based 

resampling. The validity of the proposed procedure is exemplified by applying it to a sample of 

small-scale farmers. The results show that the range of theoretical consistency can be crucially 

enhanced for the Translog functional form by maintaining its flexibility and statistical significance. 

Hence, beside its empirical superiority by applying the outlined procedure the Translog can also 

catch up with respect to the range of functional consistency. 

Keywords 
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1 Introduction1 

As is well known in applied production economics flexible functional forms are considered as 

superior to model an empirical relationship. According to Diewert (1974) a functional form can be 

denoted as ‘flexible’ if its shape is only restricted by theoretical consistency. This implies the 

absence of unwanted a priori restrictions and is paraphrased by the metaphor of “providing an 

exhaustive characterization of all (economically) relevant aspects of a technology” (see Fuss et al. 

1978). However, for most functional forms there is a fundamental trade-off between flexibility and 

theoretical consistency as well as the domain of applicability. Following the classical econometric 

tradition this contribution proposes an estimation procedure to enhance the consistent domain of 

applicability for a second order flexible functional form by combining matrix decomposition, non-

linear estimation techniques as well as bootstrapping based resampling. The validity of the 

econometric procedure is exemplified by using a curvature constrained estimation of the widely 
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applied Transcendental Logarithmic functional form in order to enhance its theoretical consistency 

by maintaing its superior empirical applicability. 

2 The Problem 

The functional form of an econometric model as well as the specified probability distribution for the 

residual are the two major assumptions underlying the empirical investigation of economic 

hypotheses and are commonly considered as maintained hypotheses of the model. In production 

economics one basic question to be solved by econometric modeling is the one with respect to an 

adequate representation of the underlying technology T. 
 

Proposition I: The technology ( ){ }, :  can produce T y x x y=  describes the set of feasible input-output 

vectors with ( )1 2, ,..., nx x x x=  and ( )1 2, ,..., my y y y=  respectively. T satisfies the usual properties of a 

theoretically well-defined production technology. ▪ 
 

Proposition II: The technology approximation ( ){ }ˆ ˆ' , , :  can produce T y x x yβ β=  approximates the set of 

feasible input-output vectors with ( )1 2, ,..., nx x x x= , ( )1 2, ,..., my y y y=  and ( )1 2
ˆ , ,..., nβ β β β=  respectively. 

The approximation T’ satisfies the usual properties of a theoretically well-defined production technology 
and β̂  satisfies the usual statistical properties of a well-defined estimator.    ▪ 
 

Economic theory provides no a priori guidance with respect to the functional relationship. Lau’s 

criteria (Lau, 1978, 1986) with respect to the ex ante selection of an algebraic form are valuable for 

applied modelling but conclude in the magic triangle of functional choice: the researcher should not 

expect to find a functional form equally satisfying the principles of theoretical consistency, 

functional flexibility as well as an accurat domain of statistical applicability. The literature on 

econometric modelling proposes two solutions to this severe problem (Chambers 1988, Lau 1986): 

(1) to apply functional forms which could be made globally theoretical consistent by corresponding 

parameter restrictions, here the range of flexibility has to be investigated, or, (2) to opt for 

functional flexibility and check or impose theoretical consistency for the proximity of an 

approximation point - usually at the sample mean - only. A globally theoretical consistent as well as 

flexible functional form can be considered as an adequate representation of the production 

possibility set. Locally theoretical consistent as well as flexible functional forms can be considered 

as an i-th order differential approximation of the true production possibilities. 
 

Proposition III: A globally flexible and theoretically consistent constrained technology approximation 

( ) ' '
ˆ ˆ' , , :  can produce ;  ' 0  where i = inputs and  as the global Hessian

g gg g T T
i

dyT y x x y T nsd
dx

β β
⎧ ⎫⎪ ⎪= > ∧ =⎨ ⎬
⎪ ⎪⎩ ⎭

Η H  globally 

approximates the set of feasible input-output vectors with ( )1 2, ,..., nx x x x= , ( )1 2, ,..., my y y y=  and 

( )1 2
ˆ , ,..., nβ β β β=  respectively. The approximation Tg’ globally satisfies the usual properties of a 

theoretically well-defined production technology.              ▪ 
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Proposition IV: A locally flexible and theoretically consistent constrained technology approximation 

( )ˆ ˆ' , , :  can produce ;  ' 0  for at least observation k 1 where  as the local Hessianl l k k
i

dyT y x x y T nsd
dx

β β
⎧ ⎫⎪ ⎪= > ∧ = =⎨ ⎬
⎪ ⎪⎩ ⎭

Η H

 locally approximates the set of feasible input-output vectors with ( )1 2, ,..., nx x x x= , ( )1 2, ,..., my y y y=  

and ( )1 2
ˆ , ,..., nβ β β β=  respectively. The approximation Tl’ locally satisfies the usual properties of a 

theoretically well-defined production technology and β̂  satisfies the usual statistical properties of a well-

defined estimator.    ▪ 
 

Figure 1 gives a brief overview of the most common flexible functional forms selected with respect 

to the frequency of empirical usage or the representation of systematic nodes in the development of 

functional representation. 

Figure 1: Flexible Functional Forms 

 

 

 

 

 

 

 

 

 

 

 

 
 

The most simple functional case - ( )i i if x x=  - leads to the flexible form of the Quadratic, whereas 

the Transcendental Logarithmic (Translog) - ( ) lni i if x x=  - is the historically first invented flexible 

functional form incorporating the first order case of the Cobb Douglas (CD). Another early invented 

second order flexible functional form, the Generalized Leontief (GL), is based on 1/ 2 1/ 2( )
iij i j jf x x x x=  

with respect to the second order effects. The introduction of the Symmetric Generalized McFadden 

(SGM) in the mid 80’s - following ( ) /ijk i j k ij i j k k
k

f x x x x x v xϕ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  for the second order effects - marks 

another milestone in the search for global flexibility. Figure 2 illustrates the different strengths and 

weaknesses of these functional forms with respect to the magic triangle of functional choice. 
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Figure 2: Strengths and Weaknesses of Different Functional Forms 
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Following the Bayesian econometric tradition Terrell (1996) proposes the use of a Gibbs sampler to 

generate an initial sample from the posterior density for a prior ignoring regularity restrictions. By 

accept-reject sampling a final sample is then generated which consists only of parameter values 

adhering to these regularity conditions. Different extensions of this estimation method have been 

subsequently made (O’Donnel at al. 2003, Griffiths et al. 2000, and Wolff et al. 2006). The 

following discussion contrasts the SGM as the ‘state-of-the-art’ with respect to theoretical 

consistency and the TL as probably the ‘best empirical performer’ as numerous applied studies 

show. 

3 – THEORETICAL CONSISTENCY: THE SYMMETRIC GENERALIZED MCFADDEN 

The SGM was introduced by Diewert and Wales in 1987 based on the initial formulation by 

McFadden (see Diewert/Wales 1987). As the functional form of the Generalized Leontief, the SGM 

is linearily homogeneous in inputs by construction. Monotonicity - ( )( ) / 0i i idf x dx >  - can be either 

imposed locally only, if globally restricted for monotonicity the property of second order flexibility 

is lost. The crucial feature of the SGM providing the reason for its common distinction as state of 

the art is the fact that if globally restricted for correct curvature by matrix decomposition the 

constrained curvature property applies globally. In the case of a production function this means 

investigating 2 2( ) /i i id f x dx  and 2 ( ) /i i j i jd f x x dx dx  to assure that the estimated function is quasi-

concave resulting in a negative semi-definite bordered Hessian and consequently alternating 

determinants of its submatrices D starting with a negative one: 1 0k
kD− ≥ . However, one has to be 

aware that in this case the second order flexibility is restricted to only one point (see Feger 2000, 

Ryan/Mah 1994, Diewert/Wales 1987). A SGM production function can be formulated as follows 

( )
1

1 1
1 1

1
2

n n
n n

i i i i ij i ji j
i i

y x x x xβ θ ϕ
−

= =
= =

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑        [1] 
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where as usual ix  and jx  denote inputs, y  is the output and ,  and i i ijβ θ ϕ  are the parameters to be 

estimated. By applying either Lau’s technique (Lau 1978) based on the Cholesky factorization H = 

-LBL’ (where L is a unit lower triangular matrix and B as a diagonal matrix), or the matrix 

decomposition following Wiley et al. (1973) H = -ΔΔ’ (where H is replaced by the negative product 

of a lower triangular matrix times its transpose), the bordered Hessian can be constrained to a 

negative semi-definite matrix assuring quasi-concavity of the estimated production function. 
 

Proposition V: A globally flexible and constrained technology approximation Tg’ of the type 

( ) ( )
1

k
'1 1

1 1

1ˆ ˆ' , , :  can produce y; ;  ' 0 for at least k=1
2 g

n n
n n

sgm i i i i ij i j sgm Ti j
i i k

dyT y x x y x x x x T
dx

β β β θ ϕ
−

= =
= =

⎧ ⎫⎛ ⎞⎪ ⎪= = + =− ∧ >⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ ∑ ∑ TΗ A* A

 globally approximates the set of feasible input-output vectors with ( )1 2, ,..., nx x x x= , ( )1 2, ,..., my y y y=  

and ( )1 2
ˆ , ,..., nβ β β β=  respectively. The approximation Tg’ globally satisfies the property of a quasi-

concave production technology.           ▪ 
 

To exemplify the described functional properties, the followig SGM production funtion was applied 

on an arbitrary chosen real world cross-sectional sample of 252 small-scale farmers producing 

maize by using the inputs s = seed, l = labour and f = fertilizer: 

( ) ( ) ( )2 2 21
2

ss s sl s l sf s f ll l lf l f ff f
s s l l f f

s s l l f f

x x x x x x x x x
y x x x

x x x
ϕ ϕ ϕ ϕ ϕ ϕ

β β β
θ θ θ

+ + + + +
= + + +

+ +  [2] 

where the parameter iθ  was set equal to the respective sample mean and each variable has been 

normalized by its mean (see Diewert/Wales 1987). In a second step the same function was applied 

in a curvature constrained specification following the technique by Wiley et al.: 

( ) ( )
( )

( )
2 2

2

( ) ( ) ( ) ( )1 /
2 ( ) ( )

s s l l f f

ss ss s ss sl s l ss sf s f sl sl ll ll l

s s l l f f

sl sf ll lf l f sf sf lf lf ff ff f

y x x x

x x x x x x
x x x

x x x

β β β

θ θ θ

= + + +

⎡ ⎤−Δ Δ + −Δ Δ + −Δ Δ + −Δ Δ −Δ Δ
⎢ ⎥ + +
⎢ ⎥+ −Δ Δ −Δ Δ + −Δ Δ −Δ Δ −Δ Δ⎣ ⎦

 [3] 

where again iθ  was set equal to the respective sample mean and each variable has been normalized 

by its mean. The parameters iiΔ  and ijΔ  refer to the lower triangular matrix and its transpose 

respectively with i,j = seed, labour, and fertilizer. Table 1 and 2 summarize the estimation results: 

Table 1: Unconstrained SGM 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

sss 
-0.805 [-3.387]*** 

ssl 2.972 
[34.531]*** 

ssf 
0.997 [3.129]*** 

sll -1.527 [-3.654]*** slf 0.824 [1.686]* sff 0.197 [0.436] 
βs 0.474 [1.182] βl 0.315 [1.312] βf -0.187 [-0.817] 
adjR2 0.76 F-value 25.27 
QC (%) 37.31 M (%) 0 
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(1) s-seed, l-labour, f-fertilizer; (2) *, **, ***: significance at 10-, 5- or 1%-level; t-values in parentheses; 
(3) the parameters in the top two rows refer to the Hessian; (4) symmetry - (sij = sji); (5) QC – quasi-
concavity, M – monotonicity. 

 

Table 2: Constrained SGM 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

sss -1.921 [-8.351]*** ssl 1.441 [5.226]*** ssf 0.169 [0.531] 
sll -1.112 [-2.396]** slf -0.127 [-0.259] sff -0.015 [-0.034] 
βs 1.013 [2.339]** βl 0.329 [0.817] βf -0.033 [-0.086] 
adjR2 0.63 F-value 25.05 
QC (%) 100 M (%) 40.36 

(1) s-seed, l-labour, f-fertilizer, (2) *, **, ***: significance at 10-, 5- or 1%-level; t-values in parentheses;  
(3) the parameters in the top two rows refer to the Hessian; (4) symmetry - (sij = sji), concavity is imposed 
globally by constraining S to be nsd by S = -A*AT, monotonicity is imposed at the sample mean; (5) QC – 
quasi-concavity, M – monotonicity. 

 

The overall model fit of the unconstrained as well as constrained specification seem to be in an 

acceptable range for cross-sectional data. In the unconstrained specification about 55% of all 

estimated parameters showed to be significant at least at the 10%-level, in the constrained 

specification this ratio falls to about 40%. The estimated unconstrained SGM function showed to be 

quasi-concave for about 37% of all observations but for none of the observations monoton in all 

inputs. The estimated constrained SGM function showed to be globally quasi-concave as expected 

and monoton in all inputs for about 40% of all observations. Hence, our exemplary empirical 

application confirmed our previously made theoretical arguments: the functional form of the 

symmetric generalized McFadden is highly consistent in its constrained specification but fails to 

show satisfactorily empirical applicability by a relatively modest statistical significance of the 

model and the individual parameters estimated. 

 

4 – EMPIRICAL APPLICABILITY: THE TRANSCENDENTAL LOGARITHMIC 

The locally flexible functional form following the Generalized Leontief is the Transcendental 

Logarithmic or Translog (see Christensen et al. 1973). Due to the literature the Translog appears as 

probably the best investigated second order flexible functional form and surely the one with the 

most empirical applications as its empirical applicability in terms of statistical significance is 

outstanding (Feger 2000). A Translog production function can be formulated as follows 

0
1 1 1

1ln ln
2

n n n

i i ij i j
i i j

y x x xβ β γ
= = =

= + +∑ ∑∑         [4] 

where as usual ix  and jx  denote inputs, y  is the output and and i ijβ γ  are the parameters to be 

estimated. Locally theoretical consistent as well as flexible functional forms can be considered as an 

i-th order differential approximation of the true production possibilities. Hence, the popular 

Translog is considered as a second order differential approximation of the true production 

possibilities. The theoretical properties of the second order Translog are well known (Lau 1986): it 
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is easily restrictable for global homogeneity as well as homotheticity, correct curvature can be 

implemented only locally if local flexibility should be preserved, the maintaining of global 

monotonicity is impossible without losing second order flexibility. Hence, the Translog functional 

form is fraught with the problem that theoretical consistency can not be imposed globally. Ryan and 

Wales (2000) argue that a sophisticated choice of the reference point could lead to satisfaction of 

consistency at most or even all data points in the sample. Jorgenson and Fraumeni (1981) firstly 

propose the imposition of quasi-concavity through restricting the Hessian to be a negative 

semidefinite matrix. However, as in the case of the Generalized Leontief, the Hessian of the 

Translog is not structured in a way that the definiteness property is invariant towards changes in the 

exogenous variables. Following Jorgenson and Fraumeni (1981) quasi-concavity can be imposed at 

a reference point (usually at the sample mean) by replacing the bordered Hessian by the negative 

product of a lower triangular matrix Δ times its transpose Δ’ according to the decomposition 

proposed by Wiley et al. (1973). Imposing curvature at the sample mean is then attained by setting 

( ')ij ij i ij i jγ β λ β β= − ΔΔ + +    [5] 

where i, j = 1, …, n, λij = 1 if i = j and 0 otherwise and (ΔΔ’)ij as the ij-th element of ΔΔ’ with Δ a 

lower triangular matrix. As our point of approximation is the sample mean all data points are 

divided by their mean transferring the approximation point to an (n + 1)-dimensional vector of ones. 

At this point the elements of H do not depend on the specific input bundle. 
 

Proposition VI: A locally flexible and constrained technology approximation Tl’ of the type 

( ) 0
1 1 1

1ˆ ˆ' , , :  can produce ;  ln ln ;  ' 0  for  at least observation k 1
2

n n n

tl i i ij i j tl k
i i j i

dyT y x x y y x x x T nsd
dx

β β β β γ
= = =

⎧ ⎫⎪ ⎪= = + + > ∧ = =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑∑ Η

locally approximates the set of feasible input-output vectors with ( )1 2, ,..., nx x x x= , ( )1 2, ,..., my y y y=  

and ( )1 2
ˆ , ,..., nβ β β β=  respectively. The approximation Tl’ locally satisfies the usual properties of a 

theoretically well-defined production technology and β̂  satisfies the usual statistical properties of a well-

defined estimator.            ▪ 
 

To exemplify the described functional properties, the followig Translog production funtion was 

applied on the same cross-sectional sample of 252 small-scale farmers producing maize by using 

the inputs s = seed, l = labour and f = fertilizer: 

2 2 2
0 3

1 1 1 1 1 1ln ln ln ln ln ln ln ln ln ln ln ln ln
2 2 2 2 2 2s s l l f f s l s l s f l fy x x x x x x x x x x x xβ β β β= + + + + + + + + +   [6] 

where each variable has been normalized by its mean. In a second step the same function was 

applied in a curvature constrained specification following the technique illustrated above: 
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( ) ( )

( ) ( ) ( )

( )

2 2
0

2
3

1 1ln ln ln ln ln ln
2 2

1 1 1ln ln ln ln ln
2 2 2
1 ln ln
2

s s l l f f ss ss s s s s sl sl ll ll l l l l

sf sf lf lf ff ff f f f sl ss s l s l sf ss s f s f

sf sl lf ll l f l f

y x x x x x

x x x x x

x x

β β β β γ γ β β β γ γ γ γ β β β

γ γ γ γ γ γ β β β γ γ β β γ γ β β

γ γ γ γ β β

= + + + + − + − + − − + −

+ − − − + − + − − + − −

+ − − −

  [7] 

where again each variable has been normalized by its mean. The resulting normalized translog 

model in [7] is nonlinear in parameters and consequently linear estimation algorithms are ruled out 

even if the original function is linear in parameters. By this “local” procedure a satisfaction of 

consistency at most or even all data points in the sample can be reached. The transformation in [5] 

moves the observations towards the approximation point and thus increases the likelihood of getting 

theoretically consistent results at least for a range of observations (Ryan/Wales 2000). However, by 

imposing global consistency on the translog functional form Diewert and Wales (1987) note that the 

parameter matrix is restricted leading to seriously biased elasticity estimates. Hence, the translog 

function would lose its flexibility. Table 3 and 4 summarize the estimation results for the Translog: 

 

 

Table 3: Unconstrained Translog 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

ß0 -0.784 [-8.837]*** γss 0.020 [58.429]*** γsf -0.053 [-4.023]*** 
ßs 0.543 [59.022]*** γll 0.957 [1.653]* γlf 0.910 [2.318]** 
ßl 0.472 [1.619]* γff 0.657 [6.048]*** 
ßf 0.238 [1.605]* γsl -0.079 [-2.887]*** 
adjR2 0.93 F-value 59.07 
QC (%) 22.2 M (%) 70.2 

(1) s-seed, l-labour, f-fertilizer; (2) *, **, ***: significance at 10-, 5- or 1%-level; t-values in parentheses; 
(3) QC – quasi-concavity, M – monotonicity. 

 

Table 4: Constrained Translog 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

ß0 -1.217 [-36.249]*** γss 0.904 [0.019] γsf 0.015 [13.589]*** 
ßs 1.428 [4.029]*** γll 0.007 [0.158] γlf 0.003 [0.715] 
ßl 0.108 [1.742]* γff 0.014 [98.492]*** 
ßf 0.428 [110.929]*** γsl 0.003 [0.204] 
adjR2 0.69 F-value 335.58 
QC (%) 86.9 M (%) 86.7 

(1) s-seed, l-labour, f-fertilizer; (2) *, **, ***: significance at 10-, 5- or 1%-level; t-values in parentheses; 
(3) QC – quasi-concavity, M – monotonicity. 

 
As expected, the overall model fit of the unconstrained specification is high whereas the fit of the 

constrained model seems to be in an acceptable range for cross-sectional data. In the unconstrained 

specification all estimated parameters showed to be significant at least at the 10%-level, in the 

constrained specification this ratio falls to about 60%. The estimated unconstrained TL function 

showed to be quasi-concave for only about 22% of all observations but for 70% of the observations 
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monoton in all inputs. The estimated constrained TL function showed to be quasi-concave and 

monoton in all inputs for about 87% of all observations. Hence, our exemplary empirical 

application confirmed our previously made theoretical arguments: the unconstrained functional 

form of the Transcendental Logarithmic is applicable at a high range in its unconstrained 

specification but fails to show satisfactorily theoretical consistency of the estimated model. By 

constraining the TL functional form the theoretical consistency of the estimated model can be 

increased significantly but still fails for more than 10% of all observations. So far, the econometric 

techniques applied as well as the results with respect to the performance of the functional forms are 

in line with common practices and expectations. The next section introduces an econometric 

procedure to enhance the range of theoretical consistency of the Translog functional form by 

maintaining its superiority with respect to the range of empirical applicability. 

5 – ECONOMETRIC MODELING AND RESULTS: NESTED INTERVALS BY RESAMPLING 

A translog production function model is developed following [6] where the functional form is 

normalized by the means of the respective variables. After a first estimation the consistency of the 

estimated production function is tested by checking the first derivatives (monotonicity) as well as 

the eigenvalues of the Hessian matrix (quasi-concavity). Subsequently correct curvature is imposed 

locally following Wiley et al. (1973) and Ryan and Wales (1998) and the range of theoretical 

consistency is again investigated for the estimated function. In a next step bootstrapping techniques 

are applied to reveal the confidence intervals for the estimated parameters of the function. Based on 

these bias-corrected statistics, decile intervals for the individual parameter values are defined. A 

sequence of restricted estimations is then performed for each parameter combination according to 

these parameter decile intervals and the most appropriate combination(s) of different parameter 

ranges are determined in terms of the theoretically consistent range of the estimated function. The 

proposed procedure is exemplified by using again the cross-sectional data set on small-scale 

farmers. 

Step1: estimation of an unconstrained model, and step 2: estimation of a curvature constraint model 

have been already documented by tables 3 and 4 in the preceeding section. Step 3 involves the 

application of a simple bootstrapped estimation of the constrained model. Comprehensively 

described in the literature (Efron 1979 or Efron/Tibshirani 1993) the bootstrapping technique 

delivers confidence intervals for the individual parameter estimates. If we suppose that nψ  is an 

estimator of the parameter vector nψ  including all parameters obtained by estimating [7] based on 

our original sample of 252 farmers 1( ,..., )nX x x= , then we are able to approximate the statistical 

properties of nψ  by studying a sample of 1000 bootstrap estimators ( ) , 1,...,n mc c Cψ = . These are 
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obtained by resampling our 252 observations – with replacement – from X  and recomputing nψ  

by using each generated sample. Finally the sampling characteristics of our vector of parameters is 

obtained from 

(1) (100),...,m mψ ψ⎡ ⎤Ψ = ⎣ ⎦
   [8] 

Table 5 summarizes the bias-corrected bootstrapped confidence intervals for the constrained TL 

parameters: 

Table 5: Bias-Corrected Bootstrapped Confidence Intervals 

Parameter  95%-Confidence Interval Parameter  95%-Confidence Interval 
ß0 [-1.218; -0.214] γll [-0.061; 0.024] 
ßs [1.223; 1.776] γff [0.009; 0.016] 
ßl [0.061; 0.185] γsl [0.029; 0.446] 
ßf [0.278; 0.449] γsf [-0.013; 0.023] 
γss [0.688; 1.651] γlf [-0.009; 0.007] 

 

Table 6 gives the means of the bias-corrected parameter ranges (deciles) based on the bootstrap 

estimates. Alternatively any other sub-division of the parameter ranges could be applied (e.g. 

quantilies, quartiles etc.): 

Table 6: Means of the Bias-Corrected Nested Parameter Intervals 

Decile 
Parameter 1 2 3 4 5 6 7 8 9 10 

ß0 -1.168 -1.067 -0.967 -0.866 -0.766 -0.666 -0.565 -0.465 -0.364 -0.264 
ßs 1.251 1.306 1.362 1.417 1.472 1.527 1.583 1.638 1.693 1.749 
ßl 0.067 0.079 0.092 0.104 0.117 0.129 0.142 0.154 0.167 0.179 
ßf 0.285 0.303 0.320 0.337 0.355 0.372 0.389 0.407 0.424 0.441 
γss 0.736 0.832 0.929 1.025 1.121 1.218 1.314 1.410 1.507 1.603 
γll -0.057 -0.048 -0.040 -0.031 -0.023 -0.014 -0.006 0.003 0.011 0.020 
γff 0.010 0.010 0.011 0.012 0.012 0.013 0.013 0.014 0.015 0.015 
γsl 0.050 0.092 0.133 0.175 0.217 0.259 0.300 0.342 0.384 0.426 
γsf -0.011 -0.008 -0.004 0.000 0.003 0.007 0.011 0.014 0.018 0.022 
γlf -0.009 -0.007 -0.005 -0.004 -0.002 -0.001 0.001 0.003 0.004 0.006 

Step 4: using these parameter deciles a sequence of restricted estimations is then performed based 

on different combinations of parameter ranges. By this procedure the parameter confidence 

intervals are ‘searched’ for the crucial values for which the overall functional consistency fails. 

According to this trial-and-error procedure - comparable to the use of nested intervals – the most 

appropriate combination(s) of different parameter ranges are determined in terms of the 

theoretically consistent range of the estimated TL function. By applying this interval procedure on 

our empirical case study the cross parameter sfγ  was detected as most crucial for functional 

consistency (intervals 1-9). In step 5 the constrained TL model in [7] is now re-estimated by 

restricting sfγ  to the crucial range following the previously defined intervals. Table A1 summarizes 

the constrained regression results (see appendix). The nested intervals following parameter search 

resulted in the parameter region defined by the deciles 1 to 8 for sfγ  as the region implying the 
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highest functional consistency. This econometric procedure could be also applied by using 

programmed macros in statistical software. Finally in step 6 the constrained TL model is specified 

and estimated by restricting the crucial parameter sfγ  to the found nested interval, hence, for our 

example [ ]0.009;0.016sfγ = − . However, analogue to the 2SLS estimation procedure the standard errors 

for the constrained regressions of the second stage have to be adjusted as the final error term *
iu  is 

not exactly equal to the variance of the original iu . This can be simply done by multiplying each 

standard error of the coefficients estimated in the second stage with the correction factor *ˆ ˆ/σ σu u  

(see e.g. Gujarati, 2003, pp. 773). Table 7 summarizes the final TL model:2 

Table 7: Constrained Translog by Nested Intervals 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

Parameter  Estimate 
[t-statistics] 

ß0 -1.349 [-273.246]*** γss 0.005 [0.142] γsf 0.016 [10.560]*** 
ßs 0.493 [30.374]*** γll 0.007 [1.192] γlf 0.004 [5.389]*** 
ßl 0.108 [13.129]*** γff 0.014 [742.377]*** 
ßf 0.428 [836.115]*** γsl -0.034 [-1.541]* 
nested parameter restriction: [ ]0.009;0.016sfγ = −  

adjR2 0.93 F-value 336.01 
QC (%) 92.1 M (%) 98.8 

(1) s-seed, l-labour, f-fertilizer; (2) *, **, ***: significance at 10-, 5- or 1%-level; t-values in parentheses; 
(3) QC – quasi-concavity, M – monotonicity; (4) corrected standard errors. 

As becomes evident, by this estimation procedure the theoretical consistency of the Transcendental 

Logarithmic can be crucially enhanced by mainting its statistical superiority and consequently its 

high range of empirical applicability. Table 8 documents this by comparing the usually constrained 

as well as the nested interval constrained TL production functions: 

Table 8: Constrained TL Comparison 

 TL usually 
constrained 

TL nested interval 
constrained 

relative 
improvement (%) 

adj R2 0.69 0.93 34.78 
parameter significance (%) 60 70 10 
monotonicity 86.7 98.8 13.69 
quasi-concavity (%) 86.9 92.1 5.97 
regularity 86.9 92.1 5.97 

 
The range of theoretical consistency is enhanced by up to 14% (monotonicity), the overall statistical 

significance could be even improved by up to 35% for the model. The functional regularity (i.e. 

monotonicity, diminishing marginal returns and quasi-concavity) increased by up to 6%. 
 

                                                 
2 For the chosen example the estimate for the restricted parameter γsf is on the upper boundary of the defined 
regular parameter space. Andrews (1999, 2000) discusses different methods to adjust the standard error for the 
parameter in question with respect to this rather complex case which we do not follow here for the sake of clarity 
of argumentation.  
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Corollary: a locally flexible and constrained technology approximation Tl’ of the type 

( )
[ ]

0
1 1 1_

1 2

1ˆ ˆ, , :  can produce ;  ln ln ;  ' 0  for  at least observation k 1;
2'

; for at least one parameter

n n n

i i ij i j tl k
i i j itl nest

dyy x x y y x x x T nsd
dxT

β β β β γ

β β β
= = =

⎧ ⎫
= + + > ∧ = =⎪ ⎪

= ⎨ ⎬
⎪ ⎪∈⎩ ⎭

∑ ∑∑ Η

locally approximates the set of feasible input-output vectors with ( )1 2, ,..., nx x x x= , ( )1 2, ,..., my y y y=  and 

( )1 2
ˆ , ,..., nβ β β β=  respectively. The approximation Tl’ locally satisfies the usual properties of a theoretically 

well-defined production technology for a high range of observations and β̂  satisfies the usual statistical 
properties of a well-defined estimator.   ▪ 

 
The estimation results show that the proposed method leads to a significantly enlarged regularity 

range for the translog functional form. As a global imposition of functional regularity implies the 

loss of functional flexibility for the translog form, the outlined procedure based on classical 

econometric methods proved to be an alternative technique to such based on Bayesian 

econometrics. 

7 – CONCLUSIONS 

This paper proposes a new procedure for the curvature constrained estimation of the widely used 

Transcendental Logarithmic functional form in order to enhance its theoretical consistency by 

maintaing its superior empirical applicability. By using an applied example the performance of the 

TL is compared to the Symmetric Generalized McFadden as the reference for a global curvature 

consistent functional form. As expected, whereas the TL shows the better empirical performance it 

scores relatively poor on the functional range of theoretical consistency. The opposite was found for 

the SGM. By performing a nested interval search on the crucial parameter(s), restricting the latter to 

a range of values showing the highest range of consistency and estimating the functional form by 

using the usual Hessian decomposition technique, the theoretical consistency of the TL could be 

crucially enhanced by maintaining its statistical significance and avoiding a loss of functional 

flexibility. The empirical results show that the applied estimation procedure – the combination of 

matrix decomposition, restricted non-linear estimation and nested parameter intervals based on 

stochastic resampling – can critically contribute to increase the theoretical adherence of a second 

order flexible model without having to rely on using Bayesian econometric techniques. 
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9 – APPENDIX 
Table A1: Functional Consistency and Empirical Applicability per Parameter Interval1 

sfγ - Deciles 1-9 1-8 1-7 1-6 1-5 1-4 1-3 1-2 
adjR2 0.92 0.92 0.93 0.93 0.94 0.95 0.95 0.96 
M (%) 98.81 98.81 98.81 98.81 98.81 98.81 98.81 98.81 
QC (%) 90.08 92.06 92.06 91.67 91.27 91.27 89.68 89.68 
R (%) 90.08 92.06 92.06 91.67 91.27 91.27 89.68 89.68 

sfγ - Deciles 2-9 3-9 4-9 5-9 6-9 7-9 8-9 
adjR2 0.92 0.92 0.92 0.92 0.92 0.92 0.92 
M (%) 98.81 98.81 98.81 98.81 98.81 98.81 98.81 
QC (%) 90.08 90.08 90.08 90.08 90.08 90.08 90.08 
R (%) 90.08 90.08 90.08 90.08 90.08 90.08 90.08 

sfγ - Deciles 2-8 3-8 4-8 5-8 6-8 7-8 
adjR2 0.92 0.92 0.92 0.92 0.92 0.92 
M (%) 98.81 98.81 98.81 98.81 98.81 98.81 
QC (%) 92.06 92.06 92.06 92.06 92.06 92.06 
R (%) 92.06 92.06 92.06 92.06 92.06 92.06 
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sfγ - Deciles 2-7 3-7 4-7 5-7 6-7 
adjR2 0.93 0.93 0.93 0.93 0.93 
M (%) 98.81 98.81 98.81 98.81 98.81 
QC (%) 92.06 92.06 92.06 92.06 92.06 
R (%) 92.06 92.06 92.06 92.06 92.06 

sfγ - Deciles 2-6 3-6 4-6 5-6 
adjR2 0.94 0.93 0.93 0.93 
M (%) 98.81 98.81 98.81 98.81 
QC (%) 91.67 92.06 92.06 92.06 
R (%) 91.67 92.06 92.06 92.06 

sfγ - Deciles 2-5 3-5 4-5 
adjR2 0.94 0.94 0.94 
M (%) 98.81 98.81 98.81 
QC (%) 91.27 91.27 91.27 
R (%) 91.27 91.27 91.27 

sfγ - Deciles 2-4 3-4 
adjR2 0.95 0.95 
M (%) 98.81 98.81 
QC (%) 91.27 91.27 
R (%) 91.27 91.27 

sfγ - Deciles 2-3 
adjR2 0.95 
M (%) 98.81 
QC (%) 89.68 
R (%) 89.68 

(1) QC – quasi-concavity, M – monotonicity, R – regularity. 


