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Can expert knowledge compensate for data 
scarcity in crop insurance pricing? 
 

 
Abstract: Although there is an increasing interest in index-based insurances in many 
developing countries, crop data scarcity hinders its implementation by forcing insurers to 
charge higher premiums. Expert knowledge has been considered a valuable information 
source to augment limited data in insurance pricing. This article investigates whether the use 
of expert knowledge can mitigate model risk which arises from insufficient statistical data. 
We adopt the Bayesian framework that allows for the combination of scarce data and expert 
knowledge, to estimate the risk parameter and buffer load. In addition, a benchmark for the 
evaluation of expert information is created by using a richer dataset generated from 
resampling. We find that expert knowledge reduces the parameter uncertainty and changes the 
insurance premium in the correct direction, but that the effect of the correction is sensitive to 
different strike levels of insurance indemnity.  

 
Keywords: expert knowledge, data scarcity, crop insurance pricing, Bayesian estimation 

JEL: C14, Q19 
 

 

1 Introduction 
The ability to quantify risk exposure is a well-known prerequisite of insurability. In an ideal 
case, a rich set of data is available to precisely estimate the likelihood and size of insurance 
losses (e.g., Berliner 1982; Schmit 1986). Unfortunately, this prerequisite is frequently 
violated in actuarial practice. For example, loss distributions for rare (catastrophic) events are 
per se difficult to quantify because of their small number of occurrences. Moreover, for new 
insurance products the damage history may be limited. The lack of historic data may lead to 
an incorrect estimation of loss distributions and introduces a new source of risk into the 
insurer’s decision problem (Courbage and Liedtke 2003). Accordingly, actuaries tend to 
charge higher premiums than they would have, had the risks been well-specified (Kunreuther 
et al. 1995). This, in turn, may deter potential customers from buying insurance. 

An insurance area, which is frequently plagued by limited data availability, is index-based 
crop insurance for agricultural producers. Index-based crop insurance has attracted the interest 
of researchers and practitioners because it can bypass obstacles inherent to traditional crop 
insurance. Payoffs are based on an easily observable index, such as an average area yield 
(instead of individual farm yields). Thus, index-based crop insurance is not subject to moral 
hazard and loss adjustment is straightforward. By construction, however, crop yields can only 
be observed once in a harvest period, i.e., typically once a year. As a result, the estimation of 
loss distributions in a particular region is usually based on a times series of 50 observations at 
most. In developing countries or emerging economies, reliable yield data are even scarcer and 
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this data limitation hinders the implementation of area yield crop insurance despite the huge 
potential demand for yield risk reduction (Miranda and Farrin 2012). 

Several options to mitigate the problem of data scarcity and model risk have been discussed in 
the literature. First, Odening, Musshoff and Xu (2007) suggest to use a weather index derived 
from daily observations of temperature and rainfall rather than an average area yield. The use 
of daily weather data increases the precision of the index estimation, but unfortunately the 
basis risk of the insurance product increases significantly because individual yield losses are 
not perfectly correlated with a weather index. In fact, Carter, Barrett and Trivelli (2007) 
estimate that farmers’ willingness to pay for area-yield insurance is twice as high for rainfall 
insurance. Another incorporation of weather data in crop insurance rating is to use a long set 
of weather data as additional information to form empirical frequency priors in a Bayesian 
estimation of a loss-cost ratio density, so that weights can be adjusted and the insurance 
premium can be derived for individual years (Borman et al. 2013). Second, plant growth 
models have been employed to simulate the impact of risk factors on crop yields (Deng et al. 
2008); however, these models are complex and difficult to calibrate and also contain a lot of 
parameters which have to be estimated for each region separately. Third, the use of expert 
knowledge has been proposed as a general response to cope with poor statistical data in bank 
risk management and insurance pricing (Alderweireld, Garcia, and Léonard 2006; Biener 
2013). In the past, expert knowledge for the quantification of insurance risk was mainly used 
on an ad hoc basis without invoking a formal mathematical framework (Shevchenko and 
Wüthrich 2006). Lambrigger, Shevchenko and Wüthrich (2007) developed a Bayesian model 
that allows for a combination of observational data and expert opinions in a more formal and 
rigorous way. Applications in the area of insurance pricing, however, are rare. Arbenz and 
Canestraro (2012) take up the modeling approach of Lambrigger, Shevchenko and Wüthrich 
(2007) and combine loss observations with expert opinions for the estimation of fire insurance 
claims. They show that the combination of different sources of information can significantly 
reduce parameter uncertainty. In this article, we pursue a similar approach to assess the value 
of expert opinions in the context of pricing area yield insurance contracts.  

A contribution of our analysis is that, in contrast to previous research, we are able to derive a 
benchmark for the evaluation of expert information. This is important since subjective 
judgments on loss probabilities may be erroneous and could add noise to the estimation of 
loss distributions (e.g., Kynn 2008). Here, we rely on disaggregated yield data that are usually 
unavailable to insurance companies when they design area yield insurance contracts. The use 
of this richer data set allows for the assessment of the informational value of external expert 
knowledge.  

The estimation procedure is applied to area yield insurance for rice producers in three 
provinces of China (Heilongjiang, Jilin, and Liaoning). China is chosen since it is one of the 
world’s largest agricultural producers and its farmers are exposed to pronounced yield risk. 
The three provinces under consideration are the main production areas for grain and have a 
vital role for domestic food supply and food security in China. According to Turvey and Kong 
(2010), there is a high market potential for index-based insurance products in China. To 
assess the viability of private crop insurance we calculate insurance premia for a hypothetical 
area yield insurance that takes into account systemic yield risk among three selected provinces 
via an appropriate risk premium (buffer load). Following Okhrin, Odening and Xu (2012), the 
spatial dependence of crop yields in the three provinces is modeled by a multivariate copula. 
We focus on the estimation of the stochastic dependence of yield losses in space since these 
dependencies cause systemic risk for insurers which is considered to be the most important 
obstacle for the implementation of index-based crop insurance (Miranda and Glauber 1997; 
Duncan and Myers 2000). 
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The remainder of the article is organized as follows. The next section describes our theoretical 
model: After an introduction of the insurance pricing framework, we briefly review vine 
copulas as an instrument to capture high dimensional stochastic dependence of area yields. 
Thereafter, we describe a Bayesian inference model that allows for the incorporation of expert 
knowledge into the estimation of posteriori loss distribution functions. In subsequent section, 
these models are applied to Chinese rice yield data. We present risk premia for a hypothetical 
area yield insurance and analyze the effect of expert knowledge in different scenarios. 
Moreover, we apply a resampling strategy to calculate an empirical loss distribution to 
evaluate experts’ opinions. The last section provides conclusions on the benefit of expert 
knowledge in insurance pricing and offers suggestions for further research. 

2 Theoretical Framework 
Here we take the supply oriented view of an insurance company that wants to fix the price of 
insurance contracts so that insurance premia cover indemnity payments in each time period at 
a given confidence level. This objective requires charging risk premia, which take into 
account covariate risk between the insurance contracts, on top of the actuarial fair price. 
Following Wang and Zhang (2003) and Okhrin, Odening and Xu (2012), we evaluate the 
systemic risk of an insurance portfolio by calculating the buffer fund (BF). The BF is the 
value at risk (VaR) of the total net losses of a portfolio held by the insurer. It indicates the 
amount of financial reserve needed to prevent ruin from indemnity payments. Formally stated: 

(1) 𝐵𝐹 = inf �𝑙 ∈ ℜ: P��𝑤𝑖 ⋅ (𝐿(𝑋𝑖) − 𝜋𝑖) ≥ 𝑙
𝑑

𝑖=1

� = 1 − 𝛼� , 

where 𝐿(𝑋𝑖) denotes the indemnity payment for the ith contract. In the context of area yield 
insurance index: i represents regions; 𝜋𝑖 is the fair insurance premium defined by 𝐸[𝐿(𝑋𝑖)]; 
 𝑤𝑖 refers to the weight of the ith contract; and 1 − 𝛼 is the ruin probability. Dividing the BF 
by the number of contracts gives the buffer load,  𝐵𝐿 = 𝐵𝐹/∑ 𝑤𝑖

𝑑
𝑖=1 , which is the risk 

loading above the fair premium. The simplified premium is based on the following 
assumptions: first, diversification of products of the insurer is not taken into account; second, 
only a single-period model is considered and equity reserves accumulated in years with 
premium surpluses are ruled out; third, administrative costs are ignored.  

In section 3, we calculate the risk premium for an area yield insurance, which resembles a put 
option with the following indemnity payment: 

(2) 𝐿(𝑋𝑖) = 𝑇 ⋅ max(𝐾𝑖 − 𝑋𝑖, 0),  

where 𝑋𝑖 denotes the area yield which is the average crop yield within a production region, 𝐾𝑖 
is the strike level for the ith region which can be understood as the coverage of the insurance 
contract, and T is the tick value which converts physical units into monetary terms.  

Calculating the BF by (1) requires knowledge of the joint loss distribution of all n contracts in 
the portfolio. Figure 1 provides a diagram of the estimation and validation procedure. Within 
a Bayesian estimation framework we use time series of area yields to estimate parametric 
marginal distributions and parametric copulas from which the joint distribution of indemnity 
payments in all regions can be derived. From the joint loss distribution, we simulate 
aggregated insurance losses and determine the BF as a quantile (VaR) of the total loss 
distribution. In an alternative scenario, the same estimation procedure is followed, yet the 
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observational regional yield data is enhanced by expert opinions on the stochastic dependence 
of losses in the different trading areas (see figure 1a).  

Figure 1. Estimation of buffer loads with different data sets 

 

Comparing these two scenarios (with and without expert knowledge) shows the effect of the 
additional information on the estimated buffer loads. To evaluate the inclusion of expert 
knowledge, we contrast the results of the parametric estimation with quantiles from an 
empirical distribution of total (aggregate) losses. Clearly, the empirical loss distribution 
cannot be reliably estimated from a short time series of area yields. To overcome this problem, 
we utilize crop yield data which are observed on a disaggregated, sub-regional level (see 
figure 1b). Assuming that the sub-regions within a region are homogeneous, we calculate 
average area yields on the regional level by resampling from yield observations on the sub-
regional level and then estimate an empirical loss distribution from these resampled data. 
Unavailable time series observations of area yields are substituted by cross sectional 
observations of yields within the insured area. Using this empirical distribution as a 
benchmark may be criticized: One may ask why disaggregated data are not used for the 
parametric estimation of insurance losses, since, in practice, insurance companies would also 
make use of such data in their ratemaking if the data contain more information than 
aggregated yield data. Here we argue that access to disaggregated data is often more difficult 
than that to aggregated data. Thus, we assume that disaggregated yield data are not easily 
available for insurance companies. This assumption it is realistic if insurance suppliers 
contemplate entering new market segments, such as those in developing countries and 
transition economies.  

In the following subsection, we describe the components of the estimation procedure in 
greater detail. 

2.1 Modeling stochastic dependence of area yields with copulas 

The advantage of using copulas arises from the decomposition of a multivariate distribution 
into margins and a pure dependency component. If F is an arbitrary d-dimensional continuous 
distribution function of the random variables 𝑥1, … , 𝑥𝑑, then it can be decomposed into the 
associated copula 𝐶 and its marginal distributions as 

a)  Estimation with regional data 

Expert 
knowledge 
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parameters 
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distribution of 
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Simulated 
aggregated 

loss 
distribution 

Buffer fund, 
buffer load 

b) Estimation with sub-regional data 
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(3) 𝐹(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝐶𝜽(𝐹𝜓1(𝑥1),𝐹𝜓2(𝑥2), … ,𝐹𝜓𝑑(𝑥𝑑)), 

where 𝜽 is the copula parameter and 𝐹𝜓𝑖  is the univariate continuous marginal distribution 
with an unknown vector of parameters 𝜓𝑖 , see Sklar (1959). If F belongs to the class of 
elliptical distributions, then this results in a so-called elliptical copula. Note, however, that in 
many cases the function of the copula cannot be stated explicitly because the distribution 
function F and the inverse marginal distributions often have only integral representations. 
There are copula families which overcome this drawback: Archimedean copulas (see Nelsen 
2006), a mixture of copula functions, hierarchical Archimedean copula (see Okhrin, Okhrin 
and Schmid 2013), and pair copula constructions which are more widely known as vines (see 
Min and Czado 2010; Aas et al. 2009). In this article, we concentrate on vine copulas since 
they are a natural choice when working in a Bayesian framework. When a multivariate 
distribution is decomposed into copula and marginal distributions, the multivariate density 
𝑓(∙) can be represented as 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑐𝜽 �𝐹𝜓1(𝑥1),𝐹𝜓2(𝑥2), … ,𝐹𝜓𝑑(𝑥𝑑)� ∙ 𝑓𝜓1(𝑥1) ∙ 𝑓𝜓2(𝑥2) ∙∙∙ 𝑓𝜓𝑑(𝑥𝑑), 

where 𝑐(∙)  is the copula density defined as 𝑐(𝑢, 𝑣) = 𝜕2𝐶(𝑢, 𝑣)/𝜕𝑢𝜕𝑣  and 𝑓𝜓𝑖  are the 
univariate marginal densities.  

From the Bayes rule, the joint density can be factorized as  

(4) 𝑓(𝑥1, 𝑥2, … 𝑥𝑑) = 𝑓(𝑥𝑑) ⋅ 𝑓(𝑥𝑑−1|𝑥𝑑) ⋅ 𝑓(𝑥𝑑−2|𝑥𝑑−1, 𝑥𝑑)⋯𝑓(𝑥1|𝑥2, … , 𝑥𝑑). 

The conditional density for two dimensions, using (3) for the first pair, is given by 

(5) 𝑓(𝑥1|𝑥2) = 𝑐12 �𝐹𝜓1(𝑥1),𝐹𝜓2(𝑥2)� ⋅ 𝑓𝜓1(𝑥1). 

Similarly, for three dimensions of variables we have 

(6) 𝑓(𝑥1|𝑥2, 𝑥3) = 𝑐13|2 �𝐹1|2(𝑥1|𝑥2),𝐹3|2(𝑥3|𝑥2)� ⋅ 𝑓(𝑥1|𝑥2) 

                        = 𝑐13|2 �𝐹1|2(𝑥1|𝑥2),𝐹3|2(𝑥3|𝑥2)� ⋅ 𝑐12�𝐹1(𝑥1),𝐹2(𝑥2)� ⋅ 𝑓1(𝑥1). 

Therefore, the joint density (4) can be decomposed into the appropriate pair-copula multiplied 
by a conditional marginal density using the following general formula (e.g., Aas et al. 2009): 

(7) 𝑓(𝑥|𝒗) = 𝑐𝑥𝑣𝑗|𝒗−𝑗�𝐹�𝑥�𝒗−𝑗�,𝐹�𝑣𝑗�𝒗−𝑗�� ⋅ 𝑓(𝑥|𝒗−𝑗), 

for a d-dimensional vector 𝒗. Here, 𝑣𝑗is one component of vector 𝒗 and 𝒗−j refers to the 𝒗-
vector without the 𝑣𝑗  component. 

Using the conditional marginal density, we can calculate the following conditional 
distribution of the form 𝐹(𝑥|𝒗), for every j:  

(8) 𝐹(𝑥|𝒗) =
𝜕𝐶𝑥,𝑣𝑗|𝒗−𝑗{𝐹�𝑥�𝒗−𝑗�,𝐹�𝑣𝑗�𝒗−𝑗�}

𝜕𝐹�𝑣𝑗�𝒗−𝑗�
. 

For three dimensions of variables, the vector 𝒗 is univariate and (8) simplifies to 

(9) 𝐹(𝑥|𝒗) =
𝜕𝐶𝑥𝑣{𝐹(𝑥),𝐹(𝑣)}

𝜕𝐹(𝑣)
. 

Thus, the joint density distribution (4) for three dimensions can be expressed as 
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(10) 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓(𝑥1) ⋅ 𝑓(𝑥2) ⋅ 𝑓(𝑥3) ⋅ 𝑐12�𝐹1(𝑥1),𝐹2(𝑥2)� 
    ⋅ 𝑐23�𝐹2(𝑥3),𝐹2(𝑥3)� ⋅ 𝑐13|2 �𝐹1|2(𝑥1|𝑥2),𝐹3|2(𝑥3|𝑥2)�. 

An extension to arbitrary large dimensions using C, D, or R-vines construction follows the 
same logic (cf. Kurowicka and Joe 2010). The representation for d-dimensional vine is the 
product of 𝑑 marginal densities and 𝑑(𝑑 − 1)/2 bivariate copulas. 

2.2 Bayesian Copula Estimation with Expert Knowledge 

The estimation of the copula parameters and the parameters of the marginal distribution is 
accomplished within a Bayesian estimation procedure. Bayesian estimation allows for the 
incorporation of expert knowledge (Zhang and Dukic, 2012) and has been successfully 
applied to vine copula estimation (Hofmann and Czado 2011; Min and Czado 2010).  

According to Bayes rule, the posterior density 𝑝(𝜽,𝝍|𝒪) of parameters (𝜽,𝝍) for a given 
observation set 𝒪 is  

(11) 𝑝(𝜽,𝝍|𝒪) ∝ 𝑝𝒪(𝒪|𝜽,𝝍) ⋅ 𝑝𝜽,𝝍(𝜽,𝝍), 

where 𝑝𝒪(𝒪|𝜽,𝝍) is the likelihood function and 𝑝𝜽,𝝍(𝜽,𝝍) is the prior density. The latter 
may reflect non observational information, such as from regulatory guidelines. 

Next we incorporate expert knowledge. Since our analysis focuses on the estimation of 
systemic risk, experts are only asked to provide estimates of copula parameters while the 
estimation of marginal parameters 𝜓𝑖 is solely based on observed data. Let ℰ denote a set of 
point estimates 𝜽�𝒌 of copula parameters 𝜽, 𝑘 = 1, … ,𝐾 provided by K experts. In Section 3.2, 
we describe how point estimates of copula parameters were elicited from expert opinions in 
detail. We assume that conditionally on 𝜽,𝝍, the observation set 𝒪 is independent of the set 
of expert point estimates ℰ. The joint conditional density of observations and experts’ point 
estimates can thus be written as 

(12) 𝑝𝒪,ℰ(𝒪,ℰ|𝜽,𝝍) = 𝑝𝒪(𝒪|𝜽,𝝍) ⋅ 𝑝ℰ(ℰ|𝜽,𝝍). 

The posterior density for parameters (𝜽,𝝍) now extends to: 
(13) 𝑝(𝜽,𝝍|𝒪,ℰ) ∝ 𝑝𝜽,𝝍(𝜽,𝝍) ⋅ 𝑝𝒪,ℰ(𝒪,ℰ|𝜽,𝝍) 

= 𝑝𝜽,𝝍(𝜽,𝝍) ⋅ 𝑝𝒪(𝒪|𝜽,𝝍) ⋅ 𝑝ℰ(ℰ|𝜽,𝝍). 

Below, we elaborate on the three components that constitute (13). 

Recalling the copula model introduced in the previous section, the likelihood function 
𝑝𝒪(𝒪|𝜽,𝝍) is conditionally imposed on the copula parameters 𝜽 and the marginal parameters 
𝝍 = (𝜓1, … ,𝜓𝑑) for d-dimension (𝑥1, … 𝑥𝑑) of area average yields and is given by: 

(14) 𝑝𝒪(𝒪|𝜽,𝝍) = 𝐿(𝑥1, … , 𝑥𝑑|𝜽,𝝍) 
 

   = �[𝑐�𝐹𝜓1�𝑥1,𝑛�, … ,𝐹𝜓𝑑�𝑥𝑑,𝑛��𝜽� ⋅�𝑓𝜓𝑖(𝑥𝑖,𝑛|𝜓𝑖)].
𝑑

𝑖=1

𝑁

𝑛=1

 

In general, experts’ estimates may be stochastically dependent, particularly if experts have the 
same informational background. However, we ignore this kind of dependence since it would 
be difficult to quantify. Moreover, we assume the experts are homogeneous. Under the 
simplifying assumptions, the likelihood of K experts’ point estimates can be stated as: 
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(15) 𝑝ℰ(ℰ|𝜽,𝝍) = �𝑔(𝜽�𝑘|𝜽)
𝐾

𝑘=1

, 

where 𝑔(⋅ |𝜽) describe the conditional density of each expert’s point estimates. Following 
Lambrigger, Shevchenko and Wüthrich  (2007), using a normal distribution to model expert 
opinions we use a truncated normal distribution to fit 𝑔(⋅ |𝜽) due to the bounded range of 
copula parameters. Like Arbenz and Canestraro (2012), we assume that experts’ point 
estimates are conditionally unbiased, i.e.,  𝐸�𝜃�𝑘�𝜃� = 𝜃  with identical variance   𝜎2 , i.e., 
(𝑣𝑎𝑟�𝜃�𝑘�𝜃� = 𝜎2). Further assuming independence  𝑝𝜽,𝝍(𝜽,𝝍) = 𝑝𝜽(𝜽) ⋅ 𝑝𝝍(𝝍) for the prior 
density and inserting (14) and (15) into (13) yields: 
 
(16) 𝑝(𝜽,𝝍|𝒪,ℰ) ∝�[𝑐(𝐹𝜓1�𝑥1,𝑛�, … ,𝐹𝜓𝑑(𝑥𝑑,𝑛)|𝜽)

𝑁

𝑛=1

⋅�𝑓𝜓𝑖�𝑥𝑖,𝑛�𝜓𝑖)] ⋅ 𝑝𝜽(𝜽) ⋅ 𝑝𝝍(𝝍) 
𝑑

𝑖=1

⋅�𝑔�𝜽�𝑘�𝜽�
𝐾

𝑘=1

. 

Estimation of (16) proceeds in three steps using the inference of margins method (Joe 1997). 
However, the difference from previous literature is that copula parameters are estimated using 
a Bayesian framework instead of maximum likelihood (also see Bokusheva 2011). First, the 
margins of each variable are obtained by fitting a parametric distribution to the empirical data. 
In other words, the marginal parameters are treated as given in a Bayesian framework. Hence, 
(16) will become  

(17) 𝑝(𝜽|𝒪,ℰ) ∝�𝑐�𝐹𝜓1� �𝑥1,𝑛�, … ,𝐹𝜓𝑑� �𝑥𝑑,𝑛��𝜽�
𝑁

𝑛=1

⋅ 𝑝(𝜽) ⋅�𝑔�𝜽�𝑘�𝜽�
𝐾

𝑘=1

. 

Second, the structure and copula types of each pair in 𝑐(⋅ |𝜽) are then determined given the 
estimated margins  𝐹𝜓𝑑� . Third, once the likelihood function of the vine copula and the prior 
density are determined, the full posterior distributions of copula parameters are obtained by 
Markov Chain Monte Carlo (MCMC). 

With the posterior distribution of copula parameters at hand, we are able to compute the 
distribution of aggregated insurance losses through nested Monte Carlo simulations. Based on 
one copula parameter from the posterior distribution, we generate a sample of 10,000 values 
to yield a distribution of total net loss. Then, the corresponding buffer fund and risk premium 
are obtained according to the predetermined ruin probability. This procedure is repeated for 
any value drawn from the posterior distribution of copula parameters to yield a posterior 
density for the buffer fund and risk premium.  

3 Area Yield Insurance in Northeast China 
In this section, the estimation procedure outlined before is used to quantify risk premia of rice 
yield insurance in three provinces in Northeast China: Heilongjiang, Jilin, and Liaoning. 
These provinces cover about 787,300 km2 and have a vital role for domestic food supply and 
food security since they are the main grain production areas in China. Grain production in the 
selected areas is seriously affected by weather risk, in particular drought. Between 2004 and 
2006, 16,805 km2 in Heilongjiang and 11,561 km2 in Jilin were hit by drought (China 
Meteorological Administration 2008).  
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Figure 2. Map of the study area 

 
 

  
* The black dots mark the capitals of the prefectures within a province. 

For companies to design insurance in the study area, it is essential to quantify the systemic 
risk inherent in an area yield insurance designed for each of the three provinces. With regard 
to the information set available to the insurer, we assume that only provincial crop yield data 
are available. In our study, however, we have access to sub-regional crop data. This allows us 
to assess the informational value of expert knowledge. The sub-regional rice yield data refer 
to the administrative level of a prefecture level and cover the period between 1994 and 2009. 
These data were collected from Heilongjiang Statistical Yearbook (1995-2010), Jilin 
Statistical Yearbook (1995-2010), and Liaoning Statistical Yearbook (1995-2010). The 
locations of the three provinces as well as their prefectures are depicted in figure 2. Provincial 
rice yields are calculated as weighted averages of prefecture yields. Descriptive statistics of 
the yield data are presented in the appendix. The expected values and standard variances of 
prefecture-level yields in Heilongjiang range from 54.55 dt/ha to 79.96 dt/ha and from 7.55 
dt/ha to 16.24 dt/ha. Moreover, the size of the cultivated rice area in the prefectures varies 
considerably. Similar variation can be found in Jilin and Liaoning. After detrending, 
parametric distributions were fitted to the yield data. Goodness-of-fit tests (i.e., the 
Kolmogorov-Smirnoff test, 𝜒2 and Anderson-Darling test) suggest a logistic distribution for 
all three provinces.  

3.1 Elicitation of dependence parameters from experts 

Acquisition of expert knowledge and its translation into model parameters is a nontrivial task 
that requires a sound statistical and psychological approach. Here, we take up the approach of 
Böcker, Crimmi and Fink (2010) who suggest to turn expert opinions into dependence 
parameters by means of indirect questions about conditional and joint probabilities of loss 
events. The procedure consists of successive questions on bivariate relations of random 
variables and joint probability for all three variables. After experts estimated the marginal and 
joint probabilities (e.g., 𝑃(𝑋 ≤ 𝑥) and 𝑃(𝑋 ≤ 𝑥,𝑌 ≤ 𝑦)) in all three provinces and a certain 
copula model has been determined from the observations, we are able to estimate the bivariate 
copula parameters for all bivariate variables using (3). These steps are conducted for the 
conditional marginal probabilities and the conditional joint probabilities of area yields in all 
three provinces. 

Heilongjiang 

Jilin Liaoning 
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Ten experts from insurance and academics with experience in agricultural insurance in China 
were interviewed in a written survey. As mentioned above, we focus on the elicitation of 
dependence parameters (marginal probabilities were given to the experts). To elicit the joint 
loss probabilities, the following question was asked: 

“What is your estimate of the joint probability that a shortfall of average rice yield among all 
the farmers which occurs less than once per decade is observed in both Heilongjiang and 
Jilin in the same year?”  

Similar questions refer to other combinations of the three insurance regions. This formulation 
avoids specifying the yield in absolute terms. The answers to these questions represent the 
probability 𝑃(𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) = 𝐶𝜃�𝐹𝑋(𝑥),𝐹𝑌(𝑦)�  where 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑌 ≤ 𝑦) = 0.1 . 2 
Table 1 presents results from the expert survey. The averages of estimated joint probabilities 
are about 3 percent for all three bivariate combinations. The joint loss probability for all three 
regions is only half as high. We also display the standard deviation to indicate the variation of 
expert opinions. The coefficient of variation for the joint probability of losses in Heilongjiang 
and Liaoning amounts to 55 percent and is almost twice as high as that for the two other pairs. 
Obviously, experts are more ambiguous with regard to the likelihood of joint losses in these 
two provinces. It may be that the larger distance between Heilongjiang and Liaoning 
complicates the estimation. 

Table 1. Expert Estimates of Joint Probabilities of Rice Yields in three Provinces 

 Heilongjiang 
and Jilin 

Jilin and 
Liaoning 

Heilongjiang and 
Liaoning 

Heilongjiang, Jilin, 
and Liaoning 

Mean 0.027 0.029 0.030 0.014 
Standard 
deviation 0.006 0.009 0.016 0.008 

Using the elicited joint probabilities and assuming a particular copula type, the estimate of 
copula parameter 𝜃�𝑘 can be derived according to (3). The mean 𝐸�𝜃�𝑘�𝜃� = 𝜃 and the variance 
(𝑣𝑎𝑟�𝜃�𝑘�𝜃� = 𝜎�2) of the distribution of copula parameter estimates are obtained as sample 
estimates from the 10 experts, i.e.:  

𝜎�2 = 1
𝐾−1

∑ (𝜃�𝑘 − 𝜃̅)2𝐾
𝑘=1    ,   𝜃̅ = 1

𝐾
∑ 𝜃�𝑘𝐾
𝑘=1  , respectively.3  

3.2 Spatial dependence of area yields 

Prior to the estimation of the copula parameters, the structures of the vine copula and the 
copula family for each pair have to be determined. The structure of vine copula usually refers 
to the decomposition type (C-vines or D-vines) and the order in which the variables enter the 
vine copula function. Since both structures are identical for three random variables, we do not 
need to account for different specifications in our application. Following Aas et al. (2009), we 
determine the order of regions such that their pairwise dependence is maximized on the first 
level of the tree. The strength of dependency is measured by Kendall’s tau (table 2). This 
leads to the following order: Jilin (1)-Liaoning (2)-Heilongjiang (3). The copula family for 
each pair is chosen according to the Akaike Information Criterion. First, the copula type is 
determined for the unconditional bivariate copulas 𝑐12 and 𝑐23 in the vine copula (10). We 

2  Eliciting more probabilities will likely decrease the willingness of experts to participate in the survey as well 
as the consistency of the answers. Moreover, when copula structure is predetermined, the joint probability 
evaluated at one point is sufficient to derive the dependence parameter of copula function. 

3  Alternative approaches to calculate estimates of 𝜎2 are discussed in Arbenz and Canestraro (2012). 
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find that the Frank copula has the best fit. Based on this specification, we calculate the 
conditional margins (  𝐹1|2(𝑥1|𝑥2),𝐹3|2(𝑥3|𝑥2) ) and identify the best fitting copula family 
𝑐13|2 for the joint conditional margins which is a Gaussian copula.  

Once the structure of vine copula and the copula families for each pair have been specified, 
we estimate the copula parameters using the Bayesian model (17). An uninformative prior is 
assumed, that is 𝑝(𝜽) is a uniform density. The posterior distribution of the parameters is 
obtained by using the Metropolis-Hasting algorithm with Gaussian random walk proposals 
which are bound in the domain of the copula parameters. For instance, in case of a Gaussian 
pair copula, the truncated random walk proposal is bound to [-1, 1]. We ran 30,000 iterations 
in three parallel chains, discarding a burn-in of 20,000 in order to achieve the appropriate 
convergence (the potential scale reduction factors of Gelman and Rubin (1992) were below 
1.1 for all of the parameters). The resulting posterior means and standard deviations for the 
copula parameters with and without expert knowledge are presented in table 2. We also depict 
Pearson’s linear correlation, which is often used as a standard measure for stochastic 
dependence in crop insurance despite its potential pitfalls (e.g., Goodwin 2001; Wang and 
Zhang 2003) 

Table 2. Estimation of Dependences among three Provinces with Standard Deviation 

Dependence measure Dependence parameters 
 Jilin - Liaoning Liaoning - Heilongjiang Jilin - Heilongjiang* 

Pearson’s rho 0.19 (0.24) 0.50 (0.19) 0.26 (0.23) 
Kendall’s tau 0.20 (0.19) 0.47 (0.19) 0.07 (0.19) 
Copula without experts 1.48 (1.55) 4.77 (1.76) 0.14 (0.10) 
Copula with experts 3.63 (0.61) 4.29 (1.14) 0.36 (0.05) 
*  For the vine copula, the dependence between Jilin and Heilongjiang is conditional on 

Liaoning. 

All dependency measures presented in table 2 indicate that Liaoning and Heilongjiang have 
the highest correlation among the three provinces, though their geographical distance is the 
largest one. The dependence between average rice yields in the other two pairs of provinces is 
positive, but considerably smaller. Note that Pearson’s rho and Kendall’s tau differ largely for 
Jilin and Heilongjiang. Comparing the last two rows in table 2 reveals that the inclusion of 
expert knowledge has a significant impact on the estimation of the copula parameters. 
Apparently, experts believe that the stochastic dependence between rice yields in 
Heilongjiang and Jilin as well as in Jilin and Liaoning are higher than reflected by the yield 
data – for Liaoning and Heilongjiang, the copula parameter estimate is slightly lower. It can 
be conjectured that experts’ estimations were influenced by knowledge about the geographic 
location of the regions, such that adjacent locations are presumed to show higher correlations. 
These findings show that the consideration of expert knowledge leads to a reduction of the 
standard deviation of parameter uncertainty. This finding confirms results from previous 
studies, e.g., Arbenz and Canestraro (2012).  

3.3 Resampling 

To derive a loss distribution that can serve as a benchmark for the experts’ estimates, we 
resort to a resampling procedure. Rice yields measured in sub-regions (prefectures) are used 
to generate further provincial yield data and to calculate the empirical loss distribution and 
empirical buffer load. Heilongjiang, Jilin, and Liaoning provinces consist of 12, 9, and 14 
sub-regions, respectively. Provided that the sub-regions in each province are homogeneous, 
weighted average rice yield of any combinations of sub-regions can be regarded as a 
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realization of provincial yield (in the same year). To test the assumption of homogeneity of 
rice yields, we apply a robust Levene’s test (Levene 1960), an F-test and a Kruskal-Wallis test 
(Kruskal and Wallis 1952) to the detrended sub-regional rice yield data. The results in table 3 
show that the null hypotheses of equal means, equal medians and equal variances within the 
provinces cannot be rejected, supporting our resampling approach.  

Table 3. Results for testing homogeneity 

Test for Variance Mean Median 

 Levene’s 
statistic 

p-
value 

F-
statistic 

p-
value 

Kruskal-Wallis 
χ2 

p-
value 

Heilongjiang 0.998 0.450 0.000 0.999 1.118 0.999 
Jilin 1.401 0.202 0.000 0.999 3.680 0.885 
Liaoning 1.313 0.208 0.000 0.999 0.960 0.999 

 

Resampling is then carried out by taking a weighted average of all combinations 𝐶𝑚𝑙  of 
observed (detrended) sub-regional yields within a province. The combination  
𝐶𝑚𝑙 = 𝑚!

𝑙!(𝑚−𝑙)!
 refers to the number of subsets of 𝑙 distinct elements of a set 𝑚. Here, m denotes 

the number of sub-regions in a province and 𝑙 varies from 1 to 𝑚. This resampling is done for 
each province and year in the observation period. For instance, in Jilin, which consists of 9 
sub-regions, (𝐶99 + 𝐶98 + ⋯𝐶91) = 511 combinations of weighted average yields are generated 
for each year. Likewise, 4,095 and 16,383 data are resampled for Heilongjiang and Liaoning, 
respectively. 

From the resampled data, we calculate the weighted average net loss  
 ∑ 𝑤𝑖(𝐿(𝑋𝑖) − 𝜋𝑖)/∑ 𝑤𝑖

3
𝑖=1

3
𝑖=1  for area yield insurances spanning all three provinces. 

Indemnity payments 𝐿(𝑋𝑖) in three provinces are derived for two alternative strike levels  𝐾𝑖, 
the 50 and 30 percent quantiles of the respective area yields distributions. Without loss of 
generality, we set  𝑇 = 1  so that losses can be interpreted in yield units, i.e., dt/ha. The 
weights 𝑤𝑖 of the insurance contracts are chosen according to total rice areas (shown in the 
Appendix).  
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Figure 3. Cumulative distribution of weighted average net loss with different datasets 

 

Figure 3 displays the resulting net loss distributions on a per hectare basis. Both distributions 
are positively skewed. For a strike level of 50 (30) percent, the probability for net losses 
below -2.33 dt (-1.30 dt) is zero. By construction, these values mark the weighted average fair 
insurance premium. The distribution is truncated at these values, because no indemnity 
payments accrue if rice yields exceed the 50 (30) percent quantile of the yield distribution. 
The 95 percent quantile of weighted net loss is 5.35 dt (4.28 dt) and maximum losses amount 
to 26 dt (24 dt).  

Figure 3 also displays the empirical loss distributions based on only 16 observations of 
provincial yields, which indicate that these distributions differ from their resampling 
counterparts. First, the fair prices are smaller (2.07 dt and 1.17 dt, respectively). In addition, 
the tail risk is underestimated by the empirical distribution. This is due to the fact that the 
resampled data show more variation of area yields than the historical observations. These 
differences are translated into the risk premia of the area yield insurance (see table 4). 

3.4 Estimation of Risk Premia 

Table 4 summarizes estimates of fair prices and buffer loads based on the Bayesian estimation 
with and without expert knowledge, the empirical distribution, and the resampled distribution. 
Fair prices are displayed for each province individually, while buffer loads are calculated for 
an average insurance contract. This is appropriate in our analysis since we are primarily 
interested in estimating the insurer’s size of loss exposure and not interested in how to 
reallocate risk to the insured. 

Weighted Average Net Loss 

𝐹 � ̂  
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Table 4. Fair Prices and Buffer Loads 

Scenarios Fair Price BL 0.90 BL 0.95 
 Heilongjiang Jilin Liaoning Weighted 

Average 
  

Empirical distribution based on provincial data 
Strike Level 50% 2.326 1.538 2.041 2.072 2.931 3.604 
Strike Level 30% 1.290 0.793 1.286 1.166 2.415 2.703 
Empirical distribution based on resampled sub-regional data 
Strike Level 50% 2.526 2.043 2.157 2.330 3.577 5.348 
Strike Level30% 1.385 1.122 1.298 1.302 2.531 4.278 
Bayesian copulas estimation based on provincial data 
Strike Level 50%       
without expert 2.103 1.663 2.068 1.987 3.399 

(0.216)* 
4.890 

(0.283) 
with expert 2.103 1.664 2.069 1.987 3.607 

(0.138) 
5.196 

(0.182) 
Strike Level 30%       
without expert 1.082 0.856 1.065 1.023 2.261 

(0.131) 
3.674 

(0.205) 
with expert 1.082 0.856 1.064 1.023 2.374 

(0.088) 
3.880 

(0.146) 
* Standard deviations are presented in the parentheses. 

According to the copula based estimation without expert knowledge, fair prices vary between 
1.66 dt in Jilin and 2.10 dt in Heilongjiang for a coverage of 50 percent, which is about 3 
percent of the average rice yield. The corresponding values for a coverage of 30 percent are 
0.86 dt and 1.08 dt, respectively. The estimation with expert knowledge results in the same 
fair prices because fair prices depend on the marginal yield distributions and the latter are not 
influenced by the expert knowledge in this study. The buffer loads, however, are different, 
which is not surprising in light of differences in the copula parameter estimates. The buffer 
load for a 90 percent confidence level increases from 3.40 dt to 3.60 dt if expert knowledge is 
included in the Bayesian loss estimation. A similar difference occurs for a 95 percent 
confidence level, for which the buffer loads amount to 4.90 dt and 5.20 dt respectively for 
with and without expert. An increase of the estimated risk can also be observed for a coverage 
of 30 percent. Obviously, the buffer load is considerably higher than the fair price of the 
insurance, which may appear counterintuitive. One should recall, however, the static 
definition of the buffer load that we use in this study: The buffer load indicates the margin to 
the fair price that is required to build a desired financial reserve in a single period. In a multi-
period setting, it is not necessary to charge the buffer load every year.  

Table 4 provides further information about the dispersion of the estimated buffer loads. It can 
be seen that the variability of the Bayesian estimates becomes smaller if expert knowledge is 
considered. This finding is also supported by figure 4, which depicts the densities of the 
buffer loads resulting from the Bayesian copula estimation. 
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Figure 4. Estimated density of 95% buffer load, estimated from Vine copulas 

 

How do these estimates relate to the benchmark distribution which we derived from the 
disaggregated yield data? With regard to fair prices, we find that the parametric approach 
underestimates these values for all three provinces and both strike levels. This is likely due to 
the fact that the estimation of marginal yield distributions is based on only 16 observations. 
As mentioned above, the inclusion of expert knowledge has no impact on the estimation of 
fair prices and thus cannot reduce the underestimation. The effect on the estimation of the 
buffer loads is somewhat different. Again, the parametric estimates without expert knowledge 
are smaller than the ones from the resampled distribution; however, taking into account expert 
knowledge reduces the underestimation and brings the estimated buffer loads closer to the 
benchmark. In one scenario (coverage 50 percent, confidence level 90 percent) the parametric 
buffer load is even slightly higher than the benchmark value. This means that in this case 
study, expert opinions change the insurance premium in the correct direction, but the size of 
the correction depends on the coverage and confidence level. 

4 Conclusions 
This study was motivated by the difficulty in assessing systemic yield risks in agricultural 
crop insurance due to the fact that yields are often observable only once a year and hence 
available time series data are usually short. The scarcity of yield observations hampers the 
application of data intensive statistical methods and may result in unreliable estimates of 
potential insurance losses and thus risk premia. To mitigate this problem, we provide a 
statistical framework that allows for the incorporation of expert knowledge on joint yield risks 
into a ratemaking procedure. A Bayesian estimation procedure is employed which allows for 
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the explicit combination of prior information, yield observation, and expert opinions. The 
stochastic dependence of area yields in different regions is captured by a vine copula, which is 
able to capture high dimensional dependence structures. The modeling approach is applied to 
a hypothetical area yield insurance for rice producers in three provinces in Northeast China. 
We estimate a joint loss distribution for all provinces from which we derive risk premia. The 
results of the Bayesian estimation are compared with an empirical loss distribution that is 
generated by resampling from disaggregated yield data. We find that the inclusion of expert 
knowledge has a significant impact on the estimation results. Insurance experts estimate the 
probability of joint area yield risk in three provinces to be higher than that which is solely 
estimated from the yield data. This increase varies between 5 and 6.5 percent, depending on 
the confidence level and insurance coverage. Additional expert knowledge changes the 
insurance premium in the correct direction relative to a benchmark derived from sub-regional 
data, but the size of the correction is sensitive to the specification of the insurance products, 
e.g., the strike level. Moreover, expected losses, i.e., fair premia, are underestimated. This 
indicates that the estimated distribution of total insurance losses differs from the benchmark 
distribution even after taking expert knowledge into account. We conclude that the use of 
expert knowledge is not a panacea for data scarcity in crop insurance pricing, but that it has 
potential to mitigate this problem. This finding is relevant for insurers and reinsurers who 
intend to launch new insurance products, particularly in low income countries where demand 
for crop insurance is high, but crop yield data are rare. One should note, however, that our 
evaluation of the data augmentation procedure interferes with several subjective assumptions, 
such as the specification of marginal distributions, the choice of the copula type and structure, 
and the distribution of expert parameters. Thus, it is rather difficult to extract the “treatment 
effect” of including expert knowledge and generalizations of our specific results are not 
straightforward. 

There are several possible extensions of this study. First, one might attempt to receive more 
information from experts. In our case, expert knowledge was only used to support the 
estimation of copula parameters, while the copula type and marginal yield distributions were 
determined by means of yield observations only. Second, the number of experts could be 
increased, for example, by asking agricultural specialists without an insurance background. 
Third, to cope with data scarcity, more objective information, in particular historical weather 
records, should also be considered together with expert knowledge in our Bayesian 
framework. Even though basis risk exists between weather data and crop yield, the 
stochasticity of crop yield is mainly determined by weather data, particularly for unfavorable 
weather events. Fourth, alternative procedures of eliciting probabilities from should be tested 
and compared. Finally, we suggest conducting further empirical studies to provide a clearer 
picture of the conditions under which expert knowledge is most helpful. 
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6 Appendix 
Descriptive Statistics of Rice Yield Data in sub-regions 
Prefectures Expected yield 

(dt/ha) 
σY 

(dt/ha) 

Sown area of rice 
(ha) 

Prefectures in Heilongjiang Province    
1 Harbin 79.96 9.94 473,217 
2 Qiqihar 60.26 7.55 179,588 
3 Jixi 72.32 9.12 143,286 
4 Hegang 54.55 9.70 44,839 
5 Shuangyashan 63.28 13.96 43,311 
6 Daqing 61.81 16.24 58,896 
7 Yichun 67.62 8.71 31,773 
8 Jiamusi 67.83 8.67 238,205 
9 Qitaihe 66.33 7.97 17,236 
10 Mudanjiang 70.18 11.83 44,158 
11 Heihe 56.13 9.87 9,490 
12 Suihua 74.88 7.72 266,336 
Prefectures in Jilin Province    
1 Changchun 87.36 5.03 175,389 
2 Jilin City 82.52 9.23 141,613 
3 Siping 90.61 10.76 59,238 
4 Liaoyuan 78.41 9.76 17,344 
5 Tonghua 90.50 9.81 76,024 
6 Baishan 62.53 6.69 1,397 
7 Songyuan 96.20 12.16 91,627 
8 Baicheng 69.62 15.93 99,779 
9 Yanbian 50.18 15.76 40,498 
Prefectures in Liaoning Province    
1 Shenyang 79.31 9.24 126,800 
2 Dalian 59.28 6.93 29,000 
3 Anshan 73.81 11.04 38,100 
4 Fushun 61.04 10.45 20,200 
5 Benxi 59.82 6.90 9,400 
6 Dandong 64.18 7.68 52,500 
7 Jinzhou 74.79 8.03 29,300 
8 Yingkou 94.52 11.57 44,300 
9 Fuxin 62.00 10.47 5,800 
10 Liaoyang 69.74 11.92 50,400 
11Panjin 94.09 6.74 108,500 
12 Tieling 75.01 13.02 64,700 
13 Chaoyang 58.75 9.74 400 
14 Hulvdao 60.77 10.50 9,100 
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