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Forecasting Performance of Models 
Using the Box-Cox Transformation 

David M.,Smallwood and James R. Blaylock 

Abstract 

The authors examine the small sample propertIes a)1d forecasting performance of 
estImators In models uSing the Box-Cox transformatIon VIa a Monte Carlo expeTl­
ment They develop a sImple,estImator for the expected value of the untransformed 
dependent vaTlable They show that the SIgn and magnItude of the transformatIon 
parameter Influence the preCISIOn of the estImators and the forecasting performance 
These results support preVIOUS research At dlfferent values of the transformatIOn 
parameter, smaller varIances of the parameter estImators do not necessarIly Imply 
Improved goodness of fit for the model 

Keywords 

Forecasting performance, transformatIons, Box-Cox, fleXIble functIOnal forms 

EconomIC theory usually prOVIdes few detaIls as to 
the speCIfic functIonal relatIOnshIps among varI­
ables In econometrIC models Therefore, the apphed 
research economIst IS often forced to choose among 
many competing functIonal forms using noneconomIC 
crIterIa FleXIble functIonal forms, because they 
mInImIZe thIS subjectIve aspect of model construc­
tIon, are becoming increasIngly popular as a tool to 
dISCrIminate among competing models' speCIfica­
tIOns One frequent approach for adding flexlblhty 
to models IS to Incorporate the monotOnIC transfor­
matIOn mtroduced by Box and Cox (3) ~ Models m­
corporatlng, the Box-Cox transformatIOn allow 
researchers to dISCrImmate statIstICally among 
many commonly used functIonal forms including 
the log, mverse, quadratIc, and hnear forms (1, 4, 6, 
8, 12, 14) However, the Box-Cox transformatIon 
places addItIOnal burdens on the researcher m 
terms of the complexIty of estImating and Inter­
pretmg model parameters compared WIth ordmary­
least-squares models Furthermore, the small sample 
propertIes of the estImators and the forecast per­
formance of models incorporating a transformed 
dependent varIable are not well known (11) 

The authors are agricultural economists With the NatIOnal 
Economics Dlvlson, ERS 

'Itahclzed numbers In parentheses refer to Items In References 
at the end of thiS artIcle 

Several papers have addressed estImatIOn procedures 
and InterpretatIOn of parameters In Box-Cox models, 
but only SpItzer (so far as we know) has addresse_d 
the small saJl1ple propertIes and forecast perform­
ance EstImatIng parameters In models emplOYIng 
the Box-Cox transformatIon Involves maXImIZing a 
complex nonhnear hkehhood functIOn SpItzer has 
outhned several procedures that can be used to ac­
comphsh thIS task (12) Procedures'for'InterpretIng 
parameters In Box-Cox models are dIscussed by 
SpItzer (12), Blaylock and Smallwood (1, 2), 
and others 

The small sample propertIes of the estImators are 
partIcularly Important for the apphed researcher 
For example, how well do the estImators perform 
when one has only 30, or perhaps 60, observatIOns? 
Can one use the standard t-test to test hypotheses 
about the model parameters? Although the maXI­
mum hkehhood propertIes are well known, they 
apply only asymptotICally, and the small sample 
propertIes are analytIcally Intractable 

SpItzer has InvestIgated the small sample proper­
tIes of the Box-Cox estImators VIa Monte Carlo 
methods (11) However, as he notes, hIS results are 
tempered by the small number of rephcatIOns (50) 
per model Furthermore, he touches on forecast per-
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forma nee only as a secondary Issue 2 ThU8, several 
Important questIOns, such as the calculatIOn of the 
expected value of the untran~formed dependent 
variable and out-of-sample forecast performance, are 
not addressed 

This artlele has two major objectives Our first ob­
Jective IS to expand Spitzer's Monte Carlo study (11) 
by usmg tWlceJhe number of rephcatlOns to prOVide 
more rehable mformatlOn on the small sample pro 
pertles of estimators m Box-Cox type models The 
small sample properties of estimators have Impor­
tant Imphcatlons for economists, and the propertIes 
of these estimators ultimately e,:,tend to the end use 
of the model For example, ,consider the Importance 
of a parameter's variance Spitzer has suggested 
that, In hIghly nonhnear functlOnal specIficatIOns 
such as the Box-Cox, the sign and magmtude of the 
transformatIOn parameters may affect the estImatIOn 
of the variances for all parameters m the model If 
80, one must exerClse extreme care In performIng 
hypotheSIS tests, especially If the tests Imply or 
embody pohcy or program ImphcatlOns 

Our second objectIve IS to mvestlgate the ablhty of 
transformed models to forecast the orlgmal (untrans­
formed) variable and to forecast outSide the sample 
used for estJmatlOn Forecast performance IS Impor­
tant m evaluatmg flexible functional forms because 
a common fear IS that they fit an mdlvldual sample 
too well, mcludmg the random pecuharlties Limited 
numbers of observations m analyses of hve data 
often prevent extensive testmg outSide the perIOd 
of fit Monte Carlo studies, In contrast, prOVide a 
umque opportunity for testmg this aspect of model 
performance The evaluation of forecasting per­
formance In a sCientifically controlled environment 
uSing Simulated data prOVIdes the apphed econo­
mist With valuable mSlghts mto the strengths and 
hmltatlons onhe Box-Cox technique 

To accomphsh these obJectives, we conducted a 
Monte Carlo experiment usmg the general frame­
work set forth by Spitzer (J 1) The general model 
conSisted of three variables and five parameters m­
eludmg a Single Box-Cox parameter The model was 
used to generate some 100 samples of observatIOns 
~hlch were used for estImatIOn and forecast evalua­
tion ThiS was done for five alternative,Box-Cox 

2Sp1 tzer's method (I 1) of denvIng forecasts IS shown In thiS 

arhcle to be Incorrect 

parameter values and for two sample sizes In,con­
trast to Spitzer (11), each data sample con tamed 10 
observatIons for use In forecast evaluation"that 
were not used to estimate the model parameters 

We diSCUSS the Box-Cox transformatIOn and the 
method of estimatIOn, and we outlme model con­
structIOn and data generatIOn We then diSCUSS 
estImatIOn and forecastmg performance results and 
briefly summanze our research findmgs 

Box-Cox Transformations 

The, Box-Cox transformatIOn for any pOSItive, van­

able W IS defined as 


W(A) 	= (W' - 1)/A A"* 0 (1) 

= In(W), A=O 

where A IS a parameter to be estimated The 

transformatIOn IS typically apphed to models of the 

form, 

K 

Y,(A) = 130 + 	E 13.X,.(A) + E" 1= 1,2, ,N (2) 
'=1 

The hnear and logarithmiC models are speCial cases 
of equatIOn 2 when AIS equal to 1 and zero, respec­
tively (14) 

Assume that under the appropriate transformation, 
the E,' S are mdependently and normally distributed 
With zero mean and constant variance, that IS, 
N(O, 0 2 ) The hkehhood functIOn can then be 
written as 

N 

LV3, 0, A) = (21TO')-NI2J exp [- E {Y,(A) - 130 
,=1 

K 

- E 13k X,k (A)}'/2o" I (3) 
k>=l 

where J denotes the Jacobian for the transforma­
tion from Y, (A) to the observed Y, 

N I 	 IN). - IJ = 	IT aY(A)/ay = IT Y, (4) 
,=1 1=1 
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The log-hkehhood functIOn can be written as 

N 

LL = - (NI2)ln ii' + (A - 1) E InlY,) (5) 
1=1 

N 

where ii' = E i': IN IS the estimated variance of f, 
I ~l 

We used the Fletcher-Powell algorithm with analyt­
Ically computed first derivatives to m8Xlnllze the 
log-hkehhood functIOn' We used the fundamental 
statistical relationship that the asymptotic covarl­
a~ce matrIX of a mW<lmum hkelihood estimator IS 
equal to the Inverse of the covariance matrIX of the 
gradient of the likehhood functIOn when estimating 
the asymptotic covanance matrix of the parameters 
(10) 

Zarembka has shown that the distributIOn of the 
error term cannot be strictly normal In models 
where the dependent vanable IS Box-Cox trans­
formed because a power transformation can be 
apphed only to,posltlve variables (14) , 

SpeCifically, lfA>O, then -1IA < Y(A) < 00, If 
A= 0, then - 00 < yeA) < 00, and If A < 0, then 
- 00 < yeA) < -1IA Consequently, the magnitude 
and Sign of A affect the range of the,dependent 
variable However, Draper and Cox (5), Zarembka 
(14), and Spitzer (12) have shown empirically that 
so long as the distribution of the error term IS 
reasonably symmetric and the probability of large 
negative values of the error term IS low, normahty 
may be a good approximatIOn 

Model Construction and 
Data Generation 

FollOWing Spitzer (11), we speCified the models as 

yeA) = 9 0- 15X1(A) + °5X,(A) + f (6) 

where A = -1 5, -1 0, -0 15, 1 0, 1 5, respectively, 
for the five models These values of A were selected 
to represent a large range of pOSSIble transforma­
tIOn parameters,because the size and Sign ,of the 
parameter may be Important In determining the 
shape and location of the samphng dIstributIOn of 
the coeffiCient estimates and may affect the fore­

3Sp1tzer used a moc!llied Newton techmque for estimation (11) 

casting abIhty of the models In additIOn, the X,(A)'S 
were constructed such, that_ 

ThIB conditIOn was set so that each variable has 
equal Importance In explammg the vanance of YeA) 

The method used to generate values of X1(A) and 
X,(A) appearB In the appendIx_ All modelB were 
estimated for 100 samples of SIZeB 30 and 60 
(N = 30, 60) An additIOnal 10 observatlOnB were 
also generated for each'sample for use In evaluating 
the out-of-Bample forecastmg performance The 
equatIOn error term was generated from a populatIOn 
that was Independently dlBtributed aB N(O, u2 ), 

where u' = °4263 The value of u 2 was chosen to 
Yield a reBIdual vanatlOn equal to 5 percent of the 
total variation In yeA) 

Tukey (13) and Box and Cox (3) argue that the pur­
pose of a transformation IS to Increase the degree of 
apprOXimatIon to which three deBIrable propertleB 
for Btatlstlcal analYBls hold In partIcular, they 
argue that transformatIOns may lead to a more 
nearly linear model, may stabilIZe the,error vari­
ance, and/or may lead to a model for WhICh a normally 
distributed error term IB acceptable ,Of course, a 
transformation may Increase the degree of approx­
Imation to two or more of these propertleB Bimul­
taneously The true models are conStructed such 
that all three propertleB hold simultaneouBly The 
estimated modelB should, therefore, Beek out the 
transformation parameter that stabilIZes 'the error 
variance and normalIZeS the error distributIOn 

The calculation of unbiased predicted'values In 
transformed models reqwreB that speCial attentIOn 
be given to the error term Transformed dependent 
variables make predictIOns more dIfficult because 
one IS Interested In predictIng the expected value of 
the Original (untransformed) dependent vanable 
rather than the transformed one One derlves,the 
simpleBt predictor of Y" and probably the predictor 
most often used, by first notIng that 

K 

E [Y,(A)] = 13, + E 13,X..(A) (7)

'-I 
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- -
and then solvmg for Y,. 

K 

Y, = [1 +A [130 + E I3.X..(A)]] l!). , A* 0 
• -I 

K 

= exp{ 130 + E 13. X,.(A) } (8) 
11.", I' 

However, the expressIOns m equatton (8) are equal 
to the expected value'of Y, only m the case of the 
linear model For A'* I, the expreBBlons are biased 
estimators • These formulas are biased because the 
expected value of a nonlmear functIOn IS not equal 
to the nonhnear mverse functIOn of the expected 
value (7) In other words, the error term cannot be 
dropped from equatIOn (7) before expectattons_are 
taken 

A simple approxlmatton to the expected value of the 
ongmal (untransformed) dependent variable can be 
derived as follows First, define' the 1Il0del m terms 
of the transformed dependent vanable' as 

K 

Z, =(Y~ -1)/A =/30 + E I3.X,.(A) + f, (9) 
k'=l 

and note that the orlgmal dependent variable can be 
expressed as 

Y, = F(Z,) = (AZ, + 1)11>. (10) 

where F(Z,) denotes the mverse of the Box-Cox 
transformatIOn 

Expressmg Y, as a second-order Tay lor expansIOn 
around the expected val\le of the transformed 
dependent variable Yields . 

Y, = F(Z~ + (Z, - Z,) (AZ, + 1)IH» 
(11) 

+ ~(Z, - Z,)'(1 - A)(AZ" + lYH » 

where i, = E(Z,) One derives the expected value of 
the expressIOn m equatIOn (11) 

4ElastlClty formulas frequently employed In studIes using the 
transformatlon-of.vBrlables techruque are also In error because 
they are based on the same erroneous assumptIon about the 
expeCtedvalue of the dependent vanable 

E(Y,) = F(Z,) + ~o' (1 - A)[F(Z,)]'-" (12) 

by notmg that the second term on the rlght·hand 
Side (RHS) of eq,!atlOn 11 vamshes, that the expected 
value of E(Z, - Z;fl- IS the equatIOn error vanance, 
and that 

[(AZ, + 1)"-"""] = [(AZ, + 1)l!). • (AZ, + It'] 

= [F(Z,)], -" (13) 

The expressIOn gIVen In equatIOn 12 differs from the 
Simple formula of equatIOn 8 by the second term on 
the RHS of equatIOn 12 The Sign of thiS term, which 
IS uniquely deternuned by the value of A, indicates 
the directIOn of bllis Involved by using equatton 8 In 
heu of the formula given m equatIOn 12 A negattve 
biBS 18 generally present If A < I, and a poslttve bias 
IS present If A > 1 

We examine the small sample performance of the 
model parameters usmg a vanety of performance 
stattstlcs to measure biBS and vanatlOn. For each 
parameter estimated In equatIOn (6), let n, be the I-th 
sample value of the parameter, let a(0,) be the 
asymptottc standard deVIatIOn of 0" ,and define, the 
followmg' 

Mean bias = E 9,IN - 0, 

Mean absolute bias = E 19, - 01 IN, 

Root mean square error = [ E (9, - 0)'IN]~, and 

Mean asymptottc standsrd devlatton = E (J(9,)IN 

We use these stattsttcs to evaluate the forecastmg 
performance of the various models by assuming 
that n represents the forecast value and 0 repre­
sents the true value of the observatIOn to be 
predicted 

Estimation and Forecast Performance 

Table 1 shows mean bias (MB) and mean absolute 
bias (MAB) stattstlcs for the coeffICient estimates of 
the alternattve simulatIOns The most st~;klng 
result IS perhaps the remarkable slmllaflty between 
our,results and those of Spitzer (11) Like Spitzer, 
we find that, except for /30 In models With A > 0, the 
MB's, are relattvely small and do not appear to In­

dlcate systematic ull:.der- or overestImation of para­
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Table 1-Mean bias (MB) and mean absolute bias (MAD) of parameter estimates 

). N i30 i31' i32I I 1 
Sample sue 

MB 

-15 30 -0057 0024 
60 - 245 012 

-10 30 - 085 009 
60 - 095 016 

-015 30 - 021 - 014 
60 -118 - 013 

,10 30 3667 -154 
60 2026 - 117 

15 30 4394 - 156 
60 2302 -116 

MAB 

-15 30 952, 061 
60 782 046 

-10 30 914 064 
60 650 042 

-015 30 1538 075 
60 1187 046 

10 30 7071 521 
60 4203 345 

15 30 7884 517 
60 4575 342 

NA =Not apphcabJe 

meters However, the MAB's for i3, and i31 m models 
with positive ).'s are several times larger than their 
counterparts m models with negative ).'s The 
MAB's for all model parameter estimates decline 
With mcreased sample size Coupled With similar 
findmgs by Spitzer, thiS decline mdlcates the esti­
mates are consistent The MAB of ). as a percentage 
of ). generally mcreases as ). mcreases, Indlcatmg 
that the Variance of). mcreases as ). mcreases 
Spitzer also noted thiS phenomenon Therefore"the 
problem seems not to be one of a small number of 
sample replicatIOns 

The MB'and MAB statistics show that (1) parameter 
estimates are unbiased and consistent, (2) models 
With posItive ).'s perform less well than other 
models m terms of MB and MAB statistics, (3) the 
variance of ). seems to mcrease as ). mcreases, and 

EShmales 

0042 
035 

0046 
044 

NA 
NA 

040 
020 

025 
017 

NA 
NA 

025 
016 

-
-
001 

000 
NA 
NA 

003 
- 005 

- 017 
020 

NA 
NA 

002 
-006 

027 
030 

NA 
NA 

092 124 0083 
075 102 068 

106 098 068 
067 065 065 

137 029 193 
100 020 133 

079 233, 233 
045 146 146 

076 334 223 
043 210 140 

(4) our results are similar to those of Spitzer, which 
IS comfortmg In' terms of the reliability of the test 
statistics and because we obtained our results usmg 
different estimation techniques 

Table 2 presents the root mean square error (RMSE) 
and mean asymptotic standard deViatIOn (MASD) 
statistiCS for the parameter estimates If parameter 
estimatIOn bias IS small, the MASD's should be 
good apprOXimatIOns to the RMSE's (that IS, the 
ratIO of the MASD and RMSE for a parameter 
should approach 1 as sample'slze mcreases) The 
MASD's and RMSE's for all models decline as sam­
ple size mcreases, and their ratIO IS Virtually equal 
to 1 for N = 60 m all cases This findmg suggests 
that the estimated variances are consistent 
H~wev~r, the statistics for positive). are many 
times larger than those for the models With nega­
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Table 2-Root mean .quare error (RMSE) and mean aboolute otandard deviation (MASD) of parameter eotimates 

A N 	 I'lo 

Sample SIZe 

RMSE 

-15 	 30 1207 

60 963 


-10 	 30 1152 

60 810
~\ 

-015 30 1978
t 60 1531 


10 	 30 11 081 

60 6267 


15 	 30 12806 

60 6952 


MASD 

-16 	 30 1640 

60 1037 


-10 	 30 1397 

60 892 


-016 	 30 2596 

60 1562 


10 	 30 13378 

60 6387 


16 	 30 15152 

60 6990 


t,ve A, except for the statistics for I'l" whlch,follow 
no obvIOUS pattern The results md,cate that esti­
mates from models WIth A < 0 tend to be more 
precIse 

One md,cator of the"concentratIOn of the parameter 
estImates around the true parameter IS the percent 
age of the estImates wlthm ±20 percent of the true 
parameter (table 3) The results strongly mchcate 
that models WIth a negatIve A perform better An 
exammatlOn of table 3 reveals that a larger per­
centage of the parameter estImates fall wlthm the 
20-percent range as A decreases and as sample sIze 
mcreases The exceptIOn IS I'l" whIch shows no clear 
relatIOnshIp WIth A However, as sample sIze 
mcreases, all parameters become more hIghly con­
centrated around ,the true,parameter values Thus, 
the parameter estImates obtamed from larger 
samples,and models WIth smaller Aare more precIse 
than other models 

AI'll 	 I'l. 

EstImates 

0075 0116 0154 

066 099 130 


060 158 129 

054 088 084 


091 177 036 
068 132 026 

693 102 301 

467 061 191 


690 099 431 

484 059 275 


091 171 232 

061 102 142 


098 182 172 

061 106 104 


100 243 049 

061 145 029 


882 119 370 

491 068 209 


870 114 630 

485 064 300 


One must be cautIOus when usmg standard t-tests 
for hypotheSIS testmg To examme th,s Issue fur­
ther, we constructed two hypotheses The first IS a 
true hypotheSIS 

where I'l," IS the true value of I'l, Usmg a two-taIled 
test at the 0 05 slgmficance level, we would expect 
to reject 5 percent of these hypotheses Usmg the 
same procedures, we also tested the followmg false 
hypotheSIS 

Ho I'l, = 0 

Th,s test shows the power of the t-test (table 4) 

The true hypotheSIS was rejected m 5 percent or 
less of the rephcatlOns for models WIth a negative A 
The results were mIxed for models WIth posltlve A'S, 
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Table ~Percentage of estimates within 20 percent of true parameters 

~ N 	 f30 f3, f32 ~ 

Sample 8tze 	 Percent 

-15 	 30 87 100 60 95 
60 95 100 74 97 

-10 	 30 88 100 59 91 
60 98 100 79 96 

-015 	 30 66 100 45 62 
60 77 100 65 73 

10 	 30 22 37 70 54 
60 33 54 89 74 

15 	 30 21 38 70 55 
60 32 66 89 75 

Table 4-Rejections (It) and acceptances (A) of bypotheses' 

~ N 
R 

-
f30 

I A 

, 

R 

-
f3, 

I A R 

-
f32 

I A R 

-
~ 

I A 

Sample SIZe Numbers 

-15 30 
60 

5 
5 

0 
0 

2 
5 

0 
0 

1 
3 

6 
0 

2 
5 

0 
0 

-10 30 
60 

2 
5 

0 
,0 

3 
4 

0 
0 

1 
2 

8 
0 

4 
2 

1 
0 

-015 30 
60 

3 
5 

0 
0 

5 
4 

0 
0 

4 
5 

37 
0 

2 
4 

11 
0 

10 30 
60 

9 
8 

100 
70 

6 
5 

54 
0 

1 
8 

1 
0 

3 
6 

24 
0 

15 30 
60 

10 
8 

100 
81 

6 
5 

54 
0 

2 
9 

1 
0 

3 
6 

20 
0 

lR denotes the num_her of samples out of 100 In which the true hypothesis Pi. = 13k.o 18 rejeCted at the 0 05 Level A denotes the number 
of samples out of 100 10 which the false hypothesIs 13k = 0 18 accepted 88 true 

although they are unambiguously worse than the as sample sIZe mcreased The reason for the poor 
statistics from the models with negative ~'s performance of the model with ~ > 0 IS, of course, 

the ImpreCISIOn WIth which these model parameters 
Models with ~ < 0 generally performed better than are estimated These test results are not encourag­
those WIth posItive ~ For example, the false hypoth­ mg for the apphcatlOn of t-tests to parameters 
eSIS, f3. =0, IS never rejected for, models with ~ =1 0, estimated from Box-Cox models, especially for 
1 5, and N = 30 Yn fact, even for the larger sample models with posItive }.. 
Size (N = 60), a high percentage of the false 
hypotheses were accepted for the samples WIth ~ = 1 5 Table 5 reports test statistics for the equatIOn error 
However, the power of the test d,d tend to Improve term Contrary to Spitzer's assertIOn, our results 
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Table lI-Sample statiStics tor the error term, f - N(0, 0 426) 

Percentage 
~ 	 N MBor MAS of RMSE of rejection of 

vanance vanance vanance normality 

Sample SIZe Eshmates 	 Percent 

-15 	 30 -0070 0164 0201 0 

60 - 058 134 164 3 


-10 	 30 - 038 170 227 2 

60 - 028 121 144 0 


-015 	 30 -007 138 181 0 

60 - 013 108 133 0 


10 	 30 1413 1653 4394 35 

60 474 667 1380 31 


15 	 30 1898 2140 6121 37 

60 588 787 1541 34 


Note MB = mean biBS, MAB = mean absolute blllB, and RMSE = root mean square error 

clearly mdlcate that systematIc bIas occurs m the of the estimated model error term usmg a two­
estmiatlOn of the error varIance • The models taIled Kolmogorov-Sm!rllov goodness-of-fit at the 
underestimate the true vanance for ~ less than 005 level Regardless of sample SIze, normahty was 
zero, and they overestimate the varIance for rejected m approxImately one-thIrd of the reph­
posItive ~ ThIs findmg has senous ImphcatlOns for cations for models WIth posItIve ~ However, m the 
researchers because equatIon (12) expresses the models WIth negative ~, normahty was not rejected 
expected value of the untransformed dependent m the vast majority of cases 
varlable as a functIOn of the vanance Thus, fore­
casts made WIth equation (12) usmg an estImate of Model performance IS frequently evaluated m terms 
the vanance wlil be bIased, and the bIas wlil depend of ItS overall fit to the sample data R', the coeffi­
on the SIze of the bIas m the varlanCe and the value cIent of multIple determmatlOn, IS probably the 
orA most often CIted statistic for thIS purpose When 

applymg R' to models WIth a transformed dependent 
The MAB's and the RMSE's dechne as sample sIze variable, one must be careful to compute It m terms 
mcreases, mdlcatmg consIstency However, the, test of the orlgmal untransformed dependent varlable 
statIstics for the models WIth a posItive ~ are many because the untransformed dependent varIable IS 
times larger than the.. counterparts derlved from the variable of mterest and represents a standard 
the models WIth a negative ~ In other words, the for comparisons across models Table 6 shows the 
models WIth a posItive ~ once agam performed far average R"s for the estimated models The R"s are 
worse than the.. counterparts WIth a negative ~ hIgher for the extreme posItive and negatIve values 

of ~ than for ~ ~ -0 15 When the R' CrlterlOn was 
The error dIstributIOn cannot be strlctly normal used, models WIth ~ > 0 performed the best of all 
because of the hmlted range of the dependent Varl­ models R' decreased m larger sIze samples for 
able However, If the bounds Imphed on the error ~ < 0, but remamed hIgh and stable m models WIth 
dlstnbutlOn occur m the extreme taIls of the dlstrl­ posItive ~ The drop m R' as sample sIze mcreases 
butlOn as m the Monte Carlo experIment, departure suggests that randomness m smaller samples may 
from normahty would not be expected to be slgmfi­ have more mfluence on the parameter estimates 
cant_ Table 5 shows the resultsofa test for normality than m larger samples, resultmg m a better fit to 

the partIcular sample, but not necessarily to tile 

5Except for N = 30 with). = -1 5, Spitzer's reported results 
 population of mterest ThIs conjecture IS consIstent 

(11) mdlcate the BBme type of biBB as we find We beheve that 
Spitzer may have been too generous In statmg that no error van WIth the larger varlances for the parameter estI­
ance estimation biBB appeared 10 hiS replicatIons mates obtamed m the smaller samples 
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Appendix: Data Generation 
and Estimation 

Some 100 successIve data samples were generated 
for each model and sample SIze specIficatIon In the 
Monte Carlo study by use of a procedure set forth 
by SpItzer (11) Each generated data sample was 
dlv~ded Into two subsamples one used for estIma­
tIOn and the other for forecast evaluatIon WIthout 
loss of generalIty, the first N observatIons were 
placed m the estImatIOn sample and the remammg 
K observatIOns were placed m the forecast sample, 
where N = (30, 60) denotes the estImatIOn sample 
SIze and K = 10 denotes the forecast sample sIze 

The tranaformed mdependent varIables were obtaIned 
as follows first, N + K paIrs of umform pseudoran­
dom numbers (W", W,,) were generated by use of 
the Lehmer multIplIcatIve congruentlal method 

from the LLRANDOM II computer package (9) ThIs 
generator has the form 

Un" = A • Un (modulo 2'1-1) 

where A = 397204092 When thIS value of A IS 
used, the generator has very good statIstIcal proper­
tIes A startmg seed, >:alue for the process was 
specIfied as Uo = 4312657 

Next, the N + K pairs were forced to orthogonalIty 
and,standardIzed to zero mean and UnIt varIance 
The transformed mdependent varIables XI (A) and 
X,(A) were obtamed from the W, as' 

X,,(A) = 5 + (3)"2WI " 

X,,(X) = 45 + (0 4)(27)1J2W" 

+ [(0 84)(27)112)W"" t=I, 2, ,N+K 

For negatIve A, each X" (X) was multIplIed by -10 
to ensure that X" was In the posItIve domaIn as 
reqUIred by the Box-Cox tranaformatlOn ThIs specI­
ficatIon ImplIes a correlatIOn between XI (A) and 
X2 (A) of 0 4 The Inverse Box-Cox transformatIOn 
was applIed to the X, (X) to obtam XI and X2 

We obtaIn the Y, by untransformIng the Y, (A) com­
puted from 

Y,(X) = 90 - 1 5 X,,(A) + 0 5 X,,(A) + f, 

where f, IS an mdependently, Identlcally,dlstrlbuted 
normal random error term generated Wlth mean 
zero and vanance 0426 If Y,(X) fell outsIde the 
feasIble range such that the untransformed Y, could 
not be computed, then another error term was 
generated to compute a replacement ThIs sItuatIon 
occurred only mfrequently, suggestIng-that trunca­
tIon of the error term (deVIatIOn from the assumptIon 
of normalIty) was not a SIgnIficant problem for the 
specIfied models 

MarsaglIa's "rectangular-wedge-tall" procedure as 
Implemented In LLRANDOM-II was used to generate 
the pseudorandom normal error term The error 
varIance, d', was chosen to make the reSIdual van­
ance apprOlumately 5 percent of the total vartance 
of Y(X). 
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