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Forecasting Performance of Models -
Using the Box-Cox Transformation

David M..Smallwood and James R. Blaylock

Abstract

The authors examine the small sample properties and forecasting performance of
estimators 1n models using the Box-Cox transformation via a Monte Carlo exper:-
ment They develop a simple estimator for the expected value of the untransformed
dependent variable They show that the sign and magnitude of the transformation
parameter 1nfluence the precision of the estimators and the forecasting performance
These results support previous research At different values of the transformation
parameter, smaller variances of the parameter estimators do not necessarily 1mply

improved goodness of fit for the model
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Economic theory usually provides few details as to
the specific functional relationships among vari-
ables 1n econometric models Therefore, the applied
research economist 18 often forced to choose among
many competing functional forms using noneconormic
criteria Flexible functional forms, because they
munmmize this subjective aspect of model construc-
tion, are becoming increasingly popular as a tool to
discriminate among competing models' specifica-
tions One frequent approach for adding flexibility
to models 18 to 1ncorporate the monotome transfor-
mation 1introduced by Box and Cox (3) ! Models 1n-
corporating: the Box-Cox tranaformation allow
researchers to discriminate statistically among
many commonly used functional forms 1ncluding
the log, inverse, quadratic, and linear forms (I, 4, 6,
8 12, 14) However, the Box-Cox transformation
places additional burdens on the researcher in
terms of the complexity of estimating and inter-
preting model parameters compared with ordinary-
least-squares models Furthermore, the small sample
properties of the estimators and the forecast per-
formance of models incorporating a transformed
dependent variable are not well known (I11)

The authors are agricultural economists with the National
Econemnics Divison, ERS

Ttalicized numbers 1n parentheses refer to items in References
at the end of this article

Several papers have addressed estimation procedures
and interpretation of parameters 1n Box-Cox models,
but only Spitzer (so far as we know) has addressed
the small sample properties and forecast perform-
ance Estimating parameters in models employing
the Box-Cox transformation involves maximizing a
complex nonlinear likelihood function Spitzer has
outlined several procedures that can be used to ac-
complish this task (12) Procedures:for interpreting
parameters 1n Box-Cox models are discussed by
Spitzer (12), Blaylock and Smallwood (I, 2),

and others

The small sample properties of the estimators are
particularly important for the applied researcher
For example, how well do the estimators perform
when one has only 30, or perhaps 60, observations?
Can one use the standard t-test to test hypotheses
about the model parameters? Although the maxi-
mum likelhihood properties are well known, they
apply only asymptotically, and the small sample
properties are analytically intractable

Spitzer has investigated the small sample proper-
ties of the Box-Cox estimators via Monte Carlo
methods (11I) However, as he notes, his results are
tempered by the small number of replications (50)
per model Furthermore, he touches on forecast per-
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formance only as a secondary 1ssue ? Thus, several
important questions, such as the calculation of the
expected value of the untransformed dependent
variable and out-of-sample forecast performance, are
not addressed

This article has two major objectives Our first ob-
jective 15 to expand Spitzer’s Monte Carlo study (11)
by using twice the number of replications to provide
more reliable information on the small sample pro
perties of estimators 1n Box-Cox type models The
small sample properties of estimators have 1mpor-
tant implications for economists, and the properties
of these estimators ultimately extend to the end use
of the model For example, consider the importance
of a parameter’s variance Spitzer has suggested
that, 1n highly nonlinear functional specifications
such as the Box-Cox, the sign and magnitude of the
transformation parameters may affect the estimation
of the variances for all parameters in the model If
g0, one must exercise extreme care 1n performing
hypothesis tests, especially 1f the tests 1mmply or
embody policy or program implications

Our second objective 18 to investigate the ability of
transformed models to forecast the original (untrans-
formed) varable and to forecast outside the sample
used for estimation Forecast performance 18 impor-
tant 1n evaluating flexible functional forms because
a common fear 1s that they fit an individual sample
too well, mcluding the random pecuhanties Limited
numbers of observations in analyses of live data
often prevent extensive testing outside the period
of fit Monte Carlo studies, 1n contrast, provide a
unique opportunity for testing this aspect of model
performance The evaluation of forecasting per-
formance 1n a scientifically controlled environment
using simulated data provides the applied econo-
mist with valuable insights into the strengths and
limitations of the Box-Cox technique

To accomplish these objectives, we conducted a
Monte Carlo experiment using the general frame-
work set forth by Spitzer (1I) The general mocel
consisted of three variables and five parameters 1n-
cluding a single Box-Cox parameter The model was
used to generate some 100 samples of observations
which were used for estimation and forecast evalua-
tion This was done for five alternative. Box-Cox

2Spitzer’s methed (11) of deriving forecasts s shown in this
article to be 1ncorrect

parameter values and for two sample sizes In.con-
trast to Spitzer (11), each data sample contained 10
observations for use 1n forecast evaluationthat
were not used to estimate the model parameters

We discuss the Box-Cox transformation and the
method of estimation, and we outline model con-
struction and data generation We then discuss
estimation and forecasting performance results and
briefly summarize our research findings

Box-Cox Transformations

The.Box-Cox transformation for any positive vari-
able W 1s defined as

A0 )
r=20

W) = (W — 10\
= ln(W),

where \ 15 a parameter to be estimated The
transformation 1s typically applied to models of the
form,

K
Y0 =6 + L AEW+e1=12 N @
k=1

The linear and logarithmic models are special cases
of equation 2 when ) 18 equal to 1 and zero, respec-
tively (14)

Assume that under the appropriate transformation,
the €,’ s are independently and normally distributed
with zero mean and constant varance, that 1s,

N(0, ¢2) The hikelihood function can then be
written as

N
L3, o, N) = 2ra?) 2] exp [— 2 {Y,) — Bo

1=1
K

- ¥ BX B2 ()
k=1

where J denotes the Jacobian for the transforma-
tion from Y,(A) to the observed Y,

N N a1
J=11 |lavowey| = v,

121 =1

)
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The log-likelihood function can be written as

N
LL = -(N2)In o2 + (A — 1) ¥ In(Y) (5)

1=1

N
where §2 = E €7/N 18 the estimated variance of

1=]

We used the Fletcher-Powell algorithm with analyt-
1cally computed first derivatives to maximize the
log-likelthood function ? We used the fundamental
statistical relationship that the asymptotic covan-
ance matrix of a maximum likelithood est:mator 18
equal to the inverse of the covariance matrix of the
gradient of the likelihood function when estimating

the asymptotic covanance matrix of the parameters
(10)

Zarembka has shown that the distribution of the
error term cannot be strictly normal 1n models
where the dependent variable 18 Box-Cox trans-
formed because a power transformation can be
apphed only to.positive variables (14) .

Specifically, if A\ >0, then —1/A < YQ\) < o0, 1f

A =0, then —®» <Y(\)< o, and 1f A <0, then

—o <Y(M} < —1/x Consequently, the magmtude
and sign of A affect the range of the dependent
vanable However, Draper and Cox (5), Zarembka
(14), and Spitzer (12) have shown empirically that
g0 long as the distribution of the error term is
reasonably symmetric and the probability of large
negative values of the error term 1s low, normality
may be a good approximation

Model Construction and
Data Generation

Following Spitzer (11), we specified the models as
YN =90 - 15X,(\) +05X,(\) +¢ (6)

where A =—-15,-10, -015,10,15, respectively,
for the five models These values of A were selected
to represent a large range of possible transforma-
tion parameters because the size and sign of the
parameter may be important 1n determining the
shape and location of the sampling distribution of
the coefficient estimates and may affect the fore-

38pitzer used a modified Newton technique for estimation (11)
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casting ability of the models In addition, the X,(\)’s
were constructed such that.

B var(X;(\)) = 8% var(X,(\))

This condition was set so that each variable has
equal importance 1n explaining the variance of Y()\)

The method used to generate values of X,(\) and
X2(\) appears 1n the appendix. All models were
estimated for 100 samples of sizes 30 and 60

(N = 30, 60) An additional 10 observations were
also generated for each.sample for use in evaluating
the out-of-sample forecasting performance The
equation error term was generated from a population
that was independently distributed as N(0, ¢2),
where ¢ = 0 4263 The value of o2 was chosen to
yield a residual variation equal to 5 percent of the
total variation m Y())

Tukey (13) and Box and Cox (3) argue that the pur-
pose of a transformation is to increase the degree of
approximation to which three desirable properties
for statistical analysis hold In particular, they
argue that transformations may lead to a more
nearly linear model, may stabilize the.error vari-
ance, and/or may lead to a model for which a normally
distributed error term 18 acceptable .Of course, a
transformation may increase the degree of approx-
1mation to two or more of these properties simul-
taneously The true models are constructed such
that all three properties hold simultaneously The
estimated models should, therefore, seek out the
transformation parameter that stabilizes the error
variance and normalizes the error distribution

The calculation of unbiased predicted values 1n
transformed models requires that special attention
be given to the error term Transformed dependent
variables make predictions more difficult because
one 18 interested in predicting the expected value of
the orginal (untransformed) dependent variable
rather than the transformed one One derives.the
simplest predictor of Y,, and probably the predictor
most often used, by first noting that

K
E[Y™] =8, + L 8XaN) )
km]



and then solving for Y,.

Y,

K
[1+x[8 + X 8.Xa]]™ , 220

k=1

K
exp{Bo + L B XuV)} A=0  (8)

k=1

Il

However, the expressions 1n equation (8) are equal
to the expected valueof Y, only 1n the case of the
linear model For X # 1, the expressions are biased
estimators * These formulas are biased because the
expected value of a nonlinear function 18 not equal
to the nonlinear inverse function of the expected
value (7} In other words, the error term cannot be
dropped from equation (7) before expectations are
taken

A simple approximation to the expected value of the
original (untransformed) dependent variable can be
der1ved as follows Firat, define the model 1n terms
of the transformed dependent variable as

K
Z, =(Y} 1\ =B + Lo B XuN) + €, 9)

k=1

and note that the original dependent variable can be
expressed as

Y, =F(Z)=QZ + D (10)

where F(Z,) denotes the 1nverse of the Box-Cox
transformation

Expressing Y, as a second-order Taylor expansion
around the expected value of the transformed
dependent variable yields )

Y, = F2Z)+ @ - il) ()\2: + 1)a-0n
3 i 11
+ %(Z, — 231 -~ NOZ. + 17

where i, = E(Z,) One derives the expected value of
the expression 1n equation (11)

{Elasticity formulas frequently employed 1n studies using the
transformation-of-variablea technique are also 1n error because
they are based on the same erroneous assumption about the
expected value of the dependent vanable

E(Y) = F@,) + %a? (1 — NF@Z)"? 12)

by noting that the second term on the right-hand
side (RHS) of equation 11 vanishes, that the expected
value of E(Z, — Z,” 1s the equation error variance,
and that

(AZ, + 1)3-2W] = [AZ, + D™ o (\Z, + 1)~2]
= [F@))-» (13)

The expression given 1 equation 12 differs from the
simple formula of equation 8 by the second term on
the RHS of equation 12 The sign of this term, which
18 umquely determined by the value of A, indicates
the direction of has 1nvolved by using equation 8 1n
lieu of the formula given 1n equation 12 A negative
bias 18 generally present if A < 1, and a positive bias
18 present if k > 1

We examine the small sample performance of the
model parameters using a variety of performance
statistics to measure bias and variation. For each
parameter estimated 1n equation (6), let §, be the 1-th
sample value of the parameter, let o(6,) be the
asymptotic standard deviation of 6,,.and define the
following:

Mean bias = 3, f./N — 8,

Mean absolute bias = ) |9, — 9}/,

Root mean square error = [ 2 (7, — 8/N1*%, and
Mean asymptotic standard deviation = Y «GyN

We use these statistics to evaluate the forecasting
performance of the various models by assuming
that & represents the forecast value and § repre-
sents the true value of the observation to be
predicied

Estimation and Forecast Performance

Table 1 shows mean bias (MB) and mean absolute
bias (MAB) statistics for the coefficient estimates of
the alternative ssmulations The most striking
result 1s perheps the remarkable stmilanty between
our results and those of Spitzer (11) Like Spitzer,
we find that, except for 8, in models with A > 0, the
MB’s.are relatively small and do not appear to 1n-
dicate systematic under- or overestimation of para-
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Table 1—Mean bias (MB) and mean absolute bias (MAB) of parameter estimates

- - - - MAB(\)
A N Bo By B, A Y
Sample grze Estimates
MB

-15 a0 —-0057 0024 0042 0046 NA
60 — 245 012 035 044 NA

-10 30 - 085 009 040 025 NA
60 — 095 016 020 017 NA

-016 30 - 021 - 014 025 ~001 NA
60 - 118 - 013 016 - 000 NA

10 30 3 667 — 154 003 - 017 NA
60 2026 - 117 — 005 020 NA

156 30 4 394 - 156 002 027 NA
60 2 302 - 116 - 006 030 NA

MAB

=15 30 952, 061 092 124 0083
60 782 045 075 102 068

-10 30 914 064 106 098 068
60 650 042 067 066 066

-015 30 1538 075 137 029 193
60 1187 046 100 020 133

10 30 7071 521 079 233 233
60 4203 345 045 146 146

15 30 7884 617 076 334 223
60 4 575 342 043 210 140

NA =Not applicable

meters However, the MAB’s for 3, and 5; 1n models
with positive M's are several times larger than their
counterparts 1n models with negative N’s The
MAB’s for all model parameter estimates decline
with increased sample size Coupled with similar
findings by Spitzer, this decline indicates the esti-
mates are consistent The MAB of A as a percentage
of X generally increases as A increases, indicating
that the variance of \ increases as A increases
Spitzer also noted this phenomenon Therefore,.the
problem seems not to be one of a small number of
sample replications

The MBand MAB statistics show that (1)} parameter
estimates are unbiased and consistent, (2) models
with positive N's perform less well than other
models m terms of MB and MAB statistics, (3) the
variance of A seems to increase as : Increases, and

18

(4) our results are ssmilar to those of Spitzer, which
18 comforting 1 terms of the reliability of the test
statistics and because we obtained our results using
different estimation technmiques

Table 2 presents the root mean square error (RMSE)
and mean asymptotic standard deviation (MASD)
statistics for the parameter estimates If parameter
estimation bias 15 small, the MASD’s should be
good approximations to the RMSE’s (that 15, the
ratio of the MASD and RMSE for a parameter
should approach 1 as sample:size increases) The
MASD’s and RMSE’s for all models decline as sam-
ple s1ze increases, and their ratio 18 virtually equal
to 1 for N = 60 1n all cases This finding suggests
that the estimated variances are consistent
However, the statistics for positive A are many
times larger than those for the models with nega-
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Table 2—Root mean square error (RMSE) and mean absolute standard deviation (MASD) of parameter estimates

A N Bo B Ba A
Sample size Estimates
RMSE

-15 30 1207 0075 0116 0 154
80 963 066 099 130

-10 30 1152 080 158 129
60 810 064 088 084

-015 a0 1978 091 177 036
60 1531 068 132 026

10 30 11 081 693 102 301
60 6 2567 467 061 191

16 30 12 8056 690 098 431
60 6 952 464 059 276

MASD

-15 30 1640 091 171 232
60 1037 061 102 142

-10 30 1397 098 182 172
60 B92 061 106 104

-015 30 2 696 100 243 049
60 1 662 061 145 029

10 30 13378 a82 119 a70
60 6 387 491 066 209

16 30 15 152 870 114 530
60 8 990 485 064 300

tive A, except for the statistics for 3., which follow
no obvious pattern The results indicate that esti-
mates from models with A < 0 tend to be more
precise

One 1ndicator of the'concentration of the parameter
estimates around the true parameter 1s the percent
age of the estimates within +20 percent of the true
parameter (table 3) The results strongly indicate
that models with a negative ) perform better An
examination of table 3 reveals that a larger per-
centapge of the parameter estimates fall within the
20-percent range as A decreases and as sample size
increases The exception 18 8;, which shows no clear
relationship with A However, as sample size
increases, all parameters become more highly con-
centrated around the true parameter values Thus,
the parameter estimates obtained from larger
samples and models with smaller A are more precise
than other models

One must be cautious when using standard t-tests
for hypothesis testing To examine this 1ssue fur-
ther, we constructed two hypotheses The first 1s a
true hypothesis

I-Iu 6_] = 6_;0

where g, 1s the true value of 8, Using a two-tailed
test at the 0 05 significance level, we would expect
to reject 5 percent of these hypotheses Using the
same procedures, we also tested the following false
hypothesis

H, =0
This test shows the power of the t-test (table 4)
The true hypothesis was rejected 1n b percent or

less of the replications for models with a negative A
The results were mixed for models with positive N's,

19



Table 3—Percentage of estimates within 20 percent of true parameters

A N Bo [if} B2 A
Sample size Percent
-16 30 87 100 60 95
60 956 100 74 a7
-10 30 as 100 59 91
60 98 100 79 96
-016 a0 66 100 46 62
60 77 100 65 73
10 30 22 37 70 54
60 33 54 89 74
15 30 2} as 70 a5
60 a2 56 89 76
Table 4—Rejections (R) and aceeptances (A) of hypotheses!
Bo b B2 A
X N
R | A R | A R [ a R | a
Sample size Numbers
-15 30 5 0 2 0 1 6 2 0
60 b 0 6 0 3 0 5 0
-10 30 2 0 3 0 1 8 4 1
60 5 Q 4 0 2 0 2 0
-016 30 3 0 5 0 4 37 2 11
80 5 0 4 1] 5 0 4 0
10 a0 9 100 6 654 1 1 3 24
60 8 70 [ (1} 8 0 6 0
16 a0 10 100 6 64 2 1 3 20
60 8 81 i1 1] 9 0 6 0

IR denotes the number of samples aut of 100 in which the true hypothesis 8, = By, 18 rerected at the 0 05 level A denotes the number

of samples cut of 100 1n which the false hypothesis 8, = 0 18 accepted as true

although they are unambiguously worse than the
statistics from the models with negative A's

as sample mze 1ncreased The reason for the poor
performance of the model with A > 0 1s, of course,

the imprecision with which these model parameters

Models with A < 0 generally performed better than
those with positive A For example, the false hypoth-
esis, B, = 0, 18 never rejected for models with A = 10,
15, and N = 30 In fact, even for the larger sample
size (N = 60), a hagh percentage of the false
hypotheses were accepted for the samples withh =15
However, the power of the test did tend to 1mprove

20

are estimated These test results are not encourag-
ing for the application of t-tests to parameters
estimated from Box-Cox models, especially for
models with positive A

Table 5 reports test statistics for the equation error
term Contrary to Spitzer's assertion, our results




Table 5—Sample statistics for the error term, ¢ ~ N(0, 0 426)

P
x N MB of MAB of RMSE of rocton of
variance variance varance normallt,y
Sample size Estinates Percent

-15 30 -0070 0164 0201 0
60 - 058 134 164 3
-10 30 ~ 038 170 227 2
60 028 121 144 0
-016 30 ~ 007 138 181 0
60 - 013 108 133 0
10 30 1418 1653 4394 35
60 414 667 1380 31
16 30 1898 2 140 6121 a1
60 588 787 1641 34

Note MB = mean bias, MAB = mean absolute bias, and RMSE = root mean square error

clearly indicate that systematic bias occurs in the
estimation of the error variance 5 The models
underestimate the true variance for A less than
zero, and they overestimate the variance for
positive A This finding has serious implications for
researchers because equation (12) expresses the
expected value of the untransformed dependent
varable as a function of the vanance Thus, fore-
casts made with equation (12) using an estimate of
the varance will be biased, and the bias will depend
on the size of the bias i1n the variance and the value
of A

The MAB’s and the RMSE's decline as sample size
increases, indicating consistency However, the test
statistics for the models with a positive A are many
times larger than their counterparts derived from
the models with a negative A In other words, the
models with a positive \ once again performed far
worse than their counterparts with a negative A

The error distribution cannot be strictly normal
because of the lhmited range of the dependent var:-
able However, 1f the bounds implied on the error
distribution occur 1n the extreme tails of the distri-
bution as 1n the Monte Carlo experiment, departure
from normahty would not be expected to be signifi-
cant. Table 5 shows the results of a test for normality

SExcept for N = 30 with A = —1 5, Spitzer’s reported results
(ID) indicate the same type of bias as we find We believe that
Spitzér may have been too generous in stating that no error vari
ance estimation bias appeared in his replications

of the estimated model error term using a two-
tailed Kolmogorov-Smirnov goodness-of-fit at the

0 05 level Regardless of sample size, normality was
rejected 1n approximately one-third of the reph-
cations for models with positive A However, 1n the
models with negative A, normahity was not rejected
in the vast majority of cases

Model performance is frequently evaluated in terms
of 1ts overall fit to the sample data R? the coeffi-
cient of multiple determination, 1s probably the
most often cited statistic for this purpose When
applying R? to models with a transformed dependent
variable, one must be careful to compute 1t 1n terms
of the original untransformed dependent variable
because the untransformed dependent variable 15
the variable of interest and represents a standard
for comparisons across models Table 6 shows the
average R%'s for the estimated models The R*’s are
higher for the extreme positive and negative values
of A than for A = —0 15 When the R? criterion was
used, models with A > 0 performed the best of all
models R? decreased 1n larger size samples for

A < 0, but remained high and stable in models with
positive A The drop 1n R? as sample s1ze increases
suggests that randomness 1n smaller samples may
have more influence on the parameter estimates
than 1n larger samples, resulting 1n a better fit to
the particular sample, but not necessarily to the
population of interest This conjecture 18 consistent
with the larger variances for the parameter esti-
mates obtained in the smaller samples
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Apgendjx: Data Generation
and Estimation

Some 100 successive data samples were generated
for each model and sample size specification 1n the
Monte Carlo study by use of a procedure set forth
by Spitzer (11} Each generated data sample was
divided into two subsamples one used for estima-
tion and the other for forecast evaluation Without
loss of generality, the first N observations were
placed 1n the estimation sample and the remaining
K observations were placed 1n the forecast sample,
where N = (30, 60) denotes the estimation sample
size and K = 10 denotes the forecast sample size

The transformed independent variables were obtained
as follows first, N + K pairs of uniform pseudoran-
dom numbers (W,,, W;,) were generated by use of
the Lehmer multiplicative congruential method

from the LLRANDOM II computer package (9) This
generator has the form !

U,.; = A +» U, (modulo 2* —1)

where A = 397204092 When this value of A 18
used, the generator has very good statistical proper-
ties A starting seed value for the process was
specified as U, = 43126567

Next, the N + K pairs were forced to orthogonality
and standardized to zero mean and umt variance
The transformed independent variables X,(A\) and
X,(\) were obtained from the W, as’

X, (\) =5 + (3)2W,,,
Xp(h) = 45 + (0 HHERTHW,,
+ [(0 8H)E2TIM2IW,,, t=1, 2, ,N+K

For negative A, each X, (\) was multiplied by —10
to ensure that X, was 1n the positive domain as
required by the Box-Cox transformation This speci-
fication implies a correlation between X, () and
X,(\) of 0 4 The inverse Box-Cox transformation
was applied to the X, (A) to obtain X, and X,

We obtain the Y, by untransforming the Y, (A) com-
puted from

YN =90-15X; (N +05Xx(A) + ¢

where ¢, 18 an independently, 1dentically distributed
normal random error term generated with mean
zero and vanance 0 426 If Y,()\) fell outside the
feasible range such that the untransformed Y, could
not be computed, then another error term was
generated to compute a replacement This situation

occurred only infrequently, suggesting-that trunca-

tion of the error term (deviation from the assumption
of normality) was not a significant problem for the
specified models

Marsagha's “rectangular-wedge-tail” procedure as
implemented 1n LLRANDOM-II was used to generate
the pseudorandom normal error term The error
variance, o2, was chosen to make the residual van-
ance approximately 5 percent of the total variance
of YO,
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