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Abstract 

Heterogeneity in choice models is typically assumed to have a normal distribution in both 

Bayesian and classical setups. In this paper, we propose a semiparametric Bayesian framework 

for the analysis of random coefficients discrete choice models that can be applied to both 

individual as well as aggregate data. Heterogeneity is modeled using a Dirichlet process prior 

which varies with consumers characteristics through covariates. We develop a Markov chain 

Monte Carlo algorithm for fitting such model, and illustrate the methodology using two different 

datasets: a household level panel dataset of peanut butter purchases, and supermarket chain level 

data for 31 ready-to-eat breakfast cereals brands.  

 

Keywords: Dependent Dirichlet process, Discrete choice models, Heterogeneity, Markov chain 

Monte Carlo 
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1. Introduction  

Discrete choice models have been widely used in many fields (e.g., Economics, Marketing) to 

model instances where individuals select one alternative from a discrete set. In the general setup, 

a consumer i  chooses alternative j  from a set of J alternatives if the utility derived from 

alternative j , 
ji

u
,

, is the highest, i.e., 
kiji

uu
,,

>  jkJk ≠=∀ ,,,1 K . The utility, which is latent, is 

parameterized as jijijiu ,

'

,, βx ε+= , where 
ji,

x  is a vector of observed characteristics of 

alternative j, β  reflects the marginal utility of alternative characteristics (taste parameters), and 

ji ,
ε  is an error term commonly assumed to have an Extreme value (0,1) distribution, giving rise 

to the multinomial logit model. One objective of the model is to use the estimated tastes 

parameters to compute elasticities (percent change in the probability of choosing an alternative 

for a one percent change in one of the observed product characteristics (e.g., price), holding the 

other product characteristics constant. However, restricting the taste parameters β  to be identical 

across individuals creates the Independence of Irrelevant Alternatives (IIA) problem in the 

multinomial logit model. For example, an increase in the price for one product implies a 

redistribution of part of the demand for that product to the other products proportionally to their 

original market shares and not with respect to their characteristics, as one would expect. This 

restricts the cross-price elasticities to be proportional to market shares. In order to avoid the IIA 

problem and estimate more realistic substitution pattern among the different products, 

heterogeneity across consumers in their tastes for the product characteristics is introduced by 

allowing the taste parameters β  to be individual-specific (
i
β ). Since the true distribution of 

consumer tastes is not observed, the individual-specific parameters 
i
β  are typically assumed to 

be drawn from a parametric distribution. 



3 
 

 Discrete choice models can be estimated using either individual (household) level or 

aggregate (store, supermarket-chain, or market) level data. By individual data we mean 

consumers and their choices are observed over time. Aggregate-level data consist of total volume 

(units) sales and dollars sales of a given brand for a store, supermarket-chain, or market over 

time; individual choices leading to these aggregated quantities are not observed. The 

econometric methodology for the estimation is well documented. For individual level data see 

McFadden and Train (2000) for the classical approach, and Yang, Chen, and Allenby (2003), and 

Rossi, Allenby and McCulloch (2005) for Bayesian version. For aggregated data, see Berry, 

Levinsohn and Pakes (1995) and Nevo (2001) for the classical setting, and Musalem et al. (2004, 

2005), and Chen and Yang (2006) for the Bayesian paradigm.  

 In both Bayesian and classical models, the distribution of the individual-specific 

parameters 
i
β  is typically taken to be multivariate normal. The distribution of the individual-

specific parameters has important effects on the quantities of interest of the model. For example 

in many marketing and economic applications, the individual-specific parameters are used to 

compute price elasticities or to predict the demand for established or new products under 

alternative pricing strategies. In such applications, reliable estimates of the individual-specific 

parameters are crucial. The assumption of normality may be too restrictive, since heterogeneity 

in the population is never known a priori and a normal distribution might not be a good choice; 

for example, there has been evidence of multimodality in the distribution of taste parameters in 

marketing studies (e.g., Allenby et al. 1998; Kim et al., 2004). This warrants a more flexible 

distribution. 

 There has been some work toward relaxing the normality assumption. Chintagunta et al. 

(1991) and Kamakura and Russell (1989) used latent class models, which do not capture 
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variation in random coefficients within a latent class. Finite normal mixture models have been 

used in several studies in the marketing literature (e.g., Allenby et al. (1998); Andrew and 

Currim (2003) and references therein). In marketing for example, the true number of mixing 

components is essential since many managerial decisions on segmentation, targeting, 

positioning, and the marketing mix are based on it. However, determining the number of mixing 

components remains an unresolved issue. Dillon and Kumar (1994: 345) argued that "The 

challenges that lie ahead are, in our opinion, clear, falling squarely on the development of 

procedures for identifying the number of support points needed to characterize the components 

of the mixture distribution under investigation". More recently, Wedel and Kamakura (2000: 91) 

affirmed that "the problem of identifying the number of segments is still without a satisfactory 

solution." In a simulation study, Andrew and Currim (2003) showed that most commonly used 

mixing component retention criteria do not perform well in the context of multinomial choice 

data. To overcome the difficulty of choosing the number of mixing components, Kim et al. 

(2004) proposed the Dirichlet process prior due to Ferguson (1973). Basu and Chib (2003) also 

used the Dirichlet process prior in binary data regression models. However, the relationship 

between consumer characteristics and the unknown distribution of heterogeneity cannot be 

assessed using this distribution. Cifarelli and Regazzini (1978) introduced a product of Dirichlet 

processes that can be used to model dependence when the covariates have a finite number of 

levels. 

 In this paper, we propose a model for which heterogeneity is modeled using a 

nonparametric distribution which depends on consumer’s continuous covariates. Instead of 

assuming a multivariate normal distribution on the individual-specific parameters (
i
β ), we use a 

distribution on the space of all possible distributions, and the order-based dependent Dirichlet 
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process prior introduced by Griffin and Steel (2006) is placed on that distribution. Dependence in 

the Dirichlet process prior is achieved by making the weights in the Sethuraman (1994) 

representation of the Dirichlet Process dependent on consumer’s continuous covariates.  

An attractive feature of our approach is that unlike the Dirichlet process introduced by Ferguson 

(1973), the dependent Dirichlet process helps recover a richer variety of heterogeneity 

distributions while allowing the nonparametric distribution to depend on continuous consumer’s 

characteristics. We design a Markov Chain Monte Carlo (MCMC) sampler for assessing the 

model parameters and apply it to a household-level panel dataset of peanut butter purchases and 

supermarket-chain level data for 31 ready-to-eat breakfast cereal brands.  

The rest of the paper is organized as follows. Section 2 describes the Mixture of 

Dependent Dirichlet process models (MDDP). In section 3 we apply the MDDP model to the 

discrete choice model with individual data. In section 4 the model proposed allows estimation 

with aggregate data. Section 5 contains empirical applications of our methodology. Finally 

Section 6 presents conclusions.  

The Matlab code to implement the method introduced in this paper is available on this 

website http://sylvie.tchumtchoua.googlepages.com/matlab.  

 

2. Mixture of Dependent Dirichlet Process models 

2.1. The Dirichlet Process 

The Dirichlet process (Ferguson 1973) is widely used in Bayesian nonparametric applications. It 

is defined as follows. Let Θ  be a probability space, Β  a σ -algebra of subsets of Θ , H a 

probability measure on ),( ΒΘ , and M a positive parameter. A random probability measure G on 

),( ΒΘ  is said to have a Dirichlet Process DP (M, H) if for any finite measurable partition 
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 The role of H and M are apparent from (1) and (2); H centers the process and is often 

called the centering distribution or baseline measure. It is a distribution that approximates the 

true nonparametric shape of G. The scalar M controls the variance of the distribution and is 

called the precision parameter. It reflects our prior beliefs about how similar the nonparametric 

distribution G is to the base measure H.  

 As Ferguson (1973) established, realizations of G are discrete distributions and thus G is 

not directly used to model data. Escobar (1994) and MacEachern (1994) defined continuous 

nonparametric distributions by specifying the DP as prior in a hierarchical framework; the 

resulting model is referred to as a mixture of Dirichlet Process (MDP). It arises as follows. 

Suppose a random vector 
i

y  has a parametric distribution indexed by a vector 
i

β  which in turn 

has a prior distribution with known hyperparameters 
0

ψ . We have  

Stage 1: )(~]|[
iii

fy ββ , 

Stage 2: )(~]|[
00

ψψβ f
i

, 

where f(.) is a generic label for a multivariate probability distribution function. The MDP 

replaces the parametric prior assumption at the second stage with a general distribution G which 

in turn has a Dirichlet process prior, leading to the following hierarchical model 
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Stage 1: )(~]|[
iii

fy ββ , 

               Stage 2: G
dii

i

..

~β , 

               Stage 3: ),(~ HMDPG . 

 The above specification is a semiparametric specification because a fully parametric 

distribution is given in the first stage and a nonparametric distribution is given in the second and 

third stages.  

 Two representations of the Dirichlet process are frequently used in the literature. One 

representation widely used for practical sampling purpose is the Polya urn representation 

(Blackwell and MacQueen, 1973). If we assume that G
dii

n

..

1
~,, ββ K  and ),(~ HMDPG , then 

Blackwell and MacQueen established that  

H
nM

M

nM
G

n

r

nn r 11

1
),,|(

1

1

11
−+

+
−+

= ∑
−

=
− βδβββ K .                                   (3) 

 Using this representation, 
n

ββ ,,
1
K  are sampled as follows. 

1
β  is drawn from the baseline 

distribution H. The draw of 
2

β  is equal to 
1

β  with probability 
1

1
1

+
=

M
p  and is from the baseline 

distribution with probability 10 1 pp −= . The process continues until 
n

β  is sampled.  

 Three facts are worth noting about the Polya urn representation. First, the s'β  are drawn 

from a mixture of the baseline distribution and a discrete distribution. Second, if ββ =r  for all 

r, then β is drawn from the centering distribution with probability one, and therefore the base 

distribution is the prior. Finally, 0),(Pr >≠= srob sr ββ , resulting in the clustering property of 

the Dirichlet process (MacEachern, 1994). The n s'β  are grouped into k sets, nk ≤<0 , with all 

observations in a group sharing the same value of β , and observations in different groups have 

different values of β .  
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 Another representation is the stick-breaking prior representation (Sethuraman 1994; 

Ishwaran and James, 2001) and is given by  

∑
∞

=

=
1r

r r
pG θδ ,                                                                        (4) 

where rδ  is the Diriac measure which places measure 1 on the point t , K,,
21

θθ are i.i.d. 

realizations of H, and )1( lrlrr VVp −∏= <  where rV  are i.i.d. Beta(1, M). Then rθ  are referred 

to as locations  rV  as masses and rp  as the respective weights. 

 By the definition of the stick-breaking representation, the weights )1( lrlrr VVp −∏= <  

tend to be large for small r (recall that the masses rV  are Beta (1, M) random variables so if r is 

large, many of the )1( lV−  will be multiplied by the weight rp , thus making its value small 

 

2.2. Introducing dependence in the Dirichlet Process 

In many settings, one might be interested in allowing the unknown distribution G as defined 

above to depend on some covariate W, which could be time, space, or other known covariates. 

Several papers in the recent literature have extended the Dirichlet process to accommodate this 

dependence and are all based on the Sethuraman (1994) representation of the DP.  

 MacEachern (1999, 2000) introduced a dependent Dirichlet process (DDP) by replacing 

either the masses, rV , or the locations, rθ , of the stick-breaking representation by stochastic 

processes. MacEachern et al. (2001) focused on a model where only the locations are stochastic 

processes. Their model is referred to as “single p” model and has been applied to spatial 

modeling by Gelfand et al. (2004) and Duan et al. (2007), ANOVA-like models for densities by 

De Ioro et al. (2004), and quantile regression by Kottas and Krnjajic (2005).  
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 Griffin and Steel (2006) suggested the order-based dependent Dirichlet process ( DDPπ ) 

that captures nonlinear relationships between the unknown distribution G and covariate W. 

Dependence is introduced by making the masses, rV , and the locations, rθ , of the stick-breaking 

representation (4) depending on the covariate W. Specifically, the elements of the vectors V  and 

θ  are ranked via an ordering )(Wπ . At each covariate W, we still have the stick-breaking 

representation (4) (marginally GW is a DP) but the order in which the masses are combined 

varies over the covariate domain:  

∑
∞

=

=
1

)()(
r

Wr

d

W
r

WpG
πθδ ,                                                                  (5) 

where kδ  denotes the Dirac measure at k, )1()( )()( W

rl

Wr lr
VVWp ππ ∏

<

−=  with H
iid

k
~θ , 

),1(~ MtaBeV
iid

k , and ∑
∞

=

=
1

.1)(
k

k saWp .  

Here )(Wπ  defines an ordering at the covariate value W  and satisfies the following 

condition  

L<−<−<− ||||||
)(3)(2)(1 WWW

zWzWzW πππ , 

where z is the realization of a Poisson process with intensity λ . In other words, the ordering 

)(Wπ  lists the rz  in increasing order of absolute distance from W so that the most relevant rz  at 

W are those close to W. An index r that appears “late” in the ordering )(Wπ  (i.e., for which l  

such that rWl =)(π , is high) would have many terms )1( )(' Wl
Vπ−  multiplied into its weight rp . 

An infinite number of rz  appears over the infinite real line but only the rz  close to the observed 

covariate value would have significant weight. For practical computation, truncation of the point 

process similar to truncation of the stick-breaking representation is defined. 
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 We now turn to the description of how the DP at two distinct covariate values are 

correlated. As mentioned previously, the marginal distribution of the DDPπ  at any covariate 

value follows a DP: ).,(~ HMDPGW  Correlation of two distributions 
1W

G  and 
2W

G  depends on 

the order in which the masses rV  are combined at the covariate values 
1

W  and 
2

W . The intensity 

parameter λ  controls how quickly the indexes r change. A large value of λ  yields more densely 

packed indexes, causing the ordering )(Wπ  to change more quickly from one covariate to 

another, and consequently the 
W

G  will be less correlated. The value of M controls the expected 

number of indexes with significant masses. A large value of M makes more leading terms in the 

stick-breaking relevant and thus implies more indexes need to change place in the ordering 

before the distributions decorrelate. Thus the intensity parameter λ  and the precision parameter 

M control the correlation between the distributions 
1W

G  and
2W

G . Griffin and Steel defined the 

explicit expression of the correlation between the distributions 
1W

G  and 
2W

G  as: 









+

−−









+

−
+=

1

)|2
exp

2

||2
1),( 2121

21 M

WW

M

WW
GGCorr

WW

λλ
,                                           (6) 

where ||
21

WW −  denotes the distance between 
1

W  and 
2

W . 

 Like the Dirichlet process, the DDPπ  produces discrete realizations. To obtain 

continuous distributions, the DDPπ  is imbedded in the hierarchical model as follows:  

Stage 1: )(~]|[
iii

fy ββ , 

                Stage 2: 
Wi

G~β , 

                 Stage 3: ),,(~ λπ HMDDPGW , 

where H is the baseline distribution, M is the precision parameter, and λ  is the intensity of the 

Poisson point process that induces the orderings. 
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 In the following two sections, we apply the DDPπ  model to discrete choice models. The 

advantage of the DDPπ over the “single p” DDP is that it allows dependence to be introduced 

on both the weights and the atoms. We derive the full conditional distributions and the MCMC 

sampler for fitting the models. Section 3 presents the case where the discrete choice model is 

estimated with individual level data. In section 4 we extend the model in 3 to account for 

endogeneity and allow estimation with aggregate data.  

 

3. Dependent Dirichlet Process priors in discrete choice models with individual level data 

3.1. The model 

Assume we have n  individuals, each making purchase decisions over T periods, and we observe 

the choices made by all consumers. In each period, each individual chooses one alternative from 

a set of J alternatives. Define the following notations:  

jy it =  denotes the event that individual i chooses alternative j at time t, 

ijt
x  denotes a p-dimensional vector of observed characteristics (price, brand indicator variable, 

and other product characteristics) of alternative j for individual i in period t, 

i
β  denotes the p-dimensional vector of parameters for individual I, 

ijt
ε  represents random variation in consumer choice behavior. 

The utility individual i derives from choosing alternative j at time t is parameterized as 

ijtijtijt
u ε+=

i

'
βx .                                                                      (7) 

 Assuming 
ijt

ε  has an Extreme value (0, 1) distribution, the probability that individual i 

chooses alternative j in period t is given by  

∑ =

===
J

k ikt

ijt

itijt jypp

1 i

'

i

'

)βexp(x

)βxexp(
)( , ni ,,1 K= , Jj ,,1 K= , Tt ,,1 K= .                       (8) 
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Alternatively, 
ijt

ε  can be assumed to be drawn from a normal distribution, giving rise to the 

multinomial probit model. However, the model with logit disturbance has the advantage of 

yielding close form choice probabilities as in (8) and is easier to implement than the probit 

model. Moreover, the probit model may not accommodate a large number of products 

(Chintagunta, 2001). These reasons explain why the logit model is widely used.  

 The likelihood of individual i’s choices over time is then given by  

∏∏
= =

=
T

t

J

j

D

ijtii
ijtpDp

1 1

)|( β ,                                                              (9) 

where 1=
ijt

D  if jy it =  and 0 otherwise, and '

iTi )y,,(y Kity= . 

 Our model in (7) assumes the 
i
β s are heterogeneous across individuals. We want to 

model the 
i
β  using a nonparametric distribution while at the same time allowing this distribution 

to depend on individual characteristics. To accomplish this, we use the mixture of order-based 

dependent Dirichlet Process model described above. The resulting model can be written in 

hierarchical form as: 

∏∏
= =

==
T

t

J

j

D

iitii

ijtjypyp
1 1

)|()|( ββ , 

         
W

G~
i

β , 

         ),,(~ λπ HMDDPGW . 

 There are two properties of the order-based dependent Dirichlet process 
W

G  which give 

insight into heterogeneity in our model. First, like the Dirichlet process introduced by Ferguson 

(1973), 
W

G  creates clusters of observations in the data. Because there is a positive probability of 

individuals to share regression parameters, there will be nL ≤  distinct values of the regression 

parameters
n

ββ K,
1

. Second, because 
W

G  varies with subject characteristics, the distribution of 
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individuals across the L clusters depends on subjects characteristics, and this relationship is not 

restricted to be linear. 

 

3.2. Prior distributions for M, H, and λ  

 Following Griffin and Steel (2004, 2006), we specify the prior distribution for M as an 

inverted Beta distribution  

η

ηη

η

η
2

0

1

2

0

)()(

)2(
)(

nM

Mn
Mp

+Γ

Γ
=

−

,  

where the hyperparameter 0
0

>n , the prior median of M and the prior variance of M (which 

exists if 2>η ) is a decreasing function of η .  

 Other prior distributions for M have been suggested in the literature; Escobar and West 

(1995) suggested a gamma distribution whose parameters are elicited by considering the 

distribution of the number of distinct elements in the first n draws from the Dirichlet process. 

Walker and Mallick (1997) used the formula )(/)( 2 µω VarEM = , where µ  and 2ω  are the mean 

and variance of the unknown distribution. In their inverted Beta distribution, Griffin and Steel 

interpreted M as a “prior sample size”, because of the form of the Dirichlet process prior 

predictive distribution derived by Blackwell and MacQueen (1973).  

 The prior distribution for λ  depends on the precision parameter M, the autocorrelation 

function, and type of construction used to induce the ordering to vary with the covariate W. 

Using the permutation construction and assuming a one-dimensional covariate, the distribution 

of λ  is 









+
−

++

+
= λ

λ
λ

1

2
exp

)2)(1(

)12(2
)(

***

M

t

MM

tt
p , 
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where *
t  is a parameter to be tuned. It is worth mentioning that for more than one covariate, the 

prior on λ  has no closed form (see Griffin and Steel, 2006) and can only be approximated 

numerically. 

 For the centering distribution H, we specify a p-variate normal distribution with unknown 

mean vector 
H

µ  and unknown covariance matrix 
H

Σ , 

),(,|
HHHH

MVNH Σ=Σ µµ . 

 

3.3. Bayesian estimation 

To complete the model specification, we assume the following prior distributions for the mean 

vector and covariance matrix of the baseline distribution H: 

),(~
00

VN
pH

µµ , and 

),(~
00 HHpH

SIW υΣ , 

where ),(
00

VN
p

µ  denotes a p-dimensional Normal distribution with mean vector 
0

µ  and 

covariance matrix 
0

V , and ),(
00 ΣΣ

SIW
p

υ  denotes a p-dimensional inverted Wishart distribution 

with parameters 
0H

υ , and 
0H

S ; 
0

µ ,
0

V , 
0H

υ , and 
0H

S  are known. 

 In addition to the parameters }{ iβ , M, λ , HΣ , and Hµ , the point process z needs to be 

sampled. The joint posterior distribution of all model parameters is  

),,(),|()|(),,|(

)|(),|,,,,},({

5432

1

1

1 1 1

HHW

n

i

Wi

n

i

T
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zMMMHG

GpXYzMf ijt

µπλπλπλπ

βπµλβ

Σ×





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


×









∝Σ ∏∏∏∏

== = =
                    (10) 

where 
ijt

p  is given in (8), 
1

π  is the distribution of the regression parameters, 
2

π  is the Dirichlet 

process prior on this distribution, 
3

π  is the distribution of the precision parameter that depends 

on the intensity parameter λ , 
4

π  is the distribution of the intensity parameter that depends on the 
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point process z and the precision parameter M, and 
5

π  is the prior distribution on the parameters 

of the baseline distribution. 

 Define the n-dimensional vector C such that 
iCi θβ = . The model parameters are 

estimated via a Markov Chain Monte Carlo algorithm that generates draws from the following 

sequence and conditional distributions: 

(1) Update C, 

(2) Update θ , 

(3) Update z, 

(4) Update M, 

(5) Update λ , 

(6) Update µ  and Σ . 

We discuss each of these conditional distributions in turn but before that we define some 

notations. Suppose },..,1{ nI =  is the set of all the n individuals; for a subset B of I, )(Bnl  

represents the number of individuals i in B for which lCi =  and 

})( ,)(for which  lk exists theresuch that  {#)( jk iiil CWwherelWBiBQ ==<∈= ππ . That is, )(BQl
 is the 

number of observations for which l appears before iC  in the ordering at iW . 

Next we follow the following steps: 

 

(1) Generation of  C 

Propose C according to the following discrete distribution 

,
1)()(

1)(

1)()(
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where lWlm =)()(π . 

The above expression assumes that clusters are numbered in the order they appear; this implies 

that for an individual to be allocated to cluster l , it must be true that she is not allocated to clusters 

appearing before l . Clearly, 
1)()(

1)(

+++

+

−−

−

ilil

il

InIQM

In
 is the probability that the individual i is allocated 

to cluster l  given that she can only be allocated to clusters l , l +1, … L, whereas 

1)()(

1)(

)()(

)(

+++

++

−−

−

iWiW

iW

InIQM

IQM

jj

j

ππ

π  is the probability that the same individual is not allocated to cluster 

)(Wjπ . 

 

(2) Generation of θ . 

Propose θ  form the distribution  

∏
=

×∝
}:{

,.)|()(),,|(
lCi

lill

i

DprobdHWDCp θθθθ .  

A slice sampler (Neal, 2003) can be used to sample from this distribution. 

Given the draws of C and θ , the n-dimensional vector of individual specific parameters 

β  are given by 
iCi θβ = . 

 

(3) Generation of z . 

To update the point process z , we use the “move a current point” update in Griffin and Steel. 

Assume that the current relevant elements of the Poisson process are ),,( 1 Lzzz L= .The “move a 

current point update” consists of choosing at random a point 
u

z  and adding to it a random 



17 
 

variable with zero mean and a tuning variance. The obtained moved '

u
z is rejected if it falls 

outside the truncation region or is accepted with probability 









+++

+++
∏

=

L

u uu

uu

MIQIn

MIQIn

1

'

)('1)(

)(1)(
,1min . 

 

(4) Generation of λ . 

The conditional distribution for the intensity parameter ( λ ) depends on the point process z. 

Sampling λ  proceeds as follows for a one-dimensional W: 

• For each point of the Poisson process 
u

z , attach a mark 
u

m  which is uniformly distributed 

on (0, 1); 

• Draw a proposed value ),(log~log 2'

λσλλ N ; if λλ <'  the points in the data region for which 

λλ /'>
u

m  are removed from the point process, otherwise '' / λλ
uu

mm = ; if λλ >' , a new 

point process with intensity λλ −'  is drawn in the data region.  

 

(5) Generation of M. 

Recall that the mass parameter (M) and the ordering process )(Wπ  determine the dependence 

across the covariate domain, and the number of points in the truncated domain depends on M. To 

update the value of M, we draw a new point M’ such that ),(log~log 2'

M
MNM σ , where 2

M
σ  is 

chosen to control the overall acceptance rate.  

 If MM >' , the truncated region is expanded and the unobserved part of the Poisson 

process is sampled; 

 If MM <' , the truncated region is contracted and points that fall outside the region are 

removed. If these points have any observations allocated to them, the new point is rejected.  
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 Griffin and Steel define the above move as a reversible jump move where extra points are 

sampled from the prior distribution. The acceptance rate given by 

∏
= +++

+++U

u uu

uu

MQn

MQn

Mp

Mp

M

M

1

'

'''

1

)1

)|(

)|(

λ

λ
. 

 

(6) Generation of µ , and Σ . 

The full conditional distributions for 
H

µ  and 
H

Σ  reduce to  

( )*** ,~,| VN PHH µβµ Σ  and ( )( )( )∑ =
−−++Σ

L

k HkHkHHHH SLIW
1

'*** ,~,| µβµβυµβ , 

where )(
1

*1

0

1

0

** ∑ =

−− Σ+=
L

l
lH

VV βµµ  and 111

0

* )( −−− Σ+=
H

LVV ; 

H
µ  and 

H
Σ  are sampled using direct Gibbs sampling. 

 

Computing marginal effects (elasticities) 

Recall that probability for consumer i choosing brand j at time t is  

∑ =

===
J

k
ikt

ijt

itijt
jypp

1
i

'

i

'

)βexp(x

)βxexp(
)( . 

 Assuming consumers do not make multiple purchases, the market share of brand j at time 

t is 
n

s

s i

ijt

jt

∑
= . 

Elasticities (percent change in the probability of choosing an alternative for a given 

change in one of the observed product characteristics xijt,r, holding the other product 

characteristics constant) are calculated as follows:  
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where 
ri,β  and xijt,r are the lth component of 

iβ  and xijt, respectively. 

 

4. Dependent Dirichlet Process priors in discrete choice models with aggregate data and/or 

endogeneity 

Very frequently in Marketing and Economics, the utility model in (7) includes an unobserved 

demand shock 
jt

ξ  for each brand j and time t, which is assumed to be correlated with prices, thus 

creating an endogeneity problem. Also discrete choice models are estimated with aggregate 

(store, chain, or market level) data in some product categories because individual level data are 

not available. In this subsection we extend the model of section 3 to account for price 

endogeneity and allow estimation with aggregate data.  

 

4.1. The model 

 Assume we observe aggregate market shares, prices, and product characteristics of J 

brands across T periods of time. We assume the observed market shares are generated by N 

individuals, each making choice decisions over T periods. The utility that each individual derives 

from choosing brand j in period t is defines as  

ijtjtjtijtijt
pu εξα ++−=

i

'
βx                                                        (11) 

where 
jt

x  and 
jt

p  are respectively observed product characteristics and price of brand j at time t; 

they are the same for all consumers; 
i

β  and 
i

α  represent consumer-specific tastes for product 
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characteristics. Further jtξ  represents the effects of variables other than price and observed 

product characteristics contained in 
jt

x  that are not included in the model and that could affect 

the probability of choosing brand j. It is assumed to be observed by the consumers and the 

manufacturers, but not by the econometrician. Here 
ijt

ε  represents random variation in consumer 

choice behavior and is assumed to have an extreme value (0, 1) distribution.  

 The objective is to estimate the parameters 
i

β  and 
i

α  form the observed aggregate market 

shares, prices and product characteristics.  

 Denoting ),(Θ
i ii

αβ= , ),,(
1t Jtt

ξξξ K= , the probability that individual i chooses alternative 

j in period t is given by  

∑ =
+−

+−
=Θ==

J

k
ktktikt

jtjtijt

ittitijt

P

P
Pjyobp

1
i

'

i

'

)βexp(x

)βxexp(
),,|(Pr

ξα

ξα
ξ , ni ,,1 K= , Jj ,,1 K= , Tt ,,1 K= .          (12) 

 As previously defined, let 
ijt

D  takes a value of 1 if consumer i chooses brand j in period t, 

and a value of 0 otherwise. We do not observe the individual choices
ijt

D , but only aggregate 

share 
jt

S  for each brand in period t. We want to augment observed aggregate shares 
jt

S  with the 

latent individual choices 
ijt

D  so that at the aggregate level, the sum of latent individual choices 

are consistent with the observed shares at each time period (i.e., 
jt

n

i

ijt
SnD =∑

=1

), and at the 

individual level, augmented choices are consistent with utility functions across time periods. 

 For each consumer i, the likelihood of observing choices at purchase occasion 1,…,T is 

.),,|(Pr),,|(
1 1

∏∏
= =

Θ==Θ=
T

t

J

j

D

ittitiii

ijtPjyobPDprobp ξξ                         (13) 

 Thus the likelihood for observing choice sequences of all the n  consumers, n

iii
D

=
}{ , is then 

given by 
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where the indicator function ensures that the augmented individual choices 
ijt

D  are exactly 

consistent with the aggregate market shares.  

 There is a potential for correlation between prices and unobserved product characteristics 

jtξ  because manufacturers observe the jtξ ’s and demand for brand j depends on jtξ ; this makes 

prices endogenous. We account for endogeneity by using instrumental variables techniques 

(Villas-Boas and Winer, 1989). We assume  

jtjtjt
P οϕχ += , ),0(~ οο ΣMVN

t
 and 













ΣΣ

ΣΣ
=Σ=

οοξ

ξοξ
οξ ),cov(

tt
, 

where 
jt

χ  represents a vector of instrumental variables.  

 As before, we want to model the 
i

Θ  using a nonparametric distribution while at the same 

time allowing this distribution to depend on consumer characteristics. To accomplish this, we use 

the order-based dependent Dirichlet Process model. The hierarchical form of the model is given 

by  

∏
=

Θ==Θ
L

j

D

ijtjtitttiit

ijtPjyobPDob
1

),,|(Pr),,|(Pr ξξ , 
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NP ϕχϕξ , 
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, 
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0
IN ϕσϕ , 

W
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i
Θ , 

),(~ λπ HMDDPG
W

. 
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4.2. Identification  

Since only aggregate data are available, it is important to discuss how the model parameters are 

identified by the aggregate data. Identification comes from examining the time patterns of the 

observed aggregate brand shares. The goal of the model is to estimate the distribution of 

consumer individual-specific parameters
i

Θ , the covariance between the demand shocks and the 

prices, Σ , and the price equation parameter ϕ . By assuming that each 
i

Θ  is drawn from a 

distribution that does not have a parametric form but has the order-based dependent Dirichlet 

process prior, ),,( λπ HMDDP , with precision parameter M, intensity parameter λ , and 

baseline distribution H assumed to be normally distributed with mean 
H

µ  and covariance 
H

Σ , the 

goal reduces to the estimation of M, 
H

µ , 
H

Σ , λ , Σ , and ϕ  from the aggregate brand shares. If 

each of these parameters induces different behavior of the aggregate brand shares through time, 

then the model is identified1. We discuss each parameter in turn.  

 Recall that the parameters M and λ  control the correlation of the order-based dependent 

Dirichlet process at different values of the covariates. Larger values of M and λ  cause the 

marginal Dirichlet processes to decorrelate faster, thus increasing the number of distinct clusters, 

with consumers having similar covariates sharing the same cluster. More distinct clusters mean 

there is heterogeneity in consumers’ preferences for product characteristics (price, brand 

indicators, other product characteristics). For example one cluster may include consumers that 

have high income, are loyal to a given brand and are less price-sensitive, while another cluster is 

made up of low income, highly price-sensitive consumers. If many consumers are loyal to a 

given brand, changing the price of that brand would not decrease its market share overtime. On 

                                                           
1 In addition to not being restricted to a parametric family, the Dirichlet process has another advantage over a finite 
mixture model (e.g., finite mixture of normals); as a random mixing distribution, it is more parsimonious than a 
finite mixture model which involves a large number of parameters which may not be identifiable with aggregate 
data. 
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the other hand if few consumers are loyal to that brand, its markets share would tend to decline 

with a price increase. There is also a situation where the negative effect of price due to price-

sensitivity of some consumers compensates the positive effect due to the behavior of other 

consumers, thus leaving a less noticeable variation of market shares over time. 

 The price equation parameter ϕ , the off-diagonal blocks and the lower diagonal block of 

the covariance matrix Σ  are identified by the exogenous variations of the instrumental variables 

over time.  

 The upper diagonal block of Σ , ξΣ , represents the covariance matrix of the unobserved 

demand shocks 
jt

ξ . Since these demand shocks capture the effect of unobserved demand factors 

on aggregate demand, a higher value of any of its diagonal element would indicate high volatility 

of the market share of the corresponding brand. An off-diagonal elements )',( jjξΣ  measures the 

similarity of the utilities of brands j and j’ over time with respect to demand shocks. Therefore, a 

high value of )',( jjξΣ  implies an identical effect of a demand shock on the shares of brand j 

and j’, but a different effect on the shares of the remaining brands, thus leading to different 

market shares patterns over time. 

 

4.3. Bayesian estimation 

 Lacking observed information on individual choices 
ijt

D , a data augmentation approach 

(Tanner and Wong, 1987; Albert and Chib, 1993; Chen and Yang, 2004, Musalem et al., 2005) 

will be used. Instead of integrating out individual choices (
ijt

D ) and individual level response 

parameters ),(Θ
i ii

αβ= as in the non-likelihood based approach (Berry, Levinsohn and Pakes 
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(1995)), we treat them as any other unobserved model parameters and use them as conditioning 

arguments in generating the draws. 

 The prior distribution for 
H

µ , 
H

Σ , and Σ  are assumed to be  

),(~
00

VN
H

µµ , 

),(~
00 HHH

SIW
ΣΣ

Σ υ , and 

),(~
00 ΣΣ

Σ SIW υ . 

 In the above specifications, 2

0ϕσ , 
0

µ ,
0
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,
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S
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υ , 
0Σ

υ , and 
0Σ

S  are known. 

 The joint posterior distribution of all model parameters is  
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where 
ijt

p  is defined in (12), and S , P , X , χ , and W are matrices of observed market shares, 

prices, product characteristics, instrumental variables, and consumer characteristics. 

 The model parameters are estimated via a Markov chain Monte Carlo algorithm that 

generates draws from the following sequence and conditional distributions: 

(1) Sample 
t

ξ , Tt ,...,1= , 

(2) Sample 
t

D , Tt ,...,1= , 

(3) Sample C, 

(4) Sample θ , 

(5) Sample z, 

(6) Sample M, 

(7) Sample λ , 
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(8) Sample Hµ  and HΣ , 

(9) Sample Σandϕ . 

Steps (3)-(8) are the same as in section 3; therefore us we only discuss steps (1), (2) and (9). 

 

Generation of ξ . 

The full conditional distribution for 
t

ξ  is given by  
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t
ξ  is sampled using a random walk Metropolis-Hastings sampling. 

 

Generation of 
t

D . 

 We sample individual choices using a multiple-block Metropolis-Hastings algorithm. 

Because of the large number of consumers, convergence can be very slow if the single block 

algorithm is used. We randomly partitioned the set of consumers into b blocks 
btt

DD K,
1

, each of 

size m. Each block is sequentially updated using the following algorithm: 

• Specify an initial value ),( )0()0()0(

btitt
DDD K= , 

• Repeat for bk ,,1 K= . 

(i) Propose a value for the kth  block, new

kt
D , conditioned on the current value of the other 

blocks 
kt

D
−

 from the discrete distribution 
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where 
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 is the total number of combinations of 
kijt

D  that 

satisfy the constraint 
jt

m

i

kijt
D Ο=∑

=1

 for all j; 
kjtjtkjt

OOO
−

−= , where 
jt

O  is the integer approximation 

of 
jt

nS  and 
kjt

O
−

 is the number of consumers in the other blocks that have chosen brand j in 

period t.  

 

 To generate a candidate draw new

kt
D  from 

k
q , first randomly assign 

tk 0
Ο  consumers to the 

no purchase alternative, then 
tk1

Ο  consumers among the remaining 
tk

m
0

Ο−  to brand choice 1, 

and so on until all consumers are allocated. 

(ii) Calculate the probability of the move  
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Generation of Σandϕ . 

The full conditional distributions for Σ  and ϕ  reduce to  
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where )(1' fPA −∆Ψ= −χ , 11'1 )( −−− ∆+Λ=Ψ χχ , ξξξο

1−
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, and I2
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Then Σ  and ϕ  are sampled using direct Gibbs sampling. 
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Computing marginal effects (elasticities) 

Price and advertising elasticities for each chain-period are computed as follows:  

The conditional probability for consumer i choosing brand j at time t is 
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 Assuming consumers do not make multiple purchases, the market share of brand j at time 

t is ∫∑= jtjt
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. 

Price elasticities are calculated as follows:  
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5. Empirical applications 

5.1. Discrete choice models with individual level data 

The model with individual data is estimated with an A.C. Nielson supermarket scanner dataset 

for peanut butter in the city of Sioux Falls, South Dakota. The objective is to assess the 

distribution of consumer preferences and investigate how these preferences vary with income 

(here our covariate W is the income).  

The data was obtained from the publicly available ERIM database at the University of 

Chicago Graduate School of Business. We observe consumers and their choices. The number of 
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household is 326 and the total number of purchase is 9158. There are J=4 brands of peanut 

butter. The product characteristics include a dummy variable for featured advertising, net price, 

and three dummy variables for brands 1, 2 and 3. Table 1 summarizes these variables.  

 

TABLE 1 ABOUT HERE 

 

 The following values are chosen for the priors: 1002

0
=ϕσ , 0

0
=µ , ISSV

H
100

000
===

ΣΣ
, and 

2
00

==
ΣΣ

υυ
H

. The MCMC sampler was run for 15 000 iterations, the first 500 being discarded as 

burn-in period. To assess convergence, we use different starting points for the chain and examine 

the trace plots of the model parameters (not shown). 

The nonparametric approach to modeling heterogeneity as described aims at relaxing the 

unimodality assumption in the distribution of the individual-specific parameters, and the linearity 

of the relationship between consumer-specific parameters and consumer characteristics. Figure 1 

plots the posterior density function of the precision parameter M, which, recall, measures the 

suitability of a parametric model for the individual-specific parameters; values close to zero 

suggests the parametric model is inadequate. From figure 1, it appears that most of the values of 

M are close to 0.5, indicating that the normal centering distribution is very inadequate for the 

data.  

 

FIGURE 1 ABOUT HERE 

 

 Figure 2 shows the posterior distributions of price sensitivity, advertising intensity, and 

brand indicators. On the left are displayed the density plot for each parameter, obtained by 
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standard kernel density estimation with window width computed following the recommendation 

of Silverman (1986). On the right, the relationship between preferences and income is plotted 

using the Nadaraya-Watson regression estimation method. The density plots reveal that 

distributions of individual parameters are non-normal. The conditional density plots further show 

that the relationship between individual-specific parameters and income is nonlinear. It is 

common knowledge that high income household are less price sensitive than low income 

households; the conditional density plot for price shows that this is true only for income above 

$65,000.  

 
FIGURE 2 ABOUT HERE 

 
 
5.2. Discrete choice models with aggregate data 

The model with aggregate data is applied to a ready-to-eat breakfast cereal dataset. The data 

were obtained from the Food Marketing Policy Center at the University of Connecticut and is of 

two types: dollar sales and volume sales measured every four weeks at three supermarket chains 

in Baltimore, Boston, and Chicago, and household income distribution in each supermarket 

chains trading areas.  

The period of study is January 8, 1996-December 7, 1997. During this period, cereal 

manufacturers introduced many brands but we focus only on four major brands that were 

introduced between January 1996 and March 1997, so that each brand is observed for a relatively 

long time period. These are: Kellogg’s Honey Crunch Corn Flakes, General Mill French Toast 

Crunch, Kellogg’s Cocoa Frosted Flakes, and Post Cranberry Almond Crunch. In addition to the 

four new brands, the analysis includes 27 established brands. The chain-level share of these 

established brands varies between 35 and 80 percents of the total volume of cereal sold at each 
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supermarket chain and quad period. Moreover, these brands are the leading established brands in 

the 4 cereal segments: all family, taste enhanced wholesome, simple health nutrition, and kids 

cereals. 

 The variables used in the analysis include brand’s market share, price, and observed 

product characteristics (calories, fiber, sugar content), and household income. We do not observe 

consumers and their choices, but only the shares of each cereal brand at each supermarket chain 

in each period, and the distribution of household income in the trading area of each supermarket 

chain.  

 Market shares of the brands under consideration are defined by converting the volume 

sales into servings sold, and dividing by the market size. We assume that each individual has the 

potential to consume one serving of cereal per day; market size is then computed as the product 

of the total number of households in the trading area of a supermarket chain and the average 

household size. The market share of the outside good is defined as the difference between one 

and the sum of the brands under consideration. 

 Prices are obtained by dividing the dollar sales by the volume sales converted into 

number of servings.  

 Product characteristics were obtained from cereal boxes and include fat, sugar, and 

calorie contents.  

The income variable was obtained by assuming that household income in the trading area 

of each supermarket chain has a log normal distribution, whose parameters we estimated from 

the distribution of income. Individual household income is then obtained by drawing a sample of 

400 observations from the log normal distribution for each supermarket chain, thus given a total 

of 1,200 households.  
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 Table 2 contains the list of brands included in the analysis as well as the descriptive 

statistics of price and within-chain market share variables. Within-chain market shares are 

computed by dividing the volume sales of a given brand by the supermarket chain total volume 

sales in a given period. Summary statistics for other variables are given in Table 3. 

 

TABLE 2 ABOUT HERE 

 

TABLE 3 ABOUT HERE 

 

As instruments for prices we use a set of variables that proxy marginal costs and 

exogenous variations in prices over time. Over the period covered by our data, in response to low 

consumption of breakfast cereal, cereal manufacturers slashed cereal prices. To account for these 

events, we included two indicator variables for April and June 1996. As proxies for marginal 

production, packages, and distribution costs, we use brand and supermarket chain indicator 

variables. 

Permutation construction is used to induce the ordering to vary with household income. 

The values 1
0

=n  and 5.0=η  are chosen in the prior of M; the following values are chosen for 

the other priors: 0
0

=µ , ISSV
H

100
000

===
ΣΣ

, and 2
00

==
ΣΣ

υυ
H

. These values are chosen such 

that the prior variances are very large.  

The MCMC sampler was run for 20,000 iterations and the last 10,000 iterations were 

used to obtain parameter estimates. To assess convergence, we use different starting points for 

the chain and examine the trace plots of the model parameters (not shown). 
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We allowed for heterogeneity in price and cereal characteristics (sugar, fiber, and calorie 

contents) coefficients. Figure 3 plots the posterior density function of the precision parameter M, 

which, recall, measures the suitability of a parametric model for the individual specific; values 

close to zero suggests the parametric model is inadequate. From figure 3, it appears that most of 

the values of M are close to 0.1, indicating that the normal centering distribution is very 

inadequate for the data.  

 

FIGURE 3 ABOUT HERE 

 

Figure 4 shows the posterior distribution of the individual specific. For each parameter, 

standard kernel density estimation with window width computed following the recommendation 

of Silverman (1986), and the Nadaraya-Watson regression estimation are displayed. Overall, the 

distributions of consumer preferences are highly non-normal and the relationships between 

preferences and income are nonlinear. The density plots show that the distribution of price 

sensitivities, calorie, fiber, and sugar preferences are bimodal, thus contrasting the results of 

Chidmi and Lopez (2007) and Nevo (2001) who assumed a normal distribution for taste 

parameters. Here, the flexibility of the Dirichlet process that we used to model heterogeneity 

helps capture multimodality in the distribution of taste coefficients. The conditional density plots 

further show that the relationship between tastes parameters and income in nonlinear and high 

income households do not have the same preferences as low income households.  

 

 
FIGURE 4 ABOUT HERE 
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Table 4 displays a sample of estimated own and cross price elasticities. Each entry i , j , 

where i  indexes a row and j  a column, represents the percentage change in the market share of 

brand i  for a 1% change in the price of brand j . The values displayed are the median over the 3 

supermarket chains and 25 quad-periods considered in the analysis. All own-price elasticities and 

most cross-price elasticities are larger than those found by Nevo (2001) and Chidmi and Lopez 

(2007). 

 

6. Conclusion 

In this paper, we have applied a Bayesian semiparametric technique to an important class of 

models, the random coefficients discrete choice demand models. We specified a Dirichlet 

process prior which varies with consumer’s continuous covariates (Griffin and Steel, 2006) for 

the distribution of consumer heterogeneity. We developed an MCMC algorithm, and illustrate 

our methodology to estimate the extent of unobserved heterogeneity in demand for peanut butter 

and ready-to eat breakfast cereal. The empirical results indicate the limitations of the unimodal 

distribution and the linearity of the relationship between consumer preferences and 

demographics that are often assumed in modeling consumer heterogeneity.  
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Table 1: Descriptive statistics 

 Brand 1 Brand 2 Brand 3 Brand 4 

Market share 24.68 29.02 12.03 34.27 
Proportion of observations with feature advertising 6.86 21.15 24.43 10.60 
Average Price ($) 1.72 1.62 1.60 1.38 
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Figure 1  
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Figure 2: Density for the individual-specific parameters 
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Table 2 Price and market share of brands included in the analysis  

Brand Price 
($/serving) 

Within chain  
market share (%) 

 

 Mean S. D. Mean S. D. 

K Frosted Flakes 0.482 0.061 4.03 1.99 
K Corn Flakes 0.3563 0.0590 3.92 1.89 
K Frosted Mini Wheat 0.8164 0.1180 3.47 1.45 
K Raisin Bran 0.8076 0.1276 3.56 1.73 
K Froot Loops 0.5763 0.0955 1.91 1.20 
K Rice Krispies 0.6455 0.0819 2.05 0.99 
K Corn Pop 0.6200 0.0959 1.80 1.09 
K Special K 0.7074 0.0862 2.02 1.12 
K Apple Jacks 0.6094 0.0962 1.26 0.93 
K Crispix 0.6629 0.0941 1.14 0.59 
K Honey Crunch Corn Flakes* 0.4869 0.0816 1.42 0.82 
K Cocoa Frosted Flakes* 0.5147 0.0793 0.90 0.81 
GM Cheerios 0.5700 0.0821 3.97 1.48 
GM Honey Nuts Cheerios 0.5041 0.0555 3.14 1.37 
GM Lucky Charms 0.6268 0.0889 1.86 1.15 
GM Cinnamon Toasted Crunch 0.6241 0.0862 1.48 0.77 
GM Weathies 0.5083 0.0740 1.27 0.76 
GM Kix 0.7296 0.0926 1.33 0.61 
GM Frosted Cheerios 0.5188 0.0727 1.36 1.09 
GM Total 0.7171 0.0783 1.16 0.64 
GM Golden Graham 0.6486 0.0638 0.93 0.62 
GM French Toast Crunch* 0.6232 0.1591 0.73 0.72 
P Grape nuts 0.7513 0.1446 1.82 0.92 
P Raisin Bran 0.7761 0.1208 1.89 1.29 
P Honey Bunch of Oats 0.5133 0.0759 1.65 0.98 
P Fruity Peeple 0.5359 0.0756 1.03 0.62 
P Honey Comb 0.5618 0.0910 0.84 0.60 
Post Shredded Wheat 0.7733 0.1016 1.22 0.71 
P Cranberry Almonds Crunch* 1.1752 0.1621 0.67 0.45 
Q Cap N Crunch 0.4705 0.0847 1.73 1.26 
Q Cap N Crunch Crunch Berrs  0.4576 0.0809 1.24 0.94 
 

Source: Authors computation 
*=New brands 
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Table 3. Sample statistics 

 Mean Std Min Max 

Calories  130.8 32.8 101 220 
Fiber 1.9677 1.9754 0 7.0000 
Sugar 9.4516 5.0022 0 20.0000 
Household Income ($) 53,761 28,117 6,997 216,260 
 

Source: Cereal boxes and samples from the log-normal distributions 



 44 

Figure 3 Posterior density of the precision parameter M 
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Figure 4: Density for the individual-specific parameters 
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Table 4: Median own and cross-price price elasticities 

 Brand 1 Brand 2 Brand 3 Brand 4 Brand 5 Brand 6 Brand 7 Brand 8 Brand 9 Brand 10 

Brand 1 -1.782 0.063 0.070 0.046 0.095 0.030 0.081 0.037 0.062 0.013 

Brand 2 0.066 -1.753 0.049 0.019 0.039 0.115 0.021 0.113 0.016 0.041 

Brand 3 0.116 0.066 -1.776 0.091 0.062 0.024 0.035 0.038 0.037 0.011 

Brand 4 0.122 0.041 0.149 -1.696 0.063 0.018 0.087 0.023 0.080 0.008 

Brand 5 0.177 0.063 0.070 0.046 -1.839 0.030 0.081 0.037 0.062 0.013 

Brand 6 0.072 0.263 0.041 0.018 0.042 -1.755 0.023 0.115 0.017 0.047 

Brand 7 0.170 0.049 0.051 0.081 0.090 0.025 -1.760 0.028 0.108 0.011 

Brand 8 0.073 0.245 0.051 0.019 0.042 0.109 0.022 -1.685 0.017 0.039 

Brand 9 0.168 0.046 0.066 0.100 0.089 0.022 0.149 0.026 -1.704 0.010 

Brand 10 0.072 0.263 0.041 0.018 0.042 0.133 0.023 0.114 0.017 -1.794 

Brand 11 0.056 0.225 0.070 0.021 0.034 0.083 0.019 0.095 0.015 0.032 

Brand 12 0.127 0.108 0.105 0.029 0.070 0.043 0.033 0.062 0.028 0.018 

Brand 13 0.180 0.054 0.068 0.060 0.096 0.026 0.105 0.032 0.079 0.012 

Brand 14 0.152 0.096 0.069 0.028 0.082 0.044 0.049 0.055 0.037 0.018 

Brand 15 0.066 0.195 0.092 0.022 0.039 0.068 0.020 0.092 0.016 0.027 

Brand 16 0.066 0.259 0.049 0.019 0.039 0.115 0.021 0.113 0.016 0.041 

Brand 17 0.178 0.063 0.070 0.046 0.095 0.030 0.082 0.037 0.062 0.013 

Brand 18 0.073 0.178 0.103 0.023 0.043 0.062 0.021 0.088 0.017 0.025 

Brand 19 0.152 0.096 0.069 0.028 0.082 0.044 0.049 0.055 0.037 0.018 

Brand 20 0.085 0.115 0.186 0.043 0.048 0.038 0.023 0.062 0.021 0.016 

Brand 21 0.120 0.044 0.186 0.243 0.063 0.018 0.067 0.025 0.068 0.008 

Brand 22 0.093 0.199 0.057 0.019 0.052 0.089 0.025 0.101 0.019 0.032 

Brand 23 0.178 0.069 0.048 0.037 0.096 0.037 0.102 0.040 0.066 0.016 

Brand 24 0.167 0.077 0.070 0.035 0.090 0.036 0.063 0.045 0.048 0.016 

Brand 25 0.177 0.063 0.070 0.046 0.095 0.030 0.082 0.037 0.062 0.013 

Brand 26 0.178 0.063 0.070 0.046 0.095 0.030 0.082 0.037 0.062 0.013 

Brand 27 0.056 0.182 0.115 0.028 0.034 0.061 0.019 0.080 0.015 0.025 

Brand 28 0.120 0.086 0.058 0.028 0.096 0.042 0.038 0.053 0.035 0.019 

Brand 29 0.136 0.071 0.060 0.034 0.110 0.035 0.051 0.044 0.047 0.016 

Brand 30 0.120 0.037 0.102 0.127 0.077 0.019 0.083 0.022 0.074 0.008 

Brand 31 0.124 0.038 0.052 0.078 0.101 0.022 0.118 0.027 0.089 0.008 

Each entry i , j , where i  indexes a row and j  a column, represent the median over supermarket chains and time of the percent 

change in market share of brand i  with respect to one  percent a change in the price of brand j  The 95% credible intervals are not 

reported. 
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