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‘The Impossibility of Causality Testing

By Roger K. Conway, P. A. V. B. Swamy, John F. Yanagida,
and Peter von zur Muehlen*

Abstract

Causality tests developed by Sims and Granger are fatally flawed for several
reasons Fust, when two vanables, X and Y, are uncorrelated, X has no
Linear predictive value for Y, but X and Y may be nonlinearly related unless
they are statistically independent, in which case X and Y are not related

at all The right-hand side vamnables in a regression equation are exogenous
if they are mean independent of the disturbance term Mean independence
15 stronger than uncorrelatedness The proofs for deriving causality-
exogenity tests imply weaker results than statistical or mean independence
Second, transformations such as the Box-Cox transformation.and Box-
Jenkins stationarity-inducing transformations are not causality preserving
Third, counterexamples constructed by Price have invalidated the Pierce-
Haugh theorem on instantaneous causality Fourth, omission of other
variables influencing those tested renders any test results spurious Finally,
causality tests are inconsistent because they are based on underidentified
models We provide a logically valid method of building models which does
not use causality tests

Keywords

Causahty tests, statistical mdependence, mean independence, uncorrelated-
ness, orthogonality, covanance stationanty, stationarity-inducing trans-
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“Neglect by theorists evokes malpractice by
empiricists "’

Arthur S Goldberger (30)"
Introduction

Numerous recent studies in the agricultural litera-
ture use or proselytize tests of causality originally
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developed by Sims (58) 2 The theoretical basis of
this test 15 reproduced mn Sargent (54, pp 285-87)
(For further discussion, see (52) } In an earher
study, Sargent (53) describes a causality test pro-
cedure, attributable to Granger (26) which 1s dif-
ferent from Sims’ procedure Both:of these tests
employ the following Granger (26) concept of
causality A time series (x,) Granger causes.another
time series (y,) if one can predict present y better
by using past values of x than by not doing so For
example, 1n a given bivariate covariance stationary
stochastic process (y;, x;) possessing a vector auto-
regressive representation, y fails to Granger cause
x 1f and only if the coefficient matrices of the
process are upper triangular (We use the term,
“Granger cause,” to refer to causality in Granger’s
sense ) Thus result holds because the upper tri-
angulanty of coefficient matrices implies that y,

’For example, see (4, 5, 6, 8, 34, 39, 60, 67)




can be expressed as'a distributed lag of current and
past x’s (with no future x’s) with a disturbance
process denoted by u;, and that past y’s do not help
predict x;, given past x’s However, the disturbance
u, 15 uncorrelated with past, present, and future

x’s for only cne value of g 1n the regression

Ay = payy + E? where (ay;, a,¢) s the vector of inno-
vations of the process (y;, x;) If the coefficient
matrices are not triangular, then u 1s not uncor-
.related with past, present, and future x’s for any
value of p Because the value of p 1s usually un-
known, for the disturbance u, m the regression of
¥, on current and past x's to be uncorrelated with
past, present, and future x’s, 1t 1s necessary, but
not sufficient, that y fails to Granger cause x or
that the coefficient matrices of the process (v, x;)
are upper triangular The null hypothesis for
Granger’s causality test 1s that the coefficient
matrices of the process (y,, x,} are upper triangular
This hypothesis can,be equivalent to S1ms’ hy-
pothesis that all the coefficients of future x’s in the
regression of y on past, present, and future x!s

are zerc Thus, Sims and Granger try to test a
necessary condition for Granger noncausahty
These tests were formerly associated predominantly
with research in macroeconomics, which tests mone-
tanist versus Keynesian assumptions about the causal
ordering between money and income They have
recently been used in conjunction with rational
expectations hypothesis testing® Various studies
using the same testing procedures have produced
contradictory evidence on the relationship between
money and income (see (59)) The conflict between
the conclusions of such studies were indeed
heightened when different forms of causahty test-
ing procedures were employed (see (21)) Subse-
quent Monte Carlo tests offered suggestive results
indicating differences in the power of various
causality tests and showing that one could easily
produce conflicting conclusions by employing a
battery of causality tests on the same data sets

(see (25, 38)) However, these empirical and Monte
Carlo results are only symptomatic It 1s now clear
that there are profound problems, both theoretical
and empincal, with causahty tests This iewpoint
15 most emphatically stated by statisticians who
object to the apparent carelessness with which some

3 A key requirement of rational expectations observable
reduced-form equations 1s that all nght-hand side variables
be at least orthogonal to the error term (see (17 I8))

economists equate correlation with causality (see
(37)) The purpose of our article 15, therefore, to
alert the agricultural profession to these problems
and to allow agricultural researchers to better
welgh the'benefits and costs of utilhizing these
tests

With that purpose 1In mind, we establish the follow-
g points

1 The zero correlation between u, and past,
present, and future x’s 1s necessary, but not
sufficient, for x to be strictly econometrically
exogenous with respect to y The proofs of ,
causality and exogeneity advanced by pro-
ponents are based on weaker concepts than
statistical or mean independence

2 There 1s no good discriminant between sta-
tionary and nonstationary processes Sims and
Granger are testing a necessary condifion for
Granger noncausality only withmn the frame-
work of covanance stationary processes

3 The observed time senes 1s necessarly finite,
and the covariance stationary stochastic proc-
esses are mfinite in length Distinguishing
between different stationary processes on
the basis of abserved time series poses funda-
mental difficulty Therefore, the power of
Sims’ or Granger’s test does not go to 1 as the
sample size goes to infinity

4 Even if we know the transformations which
induce stationarity, these transformations are
not causahty preserving Therefore, the causal-
1ty relationships (or the lack thereof) among
the transformed vanables tell us nothing about
the causality relationships (or the lack thereof)
among the ornginal variables

5 Zellner (70) proposed a general definition of
causality attributed to Feigl, according to
whom the concept of causation 1s defined in
terms of predictabihity according to a law
Therefore, we address a fundamental question
in economics Are there laws in economices?
After answering this question, we suggest a
logically valid method of buillding econometric
models which does not use causality tests



In subsequent sections, we define the various
notions of Granger causality and contrast them
with what statisticians call statistical or mean inde-
pendence We discuss problems of forming condi-
tional operations based on linear models We
describe and cntique the characterizations of
Granger causality noted by Pierce and Haugh (41)
We consider the causality tests as Sims proposed
We offer some general remarks on causality testing
Because we refer to laws in a philosophical defi-
nition of causation, we briefly discuss the meaning
of the term *‘law’ 1n economic contexts

Correct Interpretations of Granger’s
Definitions of Causality

Before the causality literature can be carefully
cntiqued, we need to understand exactly what
1s meant by “causality” as posited by its propo-
nents Therefore, we review the various forms
of Granger causality defined by Granger (26)
and extended by Pierce and Haugh (41) A, 1s
assumed fo represent a stationary stochastic vee-
tor process where

A, = the set of past values of A,

it = the set of past and present values
of At’

Ay(k) = theset (A,.,)>k),

E,(AIB) = the optimal predictor of A, given
some set of values of B,,*

e.(AlB) = the prediction error = A, - E,(AlB),

Var(e,) = a2 (AIB);

U, = the set of all nformation in the
universe accumulated since time
t-1, and

U; - Y, = all information in the umverse

apart from Y,

With this information, we can define the vanous
forms of causahity as follows

*By use of a mean square error or quadratic loss criterion

1 Causality If 62(XIU) <¢? (XIU - Y), then
we say Y 15 Granger causing X, denoted by
Y. =X;

2 Feedback There is feedback between X and
Y, denoted by X, < Y, f Yy = X, and:f X, = Y,

3 Instantaneous causality_Instantaneous causahity
occurs when o? (XIT, Y) <¢? (XIU)

4 Causality lag If Y, = X,, we then define the
causality lag m as the lowest integer value of k
so that the ¢¢ (XIU- Y(k)) < 0*(XIU- Y(k+1))

We now show that these definitions cannot be
used to discover causality relationships without
their posing some serious problems Specifically,
Granger’s definitions require unequal and fimite
mean square errors i the senies being compared
These conditions may not be satisfied 1n practice
as may be clarified if one considers two simple
polar cases Deterministic vanables or components
can be predicted perfectly by their own past his-
tory with zero mean square error (see (2, p 420)},
hence, the mean square errors of the predictions
of deterministic components do not satisfy the
strict inequahities stated in Granger’s definitions
This limitation, however, does not mean that
there are no causahty relationships among deter-
mintstic components At the other extreme, when
the mean square errors of the predictions of sto-
chastic vanables are infinite (a frequent occurrence
in practice), Granger’s defimtions stated 1n terms
of the strict inequalities between finite mean square
errors of predictions do not apply The fundamen-
tal problems associated with Granger’s defimtions
will be clearer once we discuss the statistician’s
definitions and interpretations of statistical inde-
pendence, mean independence, uncorrelatedness,
and orthogonahty *

The variable Y 15 said to be statistically independent
of the vanable X 1f the conditional distnbution of

5 Related to this discussion are three recent papers by
Chamberlan (15), Florens and Mouchart (22), and Engle,
Hendry, and Richard UQ) also expressing certain limitations
of Granger's and Sims' defimtions of causality We extend
their work by exphcitly contrasting vanous notions of
Granger causality with the statistician’s concept of statis-
tical independence or mean independence




Y, given X = x, 1s the same as the marginal distni-
bution of Y, that 15, F(yIx) = F(y), in which case

F(y.x) = F(y) F(x) (1)

where F(y,x) 1s the joint distribution of Y and X,
and F(x) and F(y) are the marginal distnbutions
of X and Y, respectively Then the conditional
distribution of X, given Y = y, denoted by F(xly),
15 equal to P(x), that 15, X 1s independent of Y
These two vanables, Y and X, are said to be inde-
pendent if equation (1) holds, including the case
where F(y) or F(x) 1s zero It 1s dafficult to estabhsh
the existence of F(ylx) or F(xly) in the general
case The conditional probability of a set A eB

(a Borel field of sets), given X = x, can be exhibited
as a conditicnal expectation if one chooses the
random vanable Y as the indicator function of

the set A Thus, P(Alx) = E(YIx), as may be verified
from the defimition of conditional probability as
given by Rao (48, p 90), for example One should
note that the Radon-Nikodym theorem establishes
the existence of P(Alx) almost everywhere with
respect to [dF(x)] as a function of x for fixed A
only where the exceptional x-set may depend on
A As a result, 1t may not be possible to define
P(Alx) for all A over an x-set of probability 1,
unless the unton of exceptional sets 1s of prob-
ability zero Thus, a conditional probabilhity dis-
tribution of Y, given X = x, may not always exist
(see (48, p 98)) ¢ The same 1s true of the condi-
fional probability distnibution of X, given Y =y
Because the existence of F(y|x) does not imply
the existence of F(xly), if F(yIx) = F(y), it need
not be true that F(xly) = F(x) Nonetheless, when
equation (1)1s true, X and Y are said to be inde-
pendent regardless of whether F(yIx) or F(xly)
exists

The intwitive 1dea of the phrase “Y 1s independent
of X’ 15 roughly that a knowledge of X does not
help one to infer the value of Y If Y and X are
statistically independent, then there 1s no causal

SIf the sample space has only a countable number of
ponts, then the conditional probability measure 1s always
defined, provided P{X = x) ¥ 0_Alternatively, 1f the sample
space 1s the n dimensional real Euclidean space, then the
conditional probability measure exists because 1n this case
the union olPexceptlona.l sets 15 of zero probability measure
(48, pp 98-99) Our subsequent discussion further clarifies
this point

relationship between Y and X When F(*) and
F(-, *) are absolutely continuous, the probability
density functions exist and equation (1) can be
expressed as

f(y.x) = f(y)i(x) (2)
where f(*) 15 a density function

As Whittle (68, p 101) points out, we must hive
with the 1dea that we may know E(Y) (or E(X})
only for certain Y (or X), or that, for a given ran-
dom vanable Y (or X), we may know EK(Y) (or
EH(X)} only for certain K (or H) Similarly, for

a given pair of random variables, ¥ and X, we may
be able to assert the validity of the independence
condition

EH(X)K(Y) = EH(X)EK(Y) (3)

where the functions H and K are such that EH(X)

< oo and EK(Y) < o In this case, Y and X have

only partial degrees of independence because
equation (1) implies equation (3), but the converse
1s not true An extreme example of this 1s one

where we can assert the validity of the independence
condition (equation (3)) only when H and K are
hinear functions This essentially means we know
only that

EXY = EXEY (4)

where EX < o and EY <o Two random vanables,
X and Y, are said to be uncorrelated if and only 1f
both have finite second moments and equation (4)
1s true (see (16, p 102)) Consequently, equation
(4) 15 equivalent to

Cov (X,Y)}=0 ()

provided EX? < ¢ and EY? <o Random vanables
that satisfy equation (5) are said to be uncorrelated
In the special case when either EX = 0 or EY =0,
30 that equation (4) becomes EXY = 0, the random
variables are said to be mutually orthogonal
According to Whittle (68, p 102), ““the concept of
lack of correlation or orthogonality 1s important,
because 1t 1s the nearest one can come to the con-
cept of independence if one 15 restricted to a knowl-
edge of second moments [as in the case of covari-
ance stationary processes} ”



Just as independence means that X has no predic-
tive value for Y, lack of correlation means that X
has no predictive value for Y in the hinear least
squares sense (see (68, p 102)) That 1s, suppose
we consider a predictor of Y which 1s linear in X,
Y =a+ X + U, and' we choose @ and {3 so as to
mmimize EU? One can then determine the optimal
value of § by Cov(Y,X)/ Var(X) Thus, if case (5)
1s true, the variable X will receive a zero coeffi-
clent 1n the prediction formula for Y When case
(5) 15 true, X has no ltnear predictive value for Y,
but X may be nonlnearly related unless equation
(1) 1s true, in which case X and Y are not related
at all

A case intermediate between lack of correlation
and 1ndependence 1s that in which equation (3)
holds only for linear K, so that EH(X)Y = EYEH(X)
for any H assuming EH(X) < oo The relation
EH(X)Y = EYEH(X) 1s equivalent to E(YIx) =
EY because EH(X)Y = E(E[H(X)YIX]) =
E[H(X)E(YIX)] for all H so that EH(X)Y <
(see (68, p 102)) 7 Here E(YIx) 1s a function of
X, say G(x), which mimimizes E[Y - G(x)]?, at
least in‘the case where EY? < oo (see (2, pp
417-24)) Following Goldberger (31), we may say
that Y 18 mean independent of X 1f

E(Ylx) = EY (6)

Now equation (6) holds 1f and only if E(YetX) =
EYEe"X for all real t (see (36, p 10))

It 1s 1nstructive to observe that without further
conditions there 1s no connection among the con-
cepts (1), (5), and.(6) If EY exists, it follows
from the Radon-Nikodym theorem that E(Ylx)
exists (see Rao (48, pp 96-97)) In this case, equa-
tion (1} 1mples equation (6), but the converse 1s
not true Simlarly, 1f EX exists, then equation (1)
imphes the condition, E(Xly) = EX, but the con-
verse 1s not true Because the existence of EH(X)
and EK(Y) is already assumed in condition (3),
partial independence condition (3) imphies the
mean independence condition, E(Y|x) = EY or
E(Xly) = EX, but the converse 1s not true It is
obvious that any pair of random vanables, X and
Y, which are fully independent 1n the sense of
equation (1) and which have finite variances are

"One should note that when further ex%ect tion 1s
taken, E(Ylx) = E(Y|X = x) s replaced by E(YiX) (see
(48, p 97))

also uncorrelated, although the converse 1s not
true When X and Y have finite vanances, mean
independence (6) implies uncorrelatedness (5),
but the converse 1s not true (In the normal case,
conditions (1-6) are equivalent )

Our discussion 1s important as, when Granger’s
defimfions of causality are used, some researchers
have confused these statistical concepts For
example, Sargent (52, pp 404-05) says that X in
the following equation

Yt = Zj=0 h_] Xt—_] + Ut (7)

with ¥, _g1h,i< oo, EU, = 0, EUZ = o2 for all ¢,
and EU, U, = 0 for t ¥ s, 1s econometrically exo-
genous with respect to Y 1f and only if EU. X, =0
for all integers s and t This definition runs counter
to some textbook notions of exogeneity For
example, Theil (65, pp 110-11) and Goldberger
(29, pp 380-81) have stated that X in equation (7)
15 econometrically exogenous with respect to Y

if E(U,iX;) = EU, = 0 for all integers s and t This
condition 1s stronger than Sargent’s condition,

as shown by the direction of the smplication
between equations (5) and (6) 8 Furthermore,

in his statement about a stricter form of the
natural rate hypothesis, Sargent (53, p 215) incor-
rectly equates condition (1) with condition (6)

by saymng that the unemployment rate Un obeys
the natural rate hypothesis if, in 1ts univariate
Wold representation (without a purely determimis-
tic component)

[=.=] oo

Uny =2 g a U, Zglagl<eo (8)

where the U’s are senally uncorrelated with mean
zero and finite variance, o, the innovation U,
satisfies the condition

E(U,18,.,)=0 (9)

where 8, 15 a vector of the set of all vanables
observed at time t thought potentially to contribute
to predicting unemployment, so that the innovation
in the unemployment rate 1s statistically indepen-
dent of each component of 8,_; Here some ele-
ments of 8, represent policy instruments Another
difficulty 1s that Sargent’s time series methods

3 The direction of this imphication has been recognized
only recently by Hayashi and Sims (33)



based on non-Gaussian assumptions are only ca-
pable of examining the validity of the uncorrelated-
ness assumption between U, and an element of
f;-, but not the vahidity of the mean independ-
ence assumption (9) between these two variables

Conditional Expectations and
Econometric Modeling

Note that the existence of E(Yix) does not imply
the existence of E(Xly) ¥ Necessary and sufficient
conditions for the existence of the linear popula-
tion regression function, E(YIx) = o +'8x, an&l the
constant conditional vanance, Var (Y!x) = gg,
have been established by Rao (see (36, p 11,
lemma 1 1 3)) Generalized conditions covering
the cases of several independent variables are given
by Kagan, Linnik, and Rao (36), hereafter referred
to as KLR Because these conditions have far-
reaching implications for causality tests, we state
them here

KLR'’s lemma (36) Let ¢(ty, ty, ,tx) be the
chalractefistlc fupctlon of the vector vanable

(Y, Xop, » Xge) = (Y, Xop, 5 Xgy) -

E(Y, Xo, ,Xg;) Then, for the relations
E(Y,lxqy, ,Xg¢)= Zk=21 "k Xkt with x3; =1 and
Var(Yt][xlt, , XKk,) = 0§ = a positive constant
(t=1,2, ,T)tohold, 1t 1s necessary and sufficient
_thatfort=1,2, ,T

Dﬁ¢(t07t2r ¥ tK) lt0=0 =

K
Z " D0, ts, ,tg),
=, K k®(0, ty K)

2 2
DO ¢(t0)t21 rtK)|t0=O =_00¢(03t21 1tK)

K K
z X =T t t 10
Yz, K k Dy Dy 600, %5, ,tg) (10)

where the time subscript t should be distinguished
from the real2arguments of ¢( 'Q, Uk o) =
9¢(*)/ty., Dy $(*)= 8%¢(*)/dty and Dy Dy 6(*) =
37@(*)/0t) Oty

If (Y, Xo9;, , Xg) 15 a multivariate normal, 1t 15
well-known that the conditional expectation and

? Conditions for the existence of these conditional expec-
tations are given in (48, pp 96-97)

conditional varniance of any of these variables, given
the remaining vanables, aie respectively linear 1n
and independent of the conditioning vector (see
(48, p 523))- Although sufficient for the existence
of these conditional expectations and vanances,
multivanate normality 1s by no means necessary,

as KLR's lemma shows

KLR’s lemma provides conditions for the existence
of a linear reduced-form equation (or a linear pop-
ulation regression function) between an endog-
enous variable, Y, and a set of exogenous vanables,
X;, Xk Inhght of KLR’s lemma, Granger’s
definitions of causality and Sargent’s definition

of exogeneity are clearly inadequate The inequali-
ties between predictive variances stated in Granger’s
defimtions and the lack of correlation between

the innovation (of a covanance-stationary, purely
mdeterministic and 1invertible process) and another
vanable (which follows a covanance-stationary,
purely indeterministic and invertible process)
stated 1n Sargent’s definition are not sufficient

for the existence of conditional expectations or
lmmear population regression functions among

the economic vanables

The foregoing discussion provides the background
for criticizing an econometric practice Goldberger
(29, pp 380-88) reviews the reduced-form, recur-
sive-form, and structural-form approaches to specify
the population regression equations of endogenous
variables on exogenous or predetermined variables
As he indicated 1n 1964 (29, pp 386-87),

each structural equation 1s intended to represent
some-aspect of the behavior of an economic unit,
such as an individual, a firm, a sector, or a market
That the structural-form approach 1s a natural one
m economics 1s demonstrated repeatedly 1n the
large body of empirical hiterature in which models
are built up equation by equation and umt by unit
(see (65, pp 468-83)) If the structural model 1s
linear, under certain conditions we can derive an
explicit reduced-form model (see (29, pp 297-98))
Otherwise, we can only assume—incorrectly per-
haps—the existence of an approprnate reduced-form
model (as 1n (24)) Without sufficient a prior:
restrictions, the structural-form parameters will
not be 1dentified in either hnear or nonlinear cases

It 1s vital to realize that, in the linear case, KLR.’s
lemma points to a possible danger inherent 1n using




-

a priort restrictions on the structural parameters
because they may contradict the conditions of
KLR’s lemma and thereby prevent the existence
of (1) the population regression function between
each endogenous variable and a set of exogenous
variables and (2) the constant condifional vanance
of each endogenous vanable, given the exogenous
varlables Thus, because the m’s are functions of
the structural parameters (29, p 298), the identify-
1ng restrictions on the structural parameters may
imply that some of the 7 ’s are restricted so that
the conditions of KLR’s lemma are not true To
better understand this difficulty, let us consider a
simuitaneous equation model which, 1f linear, may
be expressed in the general form

YT+XB=U (11)

where Y 1s a TxL matnx of observations on L
endogenous vanables, " 1s a LxL matrix of coeffi-
cients, X 15 a TxK matrix of observations on K exo-
genous variables, B 1s a KxL matnx of coefficients,
and U 1s a TxL matnx of disturbances The elements
of I' and B are the structural coefficients (see (65,

p 440))

Assuming that I" 15 nonsingular, we can derive the
reduced form as

Y=X[I+V (12)

where [1 =-BI'"! 1s the matnx of reduced-form
coefficents and V = UT'"! 15 the matnx of reduced-
form disturbances Equation (12) exists 1f the joint
characteristic functions of each endogenous vari-
able and all the exogenous variables satisfy the con-
ditions of KLR's lemma In this case, we can inter-
pret XII as the conditional mean of Y, given X

and the covanance matnx of V as the conditional
covanance matrx of Y given X Furthermore, the
covariance matnx of V will be independent of X
The reduced-form matnx of coefficients, I1, will
be 1dentified 1f and only if X has full-column rank
The connection between structural and reduced-
form coefficients can be written as

nr+s=0
or |

wC=0 (13)

where W = (I1, I ) 18 the K x (K+L) matnx of rank
Kand C= (", B')1s the (K+L) x L matrix of
structural coefficients The 1th equation of (13)
may be written as

We, =0 (14)

where ¢, 1s the ith column of C Because thisisa
consistent system of equations, a general solution 1s
[

¢, = (I-W™ W)z, (15)

where W™ 15 a generalized inverse of W and where
z, 15 arbitrary (see (48, p 25))

A priori restrictions may be exclusion restrictions
stating that certain elements of ¢, are zero because
the variables to which they relate do not appear 1n
the 1th equation of the structural form (11), or
they may be hinear homogenous restrictions involv-
ing two or more of the elements of ¢, In any case,
a prior: restrictions on the elements of I and B do
not violate the conditions of KLR's lemma 1f they
are consistent with the class of solutions 1n equa-
tion (15) The vector, ¢, satisfying ¢ priort \dentify-
1ng restrictions, should belong to the null space of
W Otherwise, a prior! restrictions used to dentafy
a structure may invalidate an interpretation of the
right-hand side of each corresponding reduced-
form equation (with the disturbance suppressed)
as the conditional expectation of an endogenous
varlable, given the exogenous variables Nonlinear
structural models, incidentally, share this problem
unless the 1dentifying restrictions imposed on them
are consistent with the following alternative sets
of conditions which guarantee the existence of

the nonlinear population regression functions of
the form E(YIxy, =xgi) =X, k) =8(x)
(48, pp 96-99)

1 If F(y,x) 1s the joint distnbution function of
(Y, X;, ,Xgk) ={(Y.X), then the set function
lexS ydF(yx), where R, xS 1s the cylinder set in
the (Y,X)-plane with base S in.the X-plane
and SeB, (a Borel field of sets}), 1s absolutely
continuous with respect to [g dF(x) Further-
more, EY, <o

or

2 The sample space for the vanable
(Y, X;, Xg)1sthe (K+1)- dimensional
Euchdean space



To elaborate on these conditions, we hold that 1f
EY, = oo, then the (sufficient) conditions of the
Radon-Nikodym theorem for the existence of
g(x) are not true However, in many economic
applications, the sample space 1s the n-dimensional
Euchdean space, 1n which case the conditional
expectation of Y (the indicator function of a set
A eB,a Borel field of sets), given X;=x,, denoted
by P(Alx,) = E(Y lx,), 1s defined for all A over a
x,-set of probabihity ! because the union of excep-
tional x, -sets over which P(Alx,) 1s not defied

15 of zero probability measure This fgxdmg/ does
not mean that there are no problems if EY, =0
whenever the sample space 1s the n-dimensional
Euchdean space because even 1f g(x;) exists, 1t
may not be consistent with the marginal distnibu-
tion of x, Roughly speaking, F(ylx;) and F(x)
are consistent 1if they are the conditional and mar-
ginal distributions corresponding to some joint
distribution of (Y;, X;) This hypothesis follows
from Kolmogorov’s consistency theorem which

15 stated 1n {48, p 108) If this consistency con-
dition 1s not met, then the probability laws fail
By not specifying F(x,), econometrnicians typically
1gnore this.consistency problem

Goldberger (29, p 380) poinis out that, by for-
mulating a model, econometricians attempt to
characterize a joint conditional probability distri-
bution of the endogenous vanables conditional

on the values of the exogenous variables using
available a priort information In view of the pre-
ceding discussion, this task may not be feasible
because econometricians’ a priort information may
prevent interpretation of each reduced-form equa-
tion as a regression equation 1f the information
violates the conditions under which such an inter-
pretation 1s valid Thus, econometricians cannot
succeed 1if therr a priort information on the struc-
tural parameters 15 incoherent 1n the sense that 1t
1s iInconsistent with conditions permitting the
existence of the expectation of each endogenous
vanable, conditional on the values of the exo-
genous vanables This point confirms the impotr-
tance of de Finetti’s and Savage’s coherency con-
dition that must always be imposed on a prior
distributions Furthermore, a structural model

15 logically mvalid and the attractiveness of the
structural-form approach mentioned by Gold-
herger (29, pp 386-87)1s 1llusory 1f a prior: restric-
ti1ons on structural parameters do not permit the

interpretation of the corresponding reduced-form
equations as the population regression equations
In light of a landmark paper by Boland (10, p
506), who argues that a logically valid model 1s
necessary before one can produce *true’ empircal
results, one must view this conclusion as a funda-
mental objection to current econometric practice

Pierce-Haugh Characterizations
of Causality

Coming full circle, we return to Granger’s defini-
tions of causality, which appeared 1n our mitial
investigation of the defimtions of causality Now
that we have fully discussed the direction of the
implications of full independence, partial.inde-
pendence, mean independence, uncorrelatedness,
and orthogonality, as well as KLR’s conditions
for the existence of a linear regression and a con-
stant conditional variance, we rigorously appraise
works by Pierce and Haugh (41), Sims (58}, and
Sargent (54) based on Granger’s definitions of
causality

In their survey article, Pierce and Haugh (41)
developed characterizations of Granger causality,
using the time series approach and certain assump-
tions One of these assumptions 1s that there exist
transformations X; = T, X: and Y¢ =T, Y; of the
observable variables X{ and Y, so that (X, Y})

1s a bivanate, nonsingular, linear covarnance sta-
tionary, purely indetermimstic time series and so
that X, and Y, are causally related in the same way
that X; and Y are

Very often, Pierce and Haugh argue, T, and T
will consist of first-difference or seasonal-difference
operators because this type of transformation 1s
frequently (presumed to be) necessary and suffi-
cient to render the observed series stationary
Because such transformations are hnear and
because the optimal predictions in terms of which
causality was defined by Granger are now also
linear, each causahty event 1s true of (X* ,Y™)

if and only if 1t 15 true of (X, Y} Moreover, Pierce
and Haugh-argue that certain nonlinear transfor-
mations of individual vanables, such as logarithms
or those of Box and Cox (12), are also causality-
preserving 1n the above sense



Such statements, offered as assertions, have no
logical proofs venfying their truth If they are
false, a study of the relationship between the
transformed varables will tell us nothing about
the relationship between the untransformed van-
ables in which we are interested Indeed, counter-
examples may be constructed to show that

the transformations T, and ’I‘:,r are not causality-
preserving For example, if Y{ is a nonstationary
process with infinite mean (as would occur if

Yt followed a random walk), 1t 15 posmble that
the first difference of this sertes, Y, Yt Yt 1»
1s stationary with a finite mean and displays causal-
ity with X, Yet, because Yt has no finite mean,
the variance of the prediction of Y; may be in-
finite, in which case Granger’s defimitions of causal-
1ty cannot apply One should also remember that
the Pierce-Haugh criterion assumes covariance
stationarity However, this 1s a condition on only
the first two moments Statistical independence,
as described earlier, 1s concerned with the whole
distribution The direction of the implications
between equations (5) and (6) indicates that dif-
ferencing and Box-Cox transformations are not
causality-preserving

Furthermore, certain recent papers point to serious
problems with the Box-Cox transformation In
their book Box and Jenkins (13) argue that, given
Y, = Y;, the transformation Y?‘) = [(YZ\ - 1)/A]
gives a covariance stationary process for some A
and, under normality conditions, one may con-
sider the model

dy da(¥Y)-1
9(B) A ' Asz(—‘i—) =8(B)a,,

a; ~ N(O, 62) (16)
where B 1s the backward shift operator, A =1- B,
A - B d]>0d2>0¢() 1- q’JlB-
¢2B2 - ¢, B?,8(B)=1-9, B- §, B2 -§.BI,

and the roots of ¢(z) 0 and 0(2_) = () lie outside the
unit circle where z 15'a complex vanable

A paper by Poirier (44) elaborates on the Box-Cox
transformation First, equation (16) requires the
condition that Y, > 0 Thus, if (Y, + u) > 0 for
some u > 0, the Box-Cox transformation can
always be made on (Y, + u} However, if u1s
unknown, the maximum likelihood estimates of
the parameters of equation (16) for Y, + u may

not exist, and the effects of 1 on estimating A and
orders p, q, d;, and d, become unknown The
question then arses how to assess the causality
relationship among the onginal variables 1n equa-
tion (16) when u 1s unknown

On a related matter Poirier and Mehno (45) have
shown that E(Y )— oo)f -1 <A <0 and

Var (Y{!) = 00 1f -2 <\ <0 for the normal Y,
Therr conclusion 1s important because the con-
cept of Granger causality 1s not appropriate 1f
E(Y(M) =0

When A # 0, the density for ¥, corresponding to
the normal density for Y{») will usually be that of
a truncated normal and Box and Cox’s likelihood
function wil be incorrect Recognizing this prob-
lem, Amemiya and Powell (1) assumed that the
untransformed varnable followed a two-parameter
gamma distribution and then studied the Irmiting
behavior of the Box-Cox {incorrect) maximum
likelithood estimator both for the identically and
independently distributed {11d )} case and the
regression case Although they acknowledge that
their results were based on the assumption of the
gamma distribution and thus might not be um-
versally true, “they do point to the possible dan-
ger of using the Box-Cox method ” Altogether,
the weight of these various studies analyzing the
properties of the Box-Cox transformation cast
considerable doubt on 1ts ability to transform two
time series without distorting a causal relationship
between them '°

In another section of their paper, Pierce and Haugh
{41) developed a test for instantaneous causality
They argued that one can determine instantaneous
causality by individually prewhitening the two
series of interest, using linear one-sided filters and
then by analyzing the contemporanecus cross-
correlation of the two created innovation seres
However, Price (46) has constructed two counter-
examples to show that the existence of instanta-
neous causality 1s neither necessary nor sufficient
for a nonzero contemporaneous cross-correlation
As Price (46, p 256) states, ““[t] his implies that

a number of the [proofs] presented by Pierce
and Haugh concerning the relationship between

105ee (7) for a further discussion and other hmitations




the causal patterns of two time senes and the
restrictions on the cross-correlations of the cor-
responding ‘whitened’ series are either invahd or
1n need of further justification ” Replying, Pierce
and Haugh (42) conceded their earlier mistake,
but maintained that the contemporaneous cross-
correlation coefficient 15 a useful indicator of
nstantaneous causality when feedback from X
to Y 1s not present Their argument 15 unclear to
us as no proof 1s given Furthermore, 1n a recent
paper, Evans and Wells (20) amend the set of
equivalent and sufficient conditions under which
Y does not cause X, provided by Pierce and Haugh
(41)

In answer to Pierce and Haugh's statement that a
nonlinear transformation suchras autoregressive
integrated moving average (ARIMA) modeling
preserves causality relationships, an important
paper by Schwert (55) uses three counterexamples
to demonstrate that causal relationships among
the innovations can be quite different in pattern
and magnitude from the relationships among the
onginal vanables, depending upon the ARIMA
models chosen to represent the variables By
implication, the Box-Jenkins methods are also
not causality-preserving

As Schwert (55, p 81) points out, the use of esti-
mates of the residuals from ARIMA models, neces-
sitated by lack of observations on the true innova-
tions, 1s analogous to an errors-in-variables approach
which leads to another problem

If the onginal vanables, Y, and X, are
measured with error, the measurement
errors will generally have a different
influence on the estimators of the rela-
tionship between the innovations than
on the estimators of the relationship
between the original variables Thus,
if the original variables are measured with
random errors, causality tests based on
the estimated innovations series could
fail to detect relationships that would be
detected using the untransformed data

There 1s certainly no pat procedure for choosing
the proper specification of an ARIMA model Box
and Jenkins’ method 1s, as honest practitioners
readily acknowledge, ‘‘an art form >’ Pindyck and
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Rubinfeld (43, p 473) state that “i1t 1s important
to realize that the specification of an ARIMA
model 1s an art, rather than a science,” while
Granger and Newbold (28, p 107) affirm that

“1t remains the case that there does not exist a
clearly defined procedure leading in any given
situation to a umque identification ** The basic
problem 1s that the ARIMA models are not logi-
cally vahd unless'specific assumptions are true
(see (61,p 139)) Asin the case of many assump-
tions, the truth of assumptions underlying ARIMA
models cannot be determined a prior!

A related problem with Box'and Jenkins’ methods
1s that the sample autocorrelation function will
not accurately reflect the properties of the popu-
lation autocorrelation function (see (47, p 331))
As a result, a researcher could easily misidentify
some model as an ARIMA process

One should stress that, however elaborate one’s
assumptions (or wishes), 1t 1s impossible to'ascer-
tain whether the {ime series sample (or some trans-
form thereof) 1s from a covariance-stationary
process because samples are finite and covarance-
stationary processes are infinite in length Thus,
one may choose a sample that appears to be
covariance-stationary, whereas a larger sample
would show this not to be the case In this regard,
Tukey (66, p 50) has proved that any ‘‘finite-
extent function can anse, to an arbitrarily close
approximation, as a sample from a process with
any spectrum *” One cannot distinguish among
infimte-duration processes on the basis of a fimte-
length time series without maling strong assump-
tions whose truth we do not know

Finally, there 1s a logical problem with Box and
Jenkins’ method of determining the order q of
the moving-average part of an ARIMA model The
moving-average process of finite order q has an
autocorrelation function which 1s zero beyond
the order q It 1s incorrect to conclude from this
that, given the jth autocorrelation coefficient,
pj#:Ofor_|=1,2, ,qandp1=0for]>q,the
process has a moving-average representation The
condition that a real valued series (Y;) has a non-
zero autocorrelation of order q and no nonzero
autocorrelation of order greater than q 1s neces-
sary, but not sufficient, for Y, to have a moving
average representation (see (51, lemma 1)) If



one looks at a sample autocorrelation function,
which happens to have a cutoff after lag q and
concludes that a moving average model of order ¢
1s appropriate for the serles, then one would be
erroneously treating a necessary condition as 1f

1t were a suffictent condition

Sims-Granger Causality Testing

Sims (58) proved two theorems (also described mn
Sargent’s book (54)) that provide the basis for his
causality test Theorem 1 states Let (X;,Y,) be

a Jomntly covartance-stationary-strictly-indeter-
minstic-process with mean zero Then (Y,) fails

to Granger cause (X, ) if and only 1if there exists

a vector-moving-average-representation of the form

Xy C11(B) 0 €
= (17)
Y, Cy1(B) Cya(B) U

where ¢, and U, are serially uncorrelated processes
with means zero and E¢,U; =0 forall tand s In
addition, the one-step ahead prediction errors:

X BRI X-15 5 Y15 )
and

Yt"‘ E(Ytl Yt'l’ ’Xt"].’ ) (18)
are each linear combinations of €, and U,

Theorem 2 of Sims states Y, can be expressed
as a distributed lag of current and past X’s (with
no future X’s) with a disturbance process that 1s
orthogonal to past, present, and future X’s if and
only if Y does not Granger cause X That s

V=2 by X+ Ay (19)

where E(A;X.)} = 0 V(t,s) if and only if Y does not
Granger cause X !' Sims uses these theorems to
develop a test of Granger causality His method 1s
to regress Y, on all X’s

' ' Recall that the condition T(A,X;) = 0 ¥{t.s) does not
imply that E(A,!X,) = EA; = 0 which is required to show
that X; 15 econometrically exogenous with respect to Yy
{see the discussion after equation (7})

Yi=( Xpe1- X X4-10 ) HV (20)

A researcher then tests the joint hypothesis that
coefficients of all future X’s are zero.

Our first comment on this test 1s that equation (17)
1s an infinite order process In practice, one can
only estimate a model of the form (20) with a
finite number of independent vanables Unfor-
tunately, truncation of lag and lead lengths of
model (20) destroys the logical validity of the model
in the sense described by Boland {(10) Indeed, in
view of Boland's (11, p 85) demonstration that
there 1s no vahd approximate modus ponens, the
conclusions given by a truncated model of the

form (20) cannot be approximately true, even
when the truncated model 1s approximately true

Second, the procedure proposed by Sums 15 a test
of only a necessary, but not a sufficient, condi-
tion for Granger noncausality The reason 1s that
the lower tnangularity restriction on the coeffi-
clent matnx of equation (17) only 1mphes the
condition that the coefficients of the future values
of X 1n equation (19) are zero The restriction

does not 1mply the condition that Ee, U, =0

for all t and s or E(A;X.) = 0 V(t,5) (see (52))

Even if we reject a necessary condition for

Granger noncausality on the basis of Sims’ test, the
probabihity that Granger noncausality 1s false 1s less
than 1 because conclusions of statistical tests do
not hold with probability 1 A statement claiming
that Granger’s causality holds with probability less
than 1 1s thus neither absolutely true nor absolutely
false!

In large samples, the situation 1s even worse
because the power of Sims’ test doesnot goto 1

as the sample size goes to infinity (see (52, p 407))
Behind Sargent’s conclusion that Sims’ test may
fail to reject the hypothesis in infinite samples,
even when 1t 1s false, 1s an 1dentification problem
corresponding to an infinite duration process

(see (61, pp 140-41)) Gabrielsen (23) presented
an mmportant proof that the existence of a con-
sistent estimator @ for a parameter 8 15 a sufficient
condition for its identifiability An equivalent
statement 1s that 1dentifiability 1s a necessary
condition for consistency If a parameter 1s not
1dentifiable in a model, then it has no consistent
estimator, and consistent tests of hypotheses about
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the parameter do not exist Therefore, without
additional restrictions on the coefficients and the
covariance between €, and U, the model (20) 1s
not identified Tukey (66, p 50) adds that

the existence of such a difficult connec-
tion between observables and infinite-
duration processes:1s, for me, a.good
reason to doubt the adequacy of a logical
structure focused on infinite.duration
processes to guide the analysis of data
We cannot know precisely what the spec-
trum 15 iIf we know only the finite-length
process, even exactly Qur fate in the
real world 15 worse, of course, since we
cannot know even the finite-length
process exactly ! ?

For further discussion on spectral estimation, see (3)

General Remarks on Causality Testing

A common problem with any of the causality
tests described 1s that the stmple bivariate models
can obscure more subtle (and not so subtle) rela-
tionships involving other varniables When two
events are the effects of a third event which 1s
the cause of them, logicians describe the causal
relationship between the two events as the
“fallacy of the common cause " This 1s a problem
acknowledged by proponents such as Granger
(26), Pierce (40), and Sims (56, 57) and 1s analyzed
by Jacobs, Leamer, and Ward (35) who show that
“any spec1f1cat}0n error renders the causality tests
ununterpretable ” Not only can causality tests
reject exogeneity when the vanable 1s exogenous
because of the identification problems mentioned
above, 1t can also accept exogeneity when the
vanable 15, In fact, endogenous

The stationarity assumption used by Sims (58)
and Sargent (53) is inappropriate for aggregate
time series This problem can be seen from Swamy,
Barth, and Tinsley (61, pp 133-36) who prove
that aggregation over disparate micro relations

"2 Other papers by Jacobs, Leamer, and Ward (35),
Engle, Hendry and Richard (79), and Buiter (14) have
discussed this subject and suggested that.there 15 a problem
of testing for exogeneity However, none has discussed
the identification problem with any degree of compre
hensiveness
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can yield models with time-varying coefficients,

a result that 1s not always appreciated in either
time senes or conventional econometric literature
As shown by Swamy and Tinsley (63), a time-
varying parameter model can accommodate a
great vartety of nonstationary processes Also
related to this argument 15 the Lucas critique,
namely, when structural parameters are not invari-
ant under alternative policy regimes, the stationarity
assumptions used by Sims and Sargent are not
reasonable

Some Thoughts on Causality and
Related Topics

In a wideranging, vet cogent, essay on the nature
of causation, Zellner (70} argues articulately about
the inadequacy of Granger's definition of causality
and the superionty of the philosophical definition
of causality provided by Feig! for econometric
work According to Feigl, the concept of causation
15 defined 1n terms of predictabulity according to

a law (or more properly, according to a set of
laws) (see (70, p 12)) The reason Zellner (70,

p 51) prefers Feigl’s defimition of causation to

all the other definitions he considers 1s that depar-
tures from Feigl’s definition have produced prob-
lems, while offering little in the way of dependable
and convincing results Zellner (70, p 51} further
points out that in establishing and using economic
laws 1n econometrics one can have Little doubt that
economic theory, data, and other subject matter
considerations, as well-as econometric technigues
including modern tune series analysis, must all

play a role

Although we agree with Zellner’s views, Blaug’s
statement (9, pp 160- 62) concerning economic
laws also deserves some attention In Blaug's
view, the term “law” has gradually acquired an
old-fashioned ring and economists now prefer

to present theiwr most chernished general statements
as “theorems” rather than as “laws '’ He further
says

At any rate, i1f by laws we mean well-
corroborated, universal relations beiween
events or classes of events deduced from
independently tested mitial conditions,
few modern economists would claim that
economics has so far produced more than
one or two laws



The statement 1s accompanied by the following
Uluminating footnote

Samuelson remarks that years of
experlence have taught him how
treacherous are economic ‘‘laws’’ 1n
economic life eg Bowley’s Law of con-
stant relative wage share, Long’s Law of
constant population participation 1n the
labor force, Pareto’s Law of unchangeable
inequality of incomes, Demison’s Law of
constant pnvate saving ratio, Cohin Clark’s
Law of a 25 percent celling on government
expenditure and taxation, Modigham’s
Law of constant wealth-i1ncome ratio,
Marx’s Law of the falling rate of real wage
and/or the falling rate of profit, Every-
body’s Law of a constant capital-output
ratio If these be Laws Mother Nature 1s

a cnminal by nature

As indicated earlier, some econometric assumptions
have become so dear that they have assumed a
power nearly as compelling as law Thus, if sta-
tionartty for the transformation of the vanable Y,
1n equation (16) (given some d, , d, and 1), 1s taken
to be a law, then Mother Nature must surely be a
scofflaw

In view of these statements, a more modest, but
more realistic, approach might be to define causa-
tion in terms of “predictability according to a suf-
ficient and logically consistent explanation or
theory ! ® The quahfication “‘sufficient and log-
1cally consistent’’ 15 added to indicate that, at the
very mimmum, real economic theones must be
logically valid if they are to provide *‘true’” explan-
ations of real economic phenomena This require-
ment holds even though the logical vahdity of

any explanation does not 1imply 1its truth Never-
theless, consistency of knowledge plays a major
role 1n how one explains the world, the truth of
knowledge 1s much more difficult to ascertain (see
(10)) A modest research program then becomes
if all the predictions of a logically valid theory
pass a conventional test (of observation), then we
may say without contradiction that the theory 15
so far confirmed

! JPerhaps by “law" Zellner (70) meant a “sufficient
and logically consistent explanation or theory "

Swamy, Barth, and Tinsley (61, pp 131-36) make
sertous efforts to exploit economic theories in
empirical research by using a miimal set of auxil-
1ary assumptions and ccherent prior information

In theiwr expectations model, offered as an alferna-
tive to rational expectations, subjective probabilities
are not carelessly equated to ““objective probabihi-
ties” and all regression coefficients are allowed to
vary over fime as a concession to Samuelson’s ronic
list of so-called laws We sometimes prefer the above
model because (1) it avoids Box and Jenkins’,
Pierce and Haugh's, and 81ms and Sargent’s sta-
tionarity assumptions or stationanty-inducing trans-
formations and (2) 1t 15 not forced to rely on eco-
nometric assumptions about a priort structural
parameter information that may contradict neces-
sary and sufficient conditions for the existence of
the conditional expectations of endogenous vari-
ables, given the exogenous vanables Furthermore,
dewviating from usual practice, the modet does not
confine all uncertainty to the intercept term,

but allocates 1t over all coefficients 1n each equa-
tion Because the model 15 less restrictive, this pro-
cedure of first distmbuting uncertainty to all
coefficients and then of letting data determine the
major channels of uncertainty is less objectionable
than the conventional procedure which first arbi-
trarily allocates all uncertainty to the intercept
term and then forces the data to satisfy this restric-
tion (see (49) for a survey of initial efforts in this
research program and also {50, 63, 64) for some

of the latest theoretical and empirical resuits)

In the above model, the conditions for logical
validity are weaker than those which denve
ARIMA and conventional econometric models
Because the problem of induction is unsolved
logical vahidity requires that the truth of one’s
premises or assumptions must be assumed '*
Under these circumstances, 1t 1s prudent to work
with a minimal set of assumptions How com-
pelling the above advice 1s depends, of course,
on the purpose of a model If forecasting future
events 15 the single object of a modeling endeavor,
then predictive success 15 a sufficient argument
1n favor of the modet This view of the role of

'4For a demonstration that causality proponents have
fallen into the trap of attempting to solve the well known
“problem of induction,' see (62%
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models 1s called “instrumentalism” (see 10,

p 508)) In this case, a prior: truth of the assump-
tions 15 not required if 1t 15 already known that
the predictions are true or acceptable by some
conventional criterion {see (10, p 509)) In
contrast, those economists who see the object

of science as finding the one true theory of the
economy will find thew task difficult, if not
iumpossible On the surface, instrumentalism

offers a valid guide for scientific investigation

It 15 unfortunate that no single model predicts

all vanables better than all other models for all
time periods This predictive critenon must
eventually exhaust itself Because 1t 1s impossible
to foretell the time of failure, we cannot even pick
a model based on mstrumentalism However,

we can reject models on the grounds of logical
mvaldity, as we did 1n the preceding sections

Given the difficulty of choosing among logically
valid models, the principle of parsimony has some-
times been invoked as a tempting guide The imposi-
tion of certain restrictions on the time-varying
parameter models can lead to conventional regres-
sion models with heteroscedastic or senally corre-
lated error terms (or the ARIMA models) (see

(63, pp 107-08)) Although these restrictions
produce substantial economies 1n parametenz-

ng a model, such economies are not without

cost Despite 1ts tempting name, the principle

of parsimony—preferring restricted specifications
to more complex modehng whenever the perform-
ance of the former m prediction 1s elmost as good
as that of the latter—has little justification unless
the conventional or ARIMA models perform at
least as well as some more general model, for
example, the alternative expectations model pro-
posed by Swamy, Barth, and Tinsley (61)

The conventional models, including ARIMA models,

exhibit episodic breakdowns and perform poorly
in prediction The usual practice 1s to repair such
models by extensive respecification or, more often
1n the shorter run, with judgmental “‘add factors,”
dummy variables, and *“ratchet’’ arguments Fol-
lowing Lakatos (see (9, p 36)), we may call this
research practice “‘degenerating’ because 1t involves
endlessly adding ad hoc adjustments that merely
accommodate whatever new facts become available
A positive contribution 1s possible only 1if the
scientific research program is theoretically pro-
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gressiwe—that 1s, 1f a successive formulation of

the program contains “excess empirical content”’
over its predecessor, that 15, the program predicts
‘““some novel, hitherto unexpected fact’ or if the
program is empirically progressitve—that 1s, 1f “this
excess empirical content 1s corroborated * The
limited evidence presented by Havenner and Swamy
(32), Resler, Barth, Swamy, and Dawis (50), and
Swamy, Tinsley, and Moore (64).appears to favor
the claim that the time-varying coefficient models
facilitate progressive scientific research programs
Just as the philosophy of instrumentalism does
not permit us to call one of the existing models
the best predictor of all vanables for all time
periods, so the principie of parsimony does not
permit us to call one model the best

Time-varying coefficient models such as those
Swamy and Tinsley (63) propose may be too
complex to be useful Indeed, Popper has argued
that theoretical ssmphcity may be equated to the
degree to which a theory can be falsified, 1n the
sense that the simpler the theory, the stricter 1ts
observable implications and, hence, the greater

1ts testability It 15 because simpler theories have
these properties that we aim for simplicity in
science But this principle 1s not universally agreed
upon Thus, Blaug (2, p 25) casts s doubts about
Popper’s notion of simphceity as follows

It 1s doubtful that this 1s a convincing
argument, since the very notion of sim-
plicity of a theory is 1tself highly condi-
tioned by the historical perspective of
sclentists More than one historian of
science has noted that the elegant sim-
pheity of Newton'’s theory of gravita-
tion, which s0 impressed nineteenth-
century thinkers, did not particularly
stnke seventeenth-century contempo-
raries, and 1If modern quantum mechanics
and relatively theory are true, 1t must be
conceded that they are not very simple
theones Attempts to define precisely
what 15 meant by a simpler theory have
so far failed , and Oscar Wilde may
have been right when he quipped that the
truth 1s rarely pure and never simple

One of these statements 15 accompanied by the
following footnote



As Polany1 has observed, “‘great
theories are rarely. simple 1n the orda-
nary sense of the term Both quantum
mechanics and relativity theory are very
difficult to understand, 1t takes only

a few minutes to memorize the facts
accounted for by relativity, but years
of study may not suffice to master the
theory and to see these facts 1n 1ts
context "’

Conclusions

The term, “causality,’” as.used by Granger and his
followers, has been erroneously 1dentified with
feedback or dependence and loosely with corre-
lation (see (71, p 313)) We have contrasted this
new usage with traditional approaches proposed
by scientific philosophers and surveyed by Zellner
(70) By every acceptable norm, the latter approach
may still offer sharper views on the definition of
causation There s evidence'(see (71, p .313))

that Granger himself has altered his views since

his imitial article Granger now argues ‘“‘Provided

I define what I personally mean by causation, I
can use the term” (27, pp 333 and 337} What
Granger means by causality 1s that knowledge of
Y, increases one's abihity to forecast X, 1n a least
squares sengse Truth, like beauty, may be in the eyes
of the beholder, but 1t 1s still fair to 1nsist that the
purpose of language 1s to communicate and clanfy
Perhaps much of the confusion surrounding the
interpretation of causality tests would not have
arisen 1f such tests had mstead been labeled ‘“‘tests
of relative predictive efficiencies” or some other
neutral terms suggested by Schwert (55, p 82)

More important, the difficulty with using
Granger’s causahty definitions, even as a measure
of relative forecasting efficiency, 1s that the same
relationship may not.continue into the forecast
penod There 1s indeed every reason to believe
that such a relationship will change One may
support this belief by contemplating the numerous
structural upheavals of the seventies as well as the
implhication'of Lucas’ critigue suggesting that indi-
vidual behavior (and hence structural coefficients)
will change when policy rules change

Zellner (70) recommends using Feigl's definition
of causation, which we respectfully modify to
read,” predictabihity according to a sufficient and

logically consistent theory * This modification
15 necessary because contemporary economists
prefer to present their most chernished general
statements as theorems rather.than as laws

Causality tests were created with the best of inten-
tions, but one must be careful never to ask more
of the data than they can deliver It 1s unfortunate
that these tests seem to ask for more However, if
one can find a way to avoid the contradictions
between the a prior: restrictions on the structural
parameters and the conditions of KLR’s lemma
and 1f these restrictions are overidentifying, then
one can mvoke Wu's procedures (69) to examine
the significance of the covariances between inde-
pendent variables and the disturbances (provided
we have an 1dentifiable maintained hypothesis) ! ®
Unhike causahty tests, Wu’s procedures adhere to
a law of large numbers, the powers of his tests,
therefore, equal 1 1n sufficiently large samples

Where, then, 15 the econometrician left in devising

a modeling strategy to determine causality? Zellner’s
fundamental argument.s that the soundness of our
conclusion about causality 1s ultimately based on
the soundness of economic theory to determine
causahty In our view, this advice 15 wise, and n

the spint of Zellner’s theme, we end with a reveal-
ng conversation between Fisher and Cochran,
which Zellner quotes (72, p 13)

About 20 years ago, when asked 1n a
meeting what can be done 1n observa-
tional studies to clanfy the step from
assoclation to causation, Sir Ronald
Fisher replied ‘“‘Make your theories
elaborate ” The reply puzzled me at
first, since by Occam’s razor the advice
usually given 1s to make theories as
simple as 15 consistent with known data
What Sir Ronald meant, as the subse-
quent discussion showed, was that when
constructing a causal hypothesis one
should envisage as many different con-
sequences of 1ts truth as possible, and
plan observational studies to discover
whether each of these consequences

15 found to hold

15
Qur earlier discussion indicates that in the normal
case uncorrelatedness 1s equivalent to mean independence

15
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