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Dynamic Programming and the Economics

of Optimal Grain Storage

By Gerald Plato and Douglas Gordon*

Abstract

Understanding the dynamic programming algorithms used i the optimal grain
storage literature 1s a prerequsite to understanding the findings of this hterature
This article introduces these dynamic programming algorithms by examining several
n terms of their underlying economic behavior These are Gustafson’s original algo-
nthms and algorithms developed by Gardner and Ippolito that mnclude rational
producer response 1n addition to optimal grain storage, making them the most
advanced 1n the optimal grain storage literature
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Grain prices have fluctuated widely since the

early seventies One method of dampening price
fluctuations 1s to store grain 1n bumper crop years
for use in lean years This possibility has revital-
1zed interest 1n applying dynamic programming
techniques to the analysis of grain carryover Dyna-
mic programming algorithms determine grain
carryover rules that are optimal under specified
market assumptions, thus, a common title for this
hiterature 1s optimal gran storage This article pro-
vides an introduction to the dynamic programming
algorithms in the optimal grain storage literature
This literature 1s growing rapidly because both

the objective to be maximized and the market
assumptions can be changed to reflect a muititude
of types of market situations

The dynamic programming method determines
carryover from one harvest to the next by maxi-
mizing a specific objective function, such as the
value of grain consumption The method also
accounts for the expected impact of one year’s
carryover on carryover levels in future years This
consideration makes the carryover determmation
optimal

*The authors are agricultural economists in the National
Economics Division, ERS They thank Clark Edwards, Bruce
Gardner, David Harnington, and anonymous reviewers for
reviewing a previous draft They also-thank Pauline Ippolito
for explaining her algonthm

We examine several dynamic programming algo-
rithms from the optimal grain storage hiterature

in terms of the economic behavior.of storers (spec-
ulators) and producers

We concentrate on dynamic programming algo-
rithms developed by Gardner (3) and by.Ippolito
(7) ! Thewr work contains improvements in the
mmcorporation of economic behavior, particularly
producer supply response, into the dynamic pro-
gramming method We also examine Gustafson’s
(5) onginal dynamic programming analysis of
grain storage—the foundation for the optimat
grain storage literature

The basic dynamic programming algorithm maxi-
mizes an objective function, subject to the influence
of a random variable The algonithm accomplishes
this by finding a sequence of decisions concerning
the levels of a control variable One type of grain
storage problem fits particularly well into this
algonthm the problem of maximizing the value

of consumption over a long time period ? The
control variable 1s the size of gramn carryover from

!Ttaheized numbers.an parentheses refer to items 1n the

References at the end of this article

The objective of maximizing total expected revenue
can be used'instead ol total expected value of consumption
Maximizing total revenue corresponds to a grain marketing
board that acts as a monopolist For the benefit of grain
producérs Maximizing total value of consumption corre-
sponds to a competitive grain market
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this year to next year The decision each year 1s
how much grain to carry into the next marketing
year The random vanable 1n this problem 1s pro-
duction Its variability 1s largely attributable to
the unpredictabihity of weather )

Gustafson developed a dynamic programming algo-

nthm to find optimal grain carryover levels with
random production Grain carryover 1s determined
given the total grain supply after harvest, which
equals current production plus carryover from the
previous year The carryover decisions are made
optimally mn the sense that the sum of the current
value and expected future value of consumption
less storage cost 1s maxiumized

Demand vaniability and forward-looking producer
reponse are additional elements needed 1n a com-
prehensive dynamic programming algorithm for
a grain market Both these elements influence the
optimal grain carryover level for a given level of

W

total grain supply Including them places optimal
grain storage firmly In an economic context, but
complicates the dynamic programming computa-
tions, Demand variabiity includes fluctuations
1n national income If demand includes export
demand, then 1ts variability 1s also attributable
to gran supply vanability in other countnes

Forward-looking producer response adds rationai
expectations to the model This addition allows
producers to react to differing levels of grain carry-
over and allows speculators to react to differing
levels of expected production

Table 1 shows the objectives maximized and the
demand and supply assumptions for the algorithms
we examine The table provides a starting pomnt for
understanding the similarties and differences
among the algorithms One maximizes the objec-
tive functions of the algorithms by finding the
optimal carryover rules and, 1f production 1s given

Table 1—Specifications for the optimal carryover algornithms

Algonthm descniption

Objective maximized

Current year
demand

Current year
production

’

Gustafson
1A Random production and a
stable demand curve

1B Random production and a
stable demand curve

2A Random production and a
fluctuating demand curve

2B Random production and a
fluctuating demand curve

Gardner

Value of consumption

Returns from carryover

Value of consumption

Returns from carryover

Limear funection of Random vanable

current year's pnce
Linear function of Random vanabte
current year’s price
Linear function of Random vanable
current year's prce .

plus a random term ;
Linear function of Random vanable
current year’s price

plus a random term

1A Rational production and a
stable demand curve

1B Rationat production and a
stable demand curve

Ippolito
1 Rational production and a
fluctuating demand curve

Economic surplus

Returns from carryover and
retums from production

Returns from carryover and
retumns from production

Linear function of
current year's price

Linear function of
current year’s prce

Linear function of
current year’s price
plus a random term

Linear function of current
year’s expectec‘ price plus
a random term

Linear function of current
year’s expected pnce plus
a random term'

Linear function of current
year’s expected pnee plus
a random term'

' The rroductlon response for a particular year 15 dependent on the ex?ected price for that year in both Gardner’s algorithms

and Ippo

o's algorithm However, there 1s a difference in the order of go

ving for the production response Gardner's gorithms

solve for the current year’s carryover and for next year's production Ippohito’s algonthm solves for the current year's carryover

and for the current year’s production
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as a function of expected price, by also finding

the rational production response Under specific
market assumptions, maximizing the value of
consumption is equivalent to maximizing the
returns from carryover in a competitive market 3
Furthermore, maximizing economic surplus 1s
equivalent to maximizing returns from carryover
and returns from production 1n a competitive
market under these market assumptions These
objectives result in 1dentical carryover rules and
identical production responses To make the expla-
nation easier, we show Gardner’s algorithms with

a stable demand curve Gardner included a random
demand component using the method pioneered
by Gustafson In this article, we explain Gustafson’s
method of including a random demand component

First, we examine a dynamic programming algo-
nithm to find optimal carryover levels under random
production and stable demand, using the value of
consumption as the objective function We then
show that the first-order condition for maximizing
the value of consumption suggests an alternative
algonithm based on the objective of maximizing
the returns to storers in a competitive market
Next we show how a stochastic demand compo-
nent 1s added to these two dynamie programming
algorithms Finally, we examine algorithms that
include rational producer response and explain
the relationship between rational production
response and optimal grain carryover

Optimal Grain Carryover Under Random
Production

One measure of consumer welfare 1s the area under
the demand curve This measure 1s a convenient
way to put a value on consumption In this section
we examine the dynamic programming algorithm
for finding optimal carryover levels using the area
under the demand curve-as the objective function
In addition, we review the first-order conditions.for
maximizing the value of consumption These first-
order conditions draw attention to the economic
behavior of speculators in grain storage Profit-
maximizing behavior by speculators in a market
satisfying specific economic assumptions will bring
about competitive equilibrium levels of producer
and consumer behavior We review an alternative

IGee Gustafson (5, p 49) for a succinct review of
these assumptions
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algorithm for determining the optimal grain carry-
over using the grain prices suggested by the first-
order conditions These algorithms were developed
by Gustafson, who also extended them to include
demand variability

The first algonthm finds the optimal grain carry-
over given the level of total supply by a trial-and-
error search Discrete specifications of carryover
and total supply are required because the search
for the optimal carryover level must be restricted
to a fimite number of possibilities and the search
procedure can only be used a finite number of
times In addition, a discrete specification 1s re-
quired'for production as total supply equals carry-
over from the previous year plus production The
parameters of the first two methods include storage
cost, discount rate, variability and mean level of
production, and the level (intercept) and slope

of the demand equation

Estimatmg Optimal Carryovers with Value of
Consumption as the Objective Function

The value of consumption algorithm.solves for
optimal carryovers under random production by
the dynamic programming method known as value
iteration * It finds.the optimal carryover, C, ,

for each posstble level of the total supply after
harvest, S, |, where t is the current year, and 1 and
k denote discrete intervals over the range of values
of the varitables The subscript ) replaces 1 to indi-
cate levels of total supply for the next year,

Sj,t+ 1

The optimal carryover decistons maximize the
value of consumption 1n year t, R, , plus the dis-
counted expectation of the value of future con-

T
sumption, rjg,l [Pr(SJ‘Hl | Ck,t)] f],L+1 , minus the

current year’s storage cost, SC(Ck’t) The constant
r1s the discount rate, which equals 1/(1+p), where
£ 15 an interest rate

Equations (1) and (2) show the computations
involved 1n finding the optimal carryover levels

9 The approach used to solve equations (1) and (2) 1s
known as value iteration n the dynamie programming
Itterature Dynamic programming problems can also be
solved by Howard's policy iteration approach (6) The
value 1teration approach 1s used 1n-all the algorithms of
this article
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where

t=T, T-1, T-2, indicates year starting
with the most distant
year considered (the
horizon), year T,
1,1=1,2, .1 are intervals indicating
discrete levels of total
supply after harvest in
the current year (year
t) and in the following
year (year t+1), respec-
tively {for example,
level 1 = 2 might rep-
resent 10 million
bushels),

indicates discrete carry-
over levels in the cur-
rent year (year t),
Pr(S, 141 [Cy t) 1s the probability that
total supply next year
will be at level ) when
carryover from the cur-
rent year 1s at level k

The first equation 1s used in the first (most distant)
year considered, year'T Carryout from year T 1s
assumed to equal zero (k = 1) for all possible levels
of total supply, implying that we need not consider
storage cost and expected value of future consump-
tion In prior years these terms must be included,
so equation (2)'1s used

In the optimal grain storage literature, demand 1s
often specified as a linear function of pnce Let
D, ; represent the following demand curve

QlDt =o - fP,, A hnear demand function gives a

value of consumption, R, ¢, in the current year
equal to

(8, -Cy )*

Ry o = @B)S, 4~ Cup) 55— (3)

Equation (3) is the integrai of the inverse demand
function {price as a function of quantity) from zero

toq,f 2 (aff - % q)dg, where q equals total supply

minus the chosen level of carryover This 1s the
area under a linear demand curve from zerc to the
level of total supply minus carryover, 8,, - Cy ;

The algonthm operates backwards in time-from the
last year considered, year T The logic 1s that the
optimal carryover decisions for future total supply
levels and the probabilities that these total supply
levels will occur must be known prior to making
the optimal carryover decision for the current year

The algorithm starts by using equation (1) to cal-
culate the maximum value of consumption, f;,t’ for
each level of total supply, Sl,t! in year T, the last
year considered Each of these maximum values

has a zero carryover, level 1 of subscript k represents
zero carryover The carryover in the last year con-
sidered 1s usually specified to be zero with the value
iteration approach This restriction does not
influence the final results of the value iteration
approach as the influence of zero carryover for

the last year 15 gradually dissipated as we move
backward 1n time

Next, using equation (2), one finds the maximum
expected value of consumption in the preceding
year, t = T-1, by searching among the K possible
carryover levels for each level of total supply,

8, ¢ Thevaluesf ,,;,1=1, ,Iarethe maximums
found in equation (1) The term Pr(8, (, 1 Cy ()15
the probability that next year’s total supply will
be at level ) when carryover from the current year
15 at level k The probabihties of the various levels
of total supply occurring around 1ts mean are
determined by the probability distribution of pro-
duction outcomes

The mean of this probability distnbution equals

carryover plus the mean level of production and
18 determined by the carryover.decision
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E(Pr(S) 1+11Cy 1)) = Cyp + E(PRODy41 Gy 1) (4)

The expected level of production 1s the uncondi-
tional mean, E(PROD,,,), when random production
1s assumed

Next, equation (2) 15 used to find the optimum
carryover for the preceding year, this time year

t = T-2 The procedure 1s as previously described
for equation (2) except that the maximum values,
f, {41, are those found for year T-1

Assuming that the parameters in equations (1)

and (2} are stable over time, additional years are
included unti the optimal carryovers (levels of the
control vanable) converge to a particular level for
each level of total supply At this point, the in- .
fluence of the zero carryover restriction for year T
1s completely dissipated The correspondence
between these optimal carryovers and total supply
represents the optimal storage behavior (optimum
carryover decisions) in a perfectly competitive
market It 1s optimal because these levels of carry-
over maximize the current plus the expected future
value of consumption minus the storage cost over
an indefinite time span In this sttuation, this
optimal storage behavior (set of carryover rules)
remains in effect for each new total supply, that 1s, .
for each new harvest until a change occurs in one
or more of-the parameters

Gustafson (5) developed the preceding algorithm
specifically for estimating optimal grain carryover
Howard (6) independently.developed a similar
algorithm to estimate optimal decisions We.recom-
mend Howard’s book for further background
reading on dynamic programming

The search for the optimum carryover level (given
the level of total supply) is not a brute force search
over all possible carryovers If the optimum carry-
over level 15 greater than zero, then the value of
equation (2) increases, reaches a maximum, and
then decreases as carryover increases (as the wel-
fare measure 1s quadratic) In this situation, the
algorithm evaluates equation (2), using successively
larger carryover levels until the maximum 1s passed
The optimal carryover level is the next to last value
used If the value of equation (2) decreases as
carryover increases, the optimum carryover level

1s zero This occurs when total supply 15 low A
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value of carryover less than zero might maximize

an unconstrained version of equation (2) in this
situation, but only zero or positive values for carry-
over are physically possible Negative carryover:
values imply that grain can be borrowed from next
year’s harvest for use 1n the current year ‘

The determination of the optimal current-year
carryover by use of equation (2) 15 an application
of Bellman’s principle of optimality (1, p 83)
This principle states that a necessary condition for
the current decision to be optiumal 1s that future
decisions must constitute optimal behavior with
regard to the effect of the current decision This
rather elusive concept implies that the tnal-and-
error search for the .optimal grain carryover 1n

the current year, given the level of total supply,
requires knowledge of how.future optimal deci-
sions are affected by the current grain carryover
deciston This knowledge 1s contained 1n the maxi-
mums‘(f; 41,) =1, ,I) found in the previous
solutions‘of equation (2) .
We can see a profit-maximizing motive for storage
by examining the first-order condition for maximiz-
ing equation (2) We dertved the standard expres-
ston for this first-order condition, expression (5 3),
by taking the partial derivative of the maximum
found 1n equation (2) with respect to the current
year’s carryover

af,, AR, I8, ~Cy ) ISC(Cy )
9Cy 3Cy ¢ 0C,

I
: r X (Pr(8 I C af
. J=1( (8, 4+11Cy ) J,t+1go )
98, 141 - ()

= - (@B - 5(8,-Ci, )] - MSC
1 _
+1 2 (Pri§ 1 1C B SO (51)
Z

= P,,~ MSC +1E(P,,;1C, )< 0 (52)
S0
" P, > rE(Py |y ) - MSC (5 3)

where E 1s the expectations.operator and MSC 1s
marginal storage cost




Expression (5 3) 1s an equality when grain 1s stored
at the optimal level In this situation, gran storage
15 ncreased and the current year’s price, Pl,t, 15 bid
up by speculators until 1t equals next year’s ex-
pected price, E(P,4/ Cy ), times the discount fac-
tor, r, minus the margmal (per bushel) storage cost
MSC An increase 1n grain storage also reduces next
year's'expected price The marginal storage cost
may either increase or remain constant with larger
carryover levels, although 1t 1s convenient to assume
a constant marginal cost

The cost of holding each unit equals the purchase
price, P, ; plus the marginal storage cost The ex-
pected per unit return from storage equals expected
price minus the holding cost That 1s, the expected
return 15 [E(Py,1)-(P, . +MSC)] or [E(P4q )-TE(P,1)]
Of course, the return for any single year will most
likely differ from the average or expected rate

The fwrst-order condition in (5 3) 1s an inequality
when the optimal decision 15 to store no gram In
this situation, the current year’s price 1s greater
than the discounted value of next year’s expected
price minus the marginal storage cost This situation
occurs when the grain harvest in the current year
falls below a critical level

Because the link between the standard expression
for the first-order condition (5 3) and equation (2)
1s not fully explained 1n the optimal grain storage
literature, we have mcluded the intermediate steps
(5 1) and (5 2) The derivative of the area under
the demand curve, R, |, with respect to quantity
(in this case carryover, Cy ,), 1s the inverse demand
curve (first term.1n equatlon (5 1)) A minus sign
precedes this term as increases m carryover reduce
current consumption and, hence, the area under
the demand curve Evaluating the inverse demand
function (the first term 1n (5 1)) at S e Cy ¢ pro-
duces the negative of the current year's price, the
first term of expression (5 2}

The second term 1n equation {2} 1s total storage
cost, given the level of carryover The partial denva-
tive.of total storage cost with respect to carryover

1s the marginal storage cost shown as MSC preceded
by a minus sign 1n (5 1) and (5 2) Marginal storage
cost 15 usually specified as a constant value i the
optimal grain storage hterature regardless of the
level of carryover However, the total cost of storage

function can be specified so that the marginal stor-
age cost Increases as Carryover increases

In the third term of equation (2) the derivative of
each of the maximums, f] +1> With respect to next
year’s total supply, S, 41,18

0f o1 _ ORjpa1 98C(Cypeq)
95,01 9511 985, 141
fQ t+2 6
+rZ (Pg +Cx t+1) (6)

aS_|,t+1

which equajs (a/B-1/BNS, 441~ Cy 1+1) - 0t O or
P $ Multiplying each possible price next year,
Pj t+1, DY 1ts probability of occurring and summing
over ], as shown 1n the last term m (5 1), produces
next year’s expected price for the current year’s
level of carryover This expected price 1s shown 1n
the last term of (5 2) The maximum f, ;,; equals
the value of consumption next year if supply turns
out to be S t+1> MINUS the storage cost associated
with this level of supply, plus the discounted
expected value of the maximums for year t+2

The mdex 2 =1,2, ,Irepresents the possible
levels of total supply 2 years hence and

(Pr(8g s2 | Cy t+1)) 1 the probabihity that total
supply 2 years hence will be at level £ 1f supply
next year 1s at level S, ;,; The partial dernvative
of f] t+1, Shown 1n (5), 15 taken with respect to
next year’s total supply rather than with respect
to the current year’s carryover This substitution
can be made because a given increase 1n carryover
from the current year increases next year’s total
supply by the same amount

Nonlinear specifications of demand require inte-
gration and differentiation techniques that differ
from those shown when a linear specification of
demand 1s used However, the standard expression
of the first-order condition shown n (5 3) 15 not
altered by using a nonlnear specification of
demand

Price Method for Estimating Optimal Carryovers

One can find optimal carryovers by using the
first-order condition in (5) The first step 1s {o

SBurt's article (2} helped us understand how to take the

derwvative of f, , , with respect to §,
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calculate the price, P, ,, for each level of total
supply 1n year T, the last year, by use of the
demand equation As with the value of consumption
method, there are no carryovers in the last year

The second step 1s,to calculate the optimal carry-
over for each level of-total supply 1n the next to

last year, year T-1, using expression (5 1) The
procedure 1s to search over the possible carryover
levels (given the level of total supply) to determine
the carryover level that makes (5 1) equal zero This
may be impossible for low levels of total supply

If equality 1s impossible, the optimal carryover 1s
zero As mentioned earlier, an increase in carryover
Increases the current year’s price and decreases next
vear's expected price We can calculate the current
year’s price, P, . n (5 1) by evaluating the demand
function at the given level of total supply minus

the chosen level of carryover

One uses the prices found for year T, the last year,
In the last term 1n (5 1) when searching for the
carryover level for year T-1, the next to last year
The probability of each of these prices occurring

as well as next year’s expected price shown

1n the last term 1n (5 2), 1s determined by the carry-
over level

As with the total value of consumption method in
equations (1) and (2), additional years are added
until the carryover converges to a particular value
for each level of total supply The optimal carry-
overs are the same as those that.one.-finds using
equations.(1) and (2)

In this example with random production, there 1s
no computational advantage in calculating optimal
carryovers by the price method, that'is, by the
first-order condition However, when a random
demand component 1s also included, the pnce
method does offer computational savings

Optimal Grain Storage When a Random
Demand Component is Included

Equations{7) and (8) include a random demand
component 1n addition to random production

finT = {[E?X[Rl,h,'l" IS, r=Ci 7.Dn 7]

:E\i—-l

(7)
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1 H
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The indexes t, 1, ], and k are the same as defined
for equations (1) and (2) In addition to these
indexes, equations (7) and {8) contain the two
mdexes hm = 1,2, H, which represent alterna-
tive discrete levels of the demand curve 1n the
current year and for next year, respectively The
probability of each demand level’s occurring next
year 1s represented by Pr(D,, ,,;) The value of
consumption 1n the current year depends on both
total supply minus carryover, Sl ¢ Ck ¢ and on the
level of the current year’s demand curve, Dh t
which 1s known after harvest The total expected
value of consumption for next year depends on the
catrryover level and the probabilities associated with
next year’s supply levels and demand curve levels
The carryover decision influences the level of supply
next year, but does not influence the level of the
demand.curve next year

The dynamic programming procedure for finding
the optimal carryovers 1s slightly changed With

a stochastic demand component included, the
optimal carryover must be found for each combi-
nation of current year demand and supply levels
The computations for calculating the expected
future value of consumption involve an additional
summation For each level of total supply next
year, we must first find the expected value of
future consumption over all levels of demand next
year

If 40 levels of supply and 40 levels of demand are
used in the value of consumption algorithm, then
optimal carryovers must be found each year for

all 1,600 combinations of supply and demand This
tremendous increase 1n computational requirements
caused by making the optimal grain storage problem
more comprehensive 1s an example of the ‘“curse

of dimensionality” in dynamic programming How-
ever, a different formulation of a dynamic pro-
gramming problem often results 1n substantial
computational savings




The algorithm shown in equations (7) and (8) has
an interesting result that can be used to reduce the
number of computations, namely, the level of
supply minus the level of demand determines price
and carryover If1to1+1and hto h + 1 represent
equal increases in the current year’s levels of supply
and of the demand curve, {for example, 10 million
bushels), then price and carryover are not affected
The difference between the supply and demand
curves 1s not changed by these equal increases How-
ever, consumption 1s increased by an amount equal
to the increase in supply (or demand)

This result 1s useful because 1t implies that one can
achieve computational savings by using the price
method to solve for optimal carryovers, that 1s, by
using the first-order conditions One can achieve
these computational savings by using differences
between the levels of supply and demand in con-
junction with the first-order conditions for maxi-
mizing profits from storage

pl

Let us now return to the problem with 40 levels

of each supply and demand If the increments
between the successive levels of supply and demand
are equal, then there are still 1,600 combinations
of supply and demand levels but only 79 different
values for supply level minus demand level This
means that only 79, rather than 1,600, optimal
carryover.levels need be calculated for each year
The probability of occurrence of each of the dif-
ferences 1n supply and demand levels can easily be
calculated from the probabilities in eguation (8)
The probability of-a particular difference occurring
equals the summation of [Pr(S, ;) times

Pr(Dy, 141 )] over the number of ways that the
difference can occur

When we use the first-order condition given 1n the
previous section, the dynamic programming algo-
nithm performs equally well 1n solving for optimal
carryovers using differences in the levels of supply
and.demand Now the current year’s price s calcu-
lated by use of the supply level mimmus the demand
level and the chosen level of carryover Also, next
year’s expected price 1s calculated by use of the
probability of the various supply levels minus
demand levels occurring 1n the following year,
given:the carryover decision

For this problem, the 1 ndex in equation (5) repre-
sents the alternative supply minus demand levels
The probability distribution in equation (5) for this
problem represents the probabihities of the alterna-
tive supply minus demand levels occurring 1n the
following year, given the carryover decision An
Increase In carryover mcreases the current year's
price It also increases the expected level of total
supply next year, thereby increasing the probabili-
ties of large levels of supply minus demand This
srtuation, of course, reduces the expected price
next year

Gardner (3, p 133) included a random demand
component in hié study by using the price method
rather than the value of consumption method
Gustafson (5, p 51) oniginally showed how to
include a random demand component along with
random production

Optimal Grain Storage When a Rational
Production Component is Included

Gardner and Ippolito independently developed
dynamic programming algorithms for including
rational producer response with optimal grain
storage Gardner’s algorithm emphasizes the opti-
mal carryover decision after harvest, assuming the
rational production response next year Ippolito’s
algonthm emphasizes the rational production
decision at planting, given optimal carryovers for
each possible level of total supply after harvest
Both algorithms represent major advances tn using
dynamic¢ programming to analyze grain storage

A major difference between the two algorithms 1s
m the way that the rational production response

15 found Ippolito’s algonthm uses an 1terative pro-
cedure that converges to the rational production
response Gardner’s algorithm uses a tral-and-error
search procedure which 1s the typical approach n
dynamic programming algonthms Ippolito’s itera-
tive approach diminishes the curse of dimension-
ality problem that 1s encountered when a second
decision vanable 15 introduced

Gardner’s Algorithm

Gardiner’s algorithm uses equations (9} and (10)

f v =max[R, po—C 1=12 |1
fir k=1[ Lt Cxrl (9)
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k=12, ,K
g=12, ,G
1=12, |1 (10)

The indexes t, 1, J, and k are the same as defined
n equations (1) and (2)

In addition to these indexes, equation (10) contains
theindex g =1,2, |G, which represents the pos-
sible levels of production next year The vanable
E(PROD,) in equation (10) represents next year’s
expected production ¢ This equation includes an
additional term representing variable production
cost, VC_, whaich, like storage cost, 15 subtracted
Including variable production cost means that the
value of consumption minus variable production
cost 15 the objective function This means that
the objective of maximizing economic surplus
replaces the objective of maximizing the value of
consumption

The computations for this algorithm include
straightforward additions to those previously
explained for random production and stable demand
{equations {1) and (2)) However, there 15 a subtle
difference 1n the optimal storage behavior This
difference will be discussed later

The additional computations involve the probability
distribution of production outcomes The rational
production decision determines the mean level of
next year’s possible production outcomes Ths 15
reflected 1n the probability term 1n equation (10)
With rational production included, there are two
decision variables Both the carryover and produc-
tion decisions influence next year’s total supply
Also, each decision influences the other That 1s,
carryover and expected production are interdepen-
dent endogenous variables, consequently, their
levels must be made consistent In this algorithm,
optimal carryovers are found by a two-dimensional
search among the carryover and production levels

®The random production specification can be considered
as a special case with only one level of production response,
g
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The objective of the search 1s to find the combina-
tion that maximizes equation (10)

Thus algorithm, hke that for random production,

15 started in year T, the last year considered Adds-
tional years are considered until carryover converges
to a particular level for each level of total supply
and until the rational production level for next year
converges to a particular level for each level of
carryover from the current year

An examination of the first-order conditions for
maximizing equation (10) reveals the economic
behavior involved Expression (11) and equation
{12) show the first-order conditions for storers
and producers, respectively

af,_t

= -P,, - MSC
0C ¢

+IE(Pyy; ICy (, B(PROD, (.1 ) <0 (11)

P, ¢ 2 tB(Pyy; 1 Cy 1, E(PRODy 1,1)) - MSC  (111)
of,
—— ——=rE(P,., |C, ,, E(PROD )
BPROD, 11y Py 1Cy gt+1))
aVCg
&

APRODy 44 (12)

E(Py,; [Cy ¢, E(PROD, y,4)) = MC (12 1)

where V( 1s the varniable production cost and MC
1s the marginal cost of production

In this situation, both first-order conditions must
be simultaneously fulfilled The first-order condi-
tion for maximizing profits from storage includes
the effect of storage on next year’s expected pro-
duction The first-order condition for maximizing
profits from production includes the effect of
carryover on production

The partial derivative with respect to carryover
for the first three terms in equation (10) 1s iden-




tical to those 1n equation (2) with random produc-
tion The partial denvative of the last term 1n
equation (10) with respect to carryover is zero

as production 1s held constant when this partial

1s taken The partial denvatives of the first two
terms 1n equation (10) with respect fo production
next year are both zero Carryover 1s assumed to
be held constant when these partials are taken
Therefore, neither current year’s consumption

nor cost of storage 1s affected The partial deriva-
tives of the last two terms in equation (10} with
respect to production are next year’s expected price
and the marginal cost of production The first-
order condition 1n equation (12} shows that pro-
ducers maximize expected profits by equating
expected marginal returns (price) with marginal
costs Notice that the derivatives of the third term,
with respect to both carryover and next year’s
production, are identical Identical changes in
carryover and expected production will change
total supply next year by identical amounts and,
hence, the expected value of consumption next
year by 1dentical amounts

For each level of carryover, storers know the
expected production response It 1s the expected
production level, given carryover, that equates
expected producer price and margmal production
cost 1n the following year Thus, carryover and
next year’s expected production come 1n “‘ordered”
pairs Storers choose that pair which also fulfills

the first-order condition in expression (11) As
under random production, this choice maximizes
their expected profits from storage

A random demand component can be included
with optiunal storage and rational production just
as with optimal storage and random production

As under random production, computational
savings are gained by the addition of the random
demand component to the first-order conditions
(expression (11) and equation {(12)) rather than to .
the value of consumption equations (equations (9)
and (10))

Ippolito’s Algonithm

Gardner’s algorithm solves for the current year’s
carryover and next year’s expected production
Ippohto’s algorithm solves for the current year's
expected production and the current year’s carry-

over Because carryover and production decisions
follow one another ad infimtum, the chowce of
which half of the cycle to put first 15 arbitrary

Ippolhito’s algonithm finds the rational production
level for each level of carryin in the current year,
and 1t finds the optimal carryover level, given the
level of carryin, for each possible combination of
production outcomes and demand levels'in the
current year Asin Gardner’s algorithm, the pro-
duction and carryover decisions are interdependent

The current year’s production and demand 1n
Ippolito’s algorithm are specified as PROD, =

v+ 8E(P,) + V, and as QP =a - P, + U, respec-
tively The stochastic vanables V, and U, determine
the levels of the current year’s supply and demand
curves They are known after harvest Producer’s
expected price, E(P,), 1s determined at planting

At equilibrium, this 15 the rational price that equates
total expected 'supply (the given carryin level plus
expected production) with total expected demand
(expected carryover plus expected current year
demand) The current year’s price, Py, 1s determined
after harvest by the carryover decision The optimal
carryover level equates this price with next year’s
discounted expected price minus the marginal
storage cost

The flow chart in the figure shows the steps in
finding carryover and expected production in the
current year gaven a particular level of carryin
Following 1s a detailed explanation of the flow
chart and of the other steps in [ppolito’s algorithm
The 1 1ndex (1 = 1) mdicates the alternative
levels of the difference between the levels of the
supply curve and the demand curve The indexes
forkandn (kn=1,2, ,K)indicate the alterna-
tive levels of carryover for the current year and
carryin from the previous year As in the previous
algornithms, the t index (t =T, T-1, T-2, ) indicates
the year, starting with the most distant year con-
sidered

Equation (13) 1in the figure shows that the current
year’s carryover, Gy , 1s found given the level of
carrymn, Cp, -1, and given the level of the supply
curve minus the level of the demand curve, W ¢
The stochastic variable W,  equals V; mmus Ut
Each Wl ¢ represents the probability associated
with an Iinterval on the probabihty distribution
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Figure

Steps in Ippolito’s Algorithm for Determining Carryover and Expected Production

C. o +EPROD+WI =C +“"BP|1

n,t ko, 1
1=1,2, I (13)
where Pl 1&Ck , are found in (14)

(P ,IC, ., +EPROD +W -C ) >

E{P,, ,IC, , . EPROD,_ .)-MSC (14)
I
E{PIC, )= 11 (Pr(W, 1P {15a)
-
E(PROD} =y +8E(P {C_ ) {15b)
E(D)=a-BE(P iC_, ) (15c)
|
E(C}= T [Priw )] {C, W, ] {15d)
1=1
ES,=C, ,_, + EPROD -EC -ED, (16)
Y
=< lBs,I<e (17)
No

X=C, (., *EPROD, (18a)
Y=X-{2 EStlaX)"(ESt) {18b)
EPROD =Y-C_ {18¢)

t-1
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of W, The intervals for all the W, ;s define the
probability distribution of W, n discrete seg-
ments 7 As previously explained, the supply curve
level minus the demand curve level (in this algo-
rithm, W ;) is a determinant of carryover and
price An'assumed value of expected production,
EPROD;, 15 first used 1n equation (13) for a given
level of carryin Improved estimates of expected
production are calculated from the results of
equation (13) for all the values of W,  given a
particular level of carryin The procedure for cal-
culating improved estimates of expected produc-
tion 1s explained later

Equation (13} 1s solved for carryin for all values
of W, ; given a particular level of carryin, Cj -1,
by use of expression (14) This expression differs
from Gardner’s expression (11 1) only 1n that
specific alternative production levels are not spect-
fied prior to using the algorithm A trial-and-error
search 1s made among the possible carryover levels,
Cy i, given the level of Gy g + EPROD; + W, ,,

to find the level that makes the current year’s price
n (14) equivalent to next year’s discounted ex-
pected price minus the marginal storage cost This
trial-and-error search 1s done for each value of

W,.t One calculates the current year’s price, P, ;,
from the demand equation, Q = o - P, by using
Cpe-1t E(PRODy) + W, - Cy ¢ s the value of @

To start the algonthm, assume next year’s carry-
over, year T, equals zero regardless of the carryover
level from the current year, year T-1 This restric-
tion allows us to find next year’s expected price

by setting carryin plus the supply equation equal

to the demand equation and then by solving for
expected price, E(Pp Gy p_1) = (-Cy 71 t - YV
(B+6) The expected price 1s found for each level

of carryover, Cy 7-1, from the current year (carryin
for next year) Next year’s expected production
equals E(PRODT) =g+ & E(PT f Ck,T_l) Next
year’s expected price for each level of carryover
from the current year, E(P | Cy 1), 15 the infor-
mation we need to determine the optimal carryover
level using expression (14)

The results from equation (13) for a given level
of carryin are used to determine whether the value
of expected production used n this equation 18

71t 1s convenient Lo make W, | the midpoint of interval
i and to make all the intervals oilequal widLh

within an allowable limit of equating total expected
supply with total expected demand First, as shown
1n (15a), the expected price, E(P,[C (), 1s cal-
culated from the results of equation (13) Next, the
expected production, E(PROD,}, and the expected
current year demand, E(D,), implied by this ex-
pected price, are calculated 1 (15b) and (15c¢)
Finally in (15d), the expected carryover, E(C;), 1s
calculated from the results of equation (13) These
expected production, E(PROD, ), and the expected
1n, are used 1n equation (16) to determine the
expected excess supply

This 1s the excess supply that rational producers
would expect given the sum of carryin and the
tentative value of expected production-used n
equation (13) Next, expression (17) determmes if
the absolute value of this expected excess supply
1s less than a small positive value, € If not, we cal-
culate an improved, but still tentative, estimate

of expected production using (18a), (18b), and
(18c) This improved estimate 1s then used in
equation (13)

Ippolito showed that the expected excess supply
decreases monotonically as total expected supply
increases This decrease imphes that there 1s a
unque value of total expected supply which has
a zero excess supply Ippolito also showed that
the derivative of expected excess supply with
respect to total expected supply hes between
-(8+6)}/8 and -1 ® One finds an 1mproved estimate
of total expected supply by approximating

the excess supply function by its hnear tangent
at the current estimate of total expected supply
The improved estimate of total expected supply
1s calculated n equation (18b), 1t1s the value that
makes the linear approximation equal to zero
Because carryin 1s given or fixed, the improved
estimate of expected production equals the 1m-
proved estimate of total expected supply minus

8The derivative of the expected excess supply function
with respect to total expected excess supply equals
a (_B+_G_PROB— 1) - 1 The vanable PROB
B \Br+1)+a
1s the probability that carryover for the current year 1s

&
greater than zero and equals ElWl,t (where Wz t represents
=

the smallest value of Wi,t resulting 1n carryover greater than
zero in year t} The values of Wi,t 1n this summation decline
in succession [rom the largest value to the smallest value
assoclated with carryover greater than zero PROB increased
with 1ncreasing sums of carryin and expected production
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carryin as shown n equation (18¢) The improved
estimate of expected production 1s then used n
equation (13)

Ippohto’s algorithm proceeds by using improved
estimates of expected production in equation (13)
to calculate optimal carryover levels and by using
the results of equation (13) to calculate 1improved
estimates of expected production This iterative
procedure 1s continued until the absolute value
of the expected excess supply m expression (17)
1s less than the small positive value, ¢ At this
point, the optimal carryover decision and the
rational production decision are consistent for
the given level of carrym Using this procedure,
one calculates the rational production decision
and the optimal carryover decision for each level
of carryin m the current year

The current year’s results from-the algorithm
include the current year’s expected price for each
level of carryin From the viewpoint of the previous
year, next year’s expected price 1s known for each
level of carryover This information 1s used to solve
equation (13} and expression (14) for carryover

In the previous year Also, one finds improved esti-
mates of expected production by iterating the .
results of equation (13) for a given level of carryin
until the expected production s the rational pro-
duction level—that 1s, until the absolute value of
excess supply 1s less than the small positive value, €

Additional years are considered until the optimal
carryover converges to a particular value for each
sum of carrym, expected production, and supply
level minus demand level (Cp -1 + E(PROD,) +
let) and until the rational production level con-
verges to a particular level for each level of carryin
At this pomt the mfluence of the zero carryover
restriction 1n the last year, year T, has been com-
pletely dissipated

For an example of the use of Ippolito’s algonthm,
readers may check our paper (4) We used the algo-
nthm to find optimal storage rules and rational
production responses for the U S soybean market
The efficiency of Ippolito’s algorithm enabled us

to find optimal storage rules and production re-
sponses under the additional constramnt of a price
band supported by buffer stocks We also performed
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stochastic simulations of several price-buffering
grain storage policies, and we analyzed the resulting
distnibutions of prices and production

Conclusions

The two dynamic programming algorithms mvolving
rational producer response that Gardner and Ip-
polito developed are the most advanced 1n the
optimal grain storage litersture Both are logical
extensions of Gustafson’s ongmal dynamic program-
ming algonthms which are the foundation for this
hterature When these algonithms are described

with the same notation, the close relationships
among them become clear
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