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Estimating Input Cost Shares for-Agriculture
Using a Multinomial Logit Framework

By Michael LeBlanc*

Abstract

Many econometnc analyses include dependent vanables constrained to the interval between zero
and 1 Under such conditions, simple regression procedures break down Several alternative stochas-
tic models which avoid this problem can be defined depending on the assumed error structure Two
alternative forms of the logit model are treated here The multivanate logit approach assumes that
the share specification 15 an accurate representation of the underlying input demand strueture The
multinomial logt approach treats the dependent vanable as a probability with a multinomal

density
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Many econometnc analyses include dependent vanables which
are constrained to the interval between zero and 1 Typical of
this type of analysis 15 the simultaneous estimation of input
cost shares Development of the transloganthmc (translog)
cost function has increased interest in eshhmating systems of
input share equations (10, 11) Cost functions and underlying
share equation systems have been estimated by Chnstensen and
Green (9), Berndt and Wood (6), Denny and Pinto (12}, and
Humphrey (18) ' From share equations 1t is possible to denve
mput price and substitution elasticities (5, 20, 25)

However, there 1s no imphait or explicit mechamism constran-
tng the prediction of input shares to between zerc and 1 by
use of simple regression procedures Predictions may fall out-
side the zero-1 interval and, because of the grouped nature of
the data, error terms are likely to be heteroscedastic The
ohjective here is to outhine two versions of a logit model which
expheitly force predicted input shares to sum to 1 The logit
15 a sensible and convenient alternative to the limited depen-
dent vanable problem encountered when one estimates input
share equations derived from a'translog cost function

First, I descnbe the underlying structure of the logit model I
present two altemative forms of the logit model and discuss
an estimation methodology for each Finally, I cite an ex-
ample of a multinomal logit model where 2 maximum hikeli-
hood technmque 15 used to estimate input cost shares for
agnculture

*The author 1s an economist with the National Economies
Division, ERS

' Itaheized numbers in parentheses refer to items in the
References at the end of this article

The Logit Model

The logit model 1s one approach to the analysis of a general
class of problems termed discrete choice behavior These
types of problems have been inveshgated 1n other fields for
many years (2, 3) Economists have begun to analyze prob-
lems which could be cast in this framework by considenng
discrete choices as selections from a continuum of alterna
tives, thereby integrating these problems into the theory of
the household and firm

Statistical economic analysis of the general population or the
choice behavior of the average firm or consumer 1s compli-
cated because such behavior must be descnbed 1n probabal
istic terms The probability of a particular choice is condi-
tional on the explanatory vanables selected for the analysis
A discrete choice framework has been used to examine many
problems including migration (28), occupational choice

(7, 30), demand for housing (35), and demand for consumer
durables (16, 33)

Interest in the logit denves from its relatively simple struc-
tural form (29) The logit forces estimates of the dependent van-
ables to be between zero and 1 while summing to unity It
allows for a wide array of functiona! forms, although cer-
tain functions are more easily applied When applied in con-
sumption analyses, the logmt allows for nonunitary income
elasticities, and when applied win-produetion analyses, 1t does
not place a priori restnctions on elastictties of substitution
Recent applications of the multinomial logit analyze the ex-
penditures of firms on inputs (20) and of consumers on
household goods (34)
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The basic structure of the logit expenditure system 1s wntten
as

k
S, = exp{c,(x))/ Elexp(c}(x)) 0=1,2, k) (1)
)=

where 8, 15 the share or proportion of total expenditures spent
on the 1th good, x 15 a vector of explanatory vanables such as
prices or income, and ¢, 1s any mathematically well-behaved
function inking the explanatory vanables and the dependent
share varnables

Two alternative forms of the logit transformation can be
used for empinical analysis The multinomial form of logit, or
conditional logt (27), treats the dependent vanable as a prob-
ability with a multinomial density The multivanate logit
emerges from a more ad hoc prediction-onented approach
which assumes that equation (1) 1s an accurate functional
charactenzation of expenditures With either form, one can
incorporate many factors which influence expenditures,

such as fanmly or firm size, as explanatory variables while
maintaining a theoretically consistent expenditure system

Multinomal Logit

The theoretical foundation of the multinomial logit sets the
decisionmaker in an environment where discrete choices of
expenditures are made If 1t 15 assumed that the larger the
value of an index the greater the probablity that the event
will occur, then one can define a monotonic relationship link-
ing the value of the index and the probahhty of the event's
occurrence

The decisionmaker’s choices are described In a decision index
of the form

c=c(x)+e (2)

where e 15 a random disturbance associated with a given prob-
ability distnbution and ¢(x) 1s nonstochastic Faced with k
alternatives, the decisionmaker will choose alternative 1 only
ife(x)+e > ¢,(x) +e, forall #1 The probability of this
event occurnng 15

P, = Prob[c,(x) + &, > c,(x) +¢))] forally#1 (3)

and, therefore

P, =Probje, - e, > ¢/(x) - ¢,(x)] forall)#1 (4)

One must make binary compansons of ¢,(x) with each alter-
native cJ(x) Probability distributions whech are closed under
subtraction, or produce convement distnbutions when sub-
tracted, are particularly attractive candidates for the prob-
ability densities of e (19)
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If F(eq,e5, ,e)) represents the cumulative distnbubon
function of the disturbances e, and 1f F, denotes the marginal
density function of e, (the denvative of F with respect to ¢,},
then the probability P, 1s wntten

P =f Fl(eq +eq(x)-¢x), ,ep*+cy(x)
{5)

- ¢ (x) de,

If the errors are independent and 1dentically distnbuted, then
a necessary and sufficient condition for the model desenbed
by equation (4) to yield the conditional logt form 1s that the
errors have a Werhull density (27) That 1s

e, ~exp (~exp(-e))) (6)

The Weibull density 1s a conventent way to generate the.
logistic distnbution It 15 closed under subtraction and closely
approximates the normal distnbution while being numencally
simpler McFadden (27) indicates that the underlying choice
structure implies the independence of wrrelevent alternatives
axiom The independence of irrelevant alternatives condition
15 both a strength and a weakness of the logit expenditure
model (14) It s a strength because introducing additional
alternatives does not alter the relative odds with whrch pre-
vious alternatives are selected Itis a weakness because 1t
requires that the cross-elasticity of demand for each old ex-
penditure category, with respect to an attnbute of a new
category, 15 uniform across all old categones

If the multinormal form of the logt 15 used to descnbe
producer expenditures on inputs, then a set of k mdependent
conditional probahlities are assumed to jointly determine the
allocation of expenditures mto k input categones The prob-
abilities have a logistic structure and are conditional on mput
prices and other explanatory vanables The probabilities are
written as

k
Pl = exXp (c](x))lrjglexp (c](x)) (l = 1v 21 L4 k) (7)

where P, is the conditional probabihity of $1 being allocated to
input 1, X 1s a vector of explanatory vanables, and ¢(x) 15 a
decision index

Because the probability P, 1s unobservable, the model 1s made
operational by use of the share of the cost of production as-
socated with input 1 as a proxy (31) Equation (7) 1s there-
fore rewntten as

k
S, = v,q,/M = exp (0,(X))IJ§1 exp(c,(x))

(8)
(1=1,2, ,k)




where M 1s the sum of each input (q,) used m production
multiplied by its input pnce (v)

Before the multinormal logit input expenditure model can be
estimated, 2 functional form must be selected for the decision
mdex ¢,(x) The function may include input pnces, output,
and all other production or producer charactenstics consid-
ered relevant Although no specific restnctions on ¢,(x) are
necessary to estimate the multinomial logit model, estimation
15 easter If the functions are assumed to be hnear in their
parameters and invariant in structure between equations
except for nterequation parameter variability The functions
are written as

e (x) = 2‘. B, h, (x) 1=1,2 k¥ (9
=1

where B, are parameters and h,, are functions

The expenditure of $1 on a gven input 15 analogous to sam-
phing with replacement from a population classified into k
categones The resulting multinomal distnbution 1s wntten
as

M
f= Pfl pEk (10)
E;' Ek' K

where E, equals v,q, and 1s non-negative For a sample of T
observations, the loganthm of the likehhood function as-
soclated with equation (8) is wntten as

InL, = C z ( g] S 1 (E )) 11
nlL, = Constant + ¢~ In exp(c
t=1*1=1 it 1=1 P( lt) ( )

Although the functions ¢,(x) may take any form, functions
which are hnear 1n parameters are sufficiently flexibie for
most purposes A linear form also leads to simple expressions
for the maximization of the likelihood function Therefore,
if

n
c,t=J§ B,x,; =1,2, ,k) (12)

1

then, the first order conditions for the maximyzation of the
log-hkehhood function are

T
alnL[aBu = (Elx'tlslt “Byl=0 (=1,2, ,k) (13)

0=1.2, ,n)

The second-order conditions for the maximization of the log
likelihood function are

T
azlnL/aBua B]j’ = tE].ijx]'tplt(Plt- - 1) < 0

(1=1,2, ,k)
0=1,2, ,n)
(14)

where both parameters (denoted by j and |’) are in the ith
equation and

0ZnL/dB, 0B, , = élx,tx],tpl'tp,-t <0 (1=1,2, ,b)
(0=1,2, ,n)
(15)

where each parameter 15 from a different equation

The maximum likehihood estimators are invanant to mono-
tonie transformations of the likelihood function The log
likelihood function 1s maximized where the first-order de
nivatives are zero (equation (13)) and the matnx of second-
order derivatives, formed by the denvatives in equations
(14) and (15), 1s negative definite Because the first and
second denvatives are nonlhinear 1n parameters, an iterative
search procedure 1s needed to solve for the parameters B”

The estimation procedure 15 comphcated by an indeier-
minancy in the equation system which anses because the
sum of the shares must equal 1 The share equations are,
therefore, invanant with the addition of the same expression,
InZ for example, to each deciston index The indeterminancy
causes the matrix of second-order partial denvatives of the
log-likelihood function to be singular

One can avoid the singulanty problem by normalizing the
parameters for a particular variable in the k functions (34)
The normalization does not affect the predicted shares A
straightforward approach 1s to divide the k -1 equations by
the kth equation In a loganthmie form, the share system 1s

n
In(§,/8)} = Jz‘.l(BlJ - Bk])h”(x]) (=1,2, ,k-1) (16)

Maximizing InL with respect to ¢, 1s equvalent to maximizing
InL with respect to ¢, - ¢y for any k (34) Itis only necessary
to constder k — 1 equations as the information provided by
the kth equation 1s constant Furthermore, regardless of the
normalization employed, the predicted values of S, are 1den-
tical Therefore, equation (16) can be used to estimate input
cost shares by use of linear regression One can compute the
individual input cost shares, S, from the regression results
while foreimng the shares to sum to umty
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Multivanate Logit

An alternative stochastic form of the logit uses the share
system given 1n equation (8) directly The share equations are
interprefed as an accurate charactenzation of producer expen
ditures for nputs (§,22) One can generate the stochastic model
structure by appending error terms e, to each share equation

Each equation’s error term represents deviations between
optimal cost shares and observed cost mmimizing shares
There are several reasons for the existence of the error term
the failure of iInput markets to clear perfectly, the aggrega-
fion or measurement error, or the randomness of human
behavior The error term associated with the ith cost share
15 assumed to be distnbuted normally with mean zero and
vanance ¢, The vanance 15 not assumed to be constant
across shares because the vanance of e 1s generally not
equal to the vanance of e

Three covanances are generated by the error terms in the
share equafions One of these 15 the covanance between
disturbances of different observations and of the same share
equation

0,=Bley,e) (t#1'=1,2, ,TY0=1,2, ,k)(17)

The second represents the relationship between different share
equations and observations

0, = E(e, e pHt#t'=1,2, ,T)1#1=1,2, ,k) (18)
Both these covanances are assumed to equal zero

The third covanance anses from the combination of different
share equations and the same observation

a[] = E(eltv e]t) (t = 11 2: ) T} (l #-‘.l = 1, 2, ] k) (19)

This covanance 1s usually referred to as the contemporaneous
covanance (32) Because the underlying production structure
1s estimated as a system, 1t 1s unhkely that the contemporan-
eous covanances are zero By appropnately stacking the share
eqguations, one can write the vanance-covanance matnx for
the disturbance term as a block-diagonal matnx with T diag
onal submatrces

This matnx represents the interdependency of the k share
equations for each observation (t= 1,2, ,T) The off-
dhagonal submatnces of the error system’s vanance-covanance
matnx are zero by assumption

The specified system of share equations 1s charactenzed as a
seemungly unrelated regression problem (41) Zellner’s gen-
erahized least-squares procedure cannot be directly apphed,
however Because the disturbances of the share equation must
sum to zero, the estmated vanance-covanance matnx nec-
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essary for implementing Zellner’s procedure is singular One J
can transform the share equations to an estimable form by
normalizing with the kth share equation

Parameters estimated by the Zellner generalized least-squares
procedure are not invanant to the choice of common denom- :
inator share when an estimated vanance-covanance matnx is
employed However, maximum hikelihcod estimates are 1n-
vanant.to which equation 1s deleted (1), and 1terating the
Zellner procedure leads to maximum hkehhood estimates
(13, 21) Therefore, 1terating the Zellner procedure 1s a com-
putationally efficient means of demving parameter estimates '
In general, the properties of maximum hkelihood estimators ]
only hold asymptotically However, most of the maximum
hkelhhood estimators’ asymptotic properties are present in
small samples (21) |

If the same set of regressors 15 utilizedin all k - 1 equations, |
then the i1terative Zellner procedure and ordinary least squares
give identical parameter estimates However, estimates of the
standard errors may differ

An Example of a Multinomial Logit Estimation

A multinomual logit model 15 used to estimate a system of
cost share equations for agncultural inputs In addition, the
price elasticity of demand for each input 1s calculated by use
of the multinomial logit parameter estimates Although the
procedure allows one considerable flexibility 1n selecting a
functional form and avoids the hmited dependent vanable
problem, it 15 5till subject to the same practical difficulties
(for.example, data aggregation) n applying all econometne
models

Estimated Form

The underlying model structure estimated 1n this example is

k k LS
S, =exp(a, + JElBuln\'J)flEleXP (3, + JEIBIJIIW)) (20)

where S, 1s the 1th input share, a and B are unknown param-
eters, and v, 1s the pnce of mmput )

Because the model specified 1n equation (20) leads to a
singular matnx of second-order denvatives, a maximum hkeh-
hood procedure cannot be apphed Instead, one can trans-
form the share system to an estimable form by normahizing
on the kth equation After talung loganthms, the estimated
form of the share system 15

k
ln(SlISk) = (al - ak) + JE]_(BU - Bk]) ll'lVJ

(=12 ,k-1) (21)




The parameters a, and B, are now defined as differences from
the parameters of the kth equation

Data and Estimating Methodology

Production cost data were developed for land, labor, fertilizer,
energy, and capital inputs for the United States Crosssec-
tional data for 39 continental States for 1974 are utilized
(15,24, 38,39,40)

Because the hkelihood function associated with equation (21)
has non-linear first and second denvatives, an interative search
procedure 15 used to solve for the maximum likelihood esti-
mates Tyrrell (34) developed the computer software used in
this analysis to analyze household expenditure patterns
Tyrrell employs both first and second denvatives in an ex-
tended Newton-Raphson procedure (see (17, 26)) The final
output mcludes a vector of estimated coefficients, first- and
second-order denvatives of the likelihood function, asympto-
tic standard errors, and asymptotic tstatistics

Model Results

1 estimated the expenditure system by normahzing on the
capital cost share Table 1 shows the estimated parameters
and asymptotic standard errors of the model specified in
equation (21} Because maximum likelihood estirates are
asymptotically normally distnbuted and the standard errors
are asymptotically distnbuted as a chi-square, the ratios of the
estimated parameters to their standard errors can be inter-
preted as asymptotic t-statistics

The t-statistres indicate general support for the estimated
parameters Of the 24 parameter estimates, 16 exceed 1 0,
of these, 10 exceed 2 0 The t-statistics for the own-pnce
parameters for each input are the highest The land'and cap-
ital price parameter for each input are the lowest The low-
price land and capital parameters may be associated with
poor measurement of these mputs

Because the share system 15 indeterminant, 1t 15 not possible
to1dentify each Blj In the expenditure system The estimated

Table 1-Multinemial logit parameter estimates’

parameters can only be interpreted as differences from the
parameter associated with the normalizing input cost share
{see equation (23))

The estimated hikelilhood function can be used to formulate
statistical tests (4) The test statistie, - 2In, 1s asymptotically
distnbuted as a ch-square with degrees of freedom equal to
the number of independently imposed restnctions when

A= (I2g1 /192yl T/2 (22)

where [Q2p| and |2y;] are the determinants of the restricted
and unrestneted estimated vanance-covanance matnces of
error terms (32) The chi-square test allows for comparnsons
of different models 1f the restricted model i1s nested within
an uprestncted model In this analysis, the chi-square test 1s
used to test the null hypothesis that all coefficients equal
zero The null hypothesis 15 easily rejected at the 1-percent
level wath 30 degrees of freedom

Although the estimated share system 1s normahzed on the kth
share equation (capital), it 1s possible to solve for the pre-
dicted shares for all inputs The kth share can be computed
because

. k-1 A -
1/(8x +( 2 exp (n(S/S08)))= 1 (23)

where S) 15 the projected cost share for the £th input (capiial)
and ln(S]fTQk) 1s the estimated dependent vanable associated
with the ith equation The estimated share for the kth input
I1s computed as

. k-1 N\
S 11+ T exp(in(S,/Sy) (24)
|=

Table 2 reports the predicted and observed cost shares The
model fails to predict actual cost shares with a high degree of
accuracy The average absolute differences between predicted
and observed input cost shares are 0 05 (land), 0 07 (labor),

Input price
Input
Land Labor Fertilizer I Energy Caputal I Intercept
Land 0 8186 0199 0111 -0 390 -0 653 -7 420
(117) (148) ( 033) { 280) ( 726) (2 450)
Labor - 009 1233 -1320 1384 632 -1 040
(141) (178) ( 358) ( 348) (827) (2 842)
Fertilizer 121 274 576 806 031 -8 330
(129) ( 166) ( 359) (322) ( 785) (2 700)
Energy - 023 987 1249 - 496 - 569 -6 350
(183) (242) (492) (370) (1 092) (3 5486)

! Standard errors 1n parentheses
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Table 2—Predicted and observed cost shares, by State

Inputs
State Land Labor Fertibizer Energy Capital
Predicted l Observed Predicted | Observed Predicted Observed Predicted Observed Predicted I Chserved
Percent
Alabama 0227 0214 0197 0151 0185 0214 0 068 0072 0 323 0 350
Anzona 230 104 218 352 197 146 125 256 230 141
Arkansas 287 361 193 162 171 117 089 095 260 266
Califorma 375 260 202 438 187 117 056 060 169 125
Colorado 267 280 159 199 188 157 129 o717 258 288
Delaware 229 273 208 182 173 252 080 067 221 227
Florida 232 193 341 523 143 079 056 029 226 176
Georpa 238 222 199 162 185 288 067 075 310 252
Idaho 243 191 183 181 217 268 103 087 254 273
Ihnos 428 490 106 047 168 176 062 063 225 225
Indiana 423 470 101 048 175 203 061 059 239 220
Iowa 498 506 061 039 166 172 053 063 222 218
Kansas 386 430 088 062 165 166 124 080 247 262
Kenticky 374 320 063 112 176 162 038 053 350 353
Lowsiana 318 347 188 175 165 126 076 079 254 273
Maryland 205 172 239 189 192 280 076 066 288 203
Michigan 290 249 139 129 205 252 067 056 299 316
Minnesota 357 372 100 053 199 224 075 076 269 277
Mississippr 243 311 230 177 177 131 067 086 283 294
Missour1 353 416 117 062 191 168 068 068 272 286
Montana 239 393 189 103 210 135 102 087 260 281
Nehraska 353 346 105 057 181 211 111 130 250 256
New Mexico 324 168 096 252 140 114 155 174 284 292
New York 206 163 252 195 193 301 075 054 274 297
North Carolina 283 212 109 207 192 210 047 054 370 318
North Dakota 228 307 171 042 220 338 090 069 291 244
Qhio 319 345 155 086 192 219 070 058 265 291
Oklahoma 263 363 137 090 186 140 092 094 322 314
Oregon 880 121 147 298 247 204 085 0864 333 314
Pennsylvania 211 162 237 198 189 233 087 069 277 338
South Carolhina 176 191 204 196 196 260 056 068 369 286
South Dakota 231 359 148 056 206 189 095 107 320 289
Tennessee 334 3317 101 094 183 145 044 059 337 365
Texas 265 255 140 184 150 143 131 128 314 289
Utah 216 211 186 192 226 156 070 062 302 380
Virgima 248 196 170 178 184 260 059 053 340 312
Washington 227 157 132 300 240 227 087 066 314 250
Wisconsin 290 272 158 093 196 226 067 067 289 352
Wyoming 207 236 236 167 224 199 097 121 236 277




0 05 (fertilizer), 0 02 (energy), and 0 03 (capital), whereas the
average observed cost shares are O 28 (land), 0 17 (labor),

0 20 (fertilizer), 0 08 (energy), and 0 28 (capital) if the ab-
solute differences are compared with the observed shares,
then labor and energy are the least accurate predictions and
capital 1s the most accurate The bad predictive capability of
the model 15 largely attributed to the use of aggregate cross-
sectional data The appropnate umit of observation is the firm
However, no religble set of tnput pnce and quantity data are
available at the firm level This problem s particularly true
for energy

In addition to predicting the indrvidual cost shares, the multi-
nomual logmt model enables the analyst to denve the price
elasticities implicit 1n the denved demand for each input If1t
15 assumed that total expenditure on inputs, M, ts not invar-
1ant to changes 1n nput pnces, then the own-pnce and cross-
pnce eleasticities are approximated by

k
E, = 8§, - v(0f,/9v, - ZIS]af],fav]) -1
=

(i=1,2, ,k) (25

and by

k
El] =85 - v](af,;av_, - lelslaf]favj)

t#)=1,2, ,k) (26)

The indeterminancy caused by the adding-up constraint pre-
vents direct calculation of the input price elasticifies How-
ever, the predicted price elasticibies can be denvedf the
elasticities associated with the kth share are denived first
The predicted elasticity for the kth share with respect to
the ith pnce s

N - k-1,
Ekl=Sk-J§18j(B],- By,) +-1(f1=k,or0.1f 1 # k)

(i=1,2, ,k-1) (27)

and, therefore

ﬁ']x = El{l(B]l - By,) (1#1=1,2, ,k-1) (28)

Table 3 reports the average predicted own price and cross-
prce elasticities  All the own pnce elasticities have the nght
sign except labor, which 1s close to zero The magnitudes of
the own pnice elasticities are similar to a translog specifica-
tion wath the same data (24) They do, however, differ
significantly from translog specifications estimated with time-

Table 3—Average price elasticities of predicted input demand

Input price
Factor

Land I Labor | Fertilizer I Energy I Capital
Land ~0152 0116 -1 051 -0559 -0623
Labor -120 006 -1524 1072 519
Fertilizer 099 135 - 539 583 008
Energy 027 921 1 206 ~1 647 - 521
Capital - 022 -227 - 115 - 152 - 600

series data (23) This discrepancy suggests that the data and not
the model specification are the source of the elasticity
differences

Unlike a translog system, cross-price elasticities are not con
strained to be symmetnc In fact, the cross pnce elasticities
for land and labor and for land and energy do not have the
same signs The cross-pnce elasticihes indicate that land 1s a
substitute for labor and fertilizer in farm production, but1s a
complement with energy and capital (36) Controversy still ex-
15ts over the relationship of energy to otherinputs in manufac-
tunng The results here indicate that energy 1s a complement
with capital and 15 a substitute with labor in agricultural
production Although other analyses confirm the results for
capital, results for labor are ambiguous and depend on
whether the model distinguishes between long- and shorirun
input substitution (23)

Summary

The logt model prondes a flexible alternative to the more
popular translog approach to estimating systems of imput
share equations The logit allows for a wader range of explana-
tory vanables and functional forms than does the translog
Furthermore, the logit constrains share predictions to the
interval between zero and 1 T'wo forms of the logit {multi-
vanate and mulfinomial) can be.defined depending on the
assumed error structure For input expend:ture systems,

the multivanate logit assumes the share specification accu-
rately represents the underlying input demand structure The
multinomial logit treats the dependent vanable as a prob-
abiity with a multinomual density Either model can be
estimated with well-known techmques and can prowide
estimates of predicted input cost shares and prce elastici-
ties of demand However, because of the indeterminancy of
the share system, individual parameter estimates can not be
1dentified for the multinomial lopt model

The logit model has been applied to many economic prob-
lems Within the context of agncultural production, addi-
tional applications might include dynamic models or incor-
poration of the cost share system into a macromodel where
agncultural production 1s only one of many production
sectors- Because the logit’s structure forces share systems

to sum to umty,It 15 an attractive candidate for maintaining
consistent predichions
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