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Abstract

This paper investigates the determinants of directed technical change in the electricity
generation sector. We use firm-level data on patents filed in renewable (REN) and fossil
fuel (FF) technologies by about 7,000 European firms over the period 1978-2006. We sep-
arately study specialized firms, that innovate in only one type of technology during the
sample period, and mixed firms, that innovate in both technologies. We find that for spe-
cialized firms the main drivers of innovation are fossil-fuel prices, market size, and firms’
past knowledge stocks. Also, prices and market size drive the entry of new REN firms into
innovation. By contrast, we find that innovation by mixed firms is mainly driven by strong
path-dependencies since for these firms past knowledge stock is the major driver of the di-
rection of innovation. These results imply that generic environmental policies that affect
prices and energy demand are mainly effective in directing innovation by small specialized
firms. In order to direct innovation efforts of large mixed corporations with a long history
of FF innovation, targeted R&D policies are likely to be more effective.
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1 Introduction

Today about 70% of world electricity is produced from highly carbon-intensive fossil fuels,

namely coal, oil and gas. Some countries such as Australia, China, India and Poland even pro-

duce between 70% and 95% of their electricity through the combustion of coal only (IEA, 2010).

This large reliance on fossil fuels explains why the sector of electricity generation is by far the

largest producer of carbon emissions. Electricity production generates 41% of worldwide car-

bon emissions – twice the share of the transport sector – and emissions are expected to increase

sharply in the future due to increasing electricity demand, notably from developing countries. In

light of this, achieving substantial emission reductions will imply de-carbonizing the electricity

generation sector and thus moving away from the dominance of fossil fuel technologies.

Renewable energy such as solar, wind, renewable combustibles and hydropower, can provide

a clean alternative for electricity production. Yet despite rapid recent developments, renewable

energy represents only 18% of world electricity (IEA, 2010). Price competitiveness is the most

obvious barrier to the development of renewable energy. Accelerating technological innovation

in renewable technologies can contribute to lower the costs of renewables so that they can com-

pete on a level playing field with conventional fossil fuel energy sources. Specifically, directing

technological innovation away from fossil fuel technologies and towards renewable ones might

be particularly effective in this respect.

Recent theoretical work on directed technical change in environmental economics has stud-

ied the factors affecting technological choices by firms (Smulders and Nooij, 2003; Di Maria

and van der Werf, 2008; Acemoglu et al., 2012). These models aim to explain why firms keep

on investing in dirty rather than in clean technologies, and how government policy might help

to redirect technical change. A recent contribution by Acemoglu et al. (2012) emphasizes the

role of three factors affecting the direction of technical change: first, the price effect, encour-

aging innovation in the sector with higher prices;1 second, the market size effect, encouraging

innovation in the sector for which there is a bigger market (i.e. demand); third, the direct

productivity effect, which pushes innovation towards technologies with a higher productivity or

existing stock of knowledge. This latter force results from the ability to “build on the shoulders

1In this case, high fossil fuel prices will tend to encourage energy-saving innovation in the dirty sector.
However, if there is a high degree of substitution between the clean and dirty inputs, high fossil fuel prices will
also encourage innovation in the clean sector.
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of giants”: future innovations are building on the existing stock of knowledge or technology,

thereby generating path-dependencies in knowledge creation.

This paper investigates the determinants of directed technical change in the sector of elec-

tricity generation. We use firm-level data on patents filed in renewable (REN) and fossil fuel

(FF) technologies by about 7,000 European firms over the 1978-2006 period. We conduct sep-

arate estimations for specialized firms, which innovate in only one type of technology over the

period 1978-2006, and mixed firms, which innovate in both technologies over the same period.

This distinction is conceptually important. By construction, specialized firms conduct inno-

vation in only one type of technology and do not switch between these different technologies

over the sample period. In that case, the replacement of FF by REN technologies may occur

via the entry of relatively more firms specialized in REN than in FF innovations. By contrast,

mixed firms may switch between technologies over time and substitute FF for REN technologies,

thereby redirecting their innovation efforts within the firm.

We find that for specialized firms the main drivers of innovation are energy prices, market

size, and firms’ past knowledge stocks. Also, prices and market size drive the entry of new REN

firms into innovation. By contrast, we find that innovation by mixed firms is mainly driven

by strong path-dependencies since for these firms past knowledge stock is the major driver of

the direction of innovation. These results imply that generic environmental policies that affect

prices and energy demand are mainly effective in directing innovation by small specialized firms.

In order to direct innovation efforts of large mixed corporations that have a long history of FF

innovation, targeted R&D policies are likely to be more effective.

Our study relates to the empirical literature on the determinants of environmental innovation

using patent data. Much of this literature has been initiated by Popp (2002), who uses U.S.

patent data in 11 energy-related technologies from 1970 to 1994 to study the effect of energy

prices and knowledge stocks on energy-efficient innovations. He finds strong evidence for a

positive effect of both energy prices and the quality of the stock of knowledge available to

inventors on the share of successful energy patent applications. In particular, the price elasticity

is estimated at 0.06 and that of the (instrumented) knowledge stock at 0.84. Taking into account

average within-sample changes, this adds up to an average 2.1% increase in patent activity due

to price increases, versus a 24.3% increase due to knowledge stock increases. Johnstone et al.
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(2010) provide an analysis of how energy prices and various policy instruments affect innovation

in different renewable energy technologies. They find that price-based policies, such as feed-in

tariffs, can effectively increase innovative activities in the more costly renewable technologies,

such as solar power. The common feature of the studies by Popp (2002) and Johnstone et al.

(2010) is that they focus only on clean or energy efficient technologies and they cannot therefore

provide evidence on whether innovation is actually directed away from dirty sectors. By contrast,

an important contribution of our study is to focus on the determinants of relative innovation,

i.e. on what explains a shift towards clean technologies away from dirty ones.

Our paper shares many features with Aghion et al. (2010), who also study relative innovation

at the firm-level, although they focus on another sector, namely the automobile industry. They

study how carbon taxes and firms’ past knowledge stocks induce firms to invest more in clean

(e.g. electric and hybrid) than in dirty (e.g. internal combustion engine) technologies. They

find evidence for path-dependency in the sense that firms that have conducted more clean

innovation in the past also conduct more clean innovation today. Fuel taxes can stimulate

clean technologies, but exactly how much depends on a firm’s innovation history, with the effect

being stronger for firms with a past history of dirty innovation. In contrast to their study,

we conduct separate estimations for specialized and mixed firms, which allows us to study the

factors affecting the replacement of FF innovations by REN ones via the entry of new specialized

firms and via within-firm substitution by mixed firms. In addition, we also analyze the impact

of (REN and FF) market size on innovation, which has been argued to be an important driver

of directed technical change (Acemoglu et al., 2012).

The rest of this paper is organized as follows. Section 2 describes the data that we use in

this paper. Section 3 presents a number descriptive statistics and patterns regarding the patent

and firms’ dynamics in our sample. Section 4 presents the empirical strategy and the main

results. Finally, Section 5 concludes.

2 Data

In the framework of Acemoglu et al. (2012), incentives to engage in either REN or FF innovation

are driven by three forces: first, there is the price effect. This effect mirrors Hicks’ (1932)

intuition that when a factor’s price increases, firms will develop technologies that aim to reduce
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the use of this factor. In particular, when fossil fuel prices go up, we can expect innovations

to be directed at REN technologies at the expense of FF technologies. However, as indicated

before, to the extent that FF innovations improve the efficiency of FF technologies, an increase

in fossil-fuel prices might also induce more FF innovation. The second effect is the market size

effect, which pushes research towards applications for which there is a potentially large market.

That is, if the market for renewable energy increases relative to the market for fossil fuels, we

would expect innovation to be increasingly directed towards REN technologies, ceteris paribus.

The third and final effect is the direct productivity effect, which pushes innovation towards

technologies with a higher productivity or existing stock of knowledge. This force results from

the ability to “build on the shoulders of giants”: future innovations are building on the existing

stock of knowledge or technology, i.e. current innovation levels depend on past innovation levels.

In this section, we describe the data that we will use to investigate how these three factors

– prices, market size and knowledge stocks – affect directed technical change in the electricity

sector.

Patents We use patent data to measure innovations in renewable and fossil-fuel technologies.

The advantages and limitations of patents as a measure of innovation, have been discussed at

length in the literature.2 Since the pioneering work of Popp (2002), patents data have been

widely used to study innovation in environmental technologies (Dekker et al., 2012; Verdolini

and Galeotti, 2011). For our purpose the main advantage of using patent data is that these

data are highly disaggregated and are available at the firm and technology level. Patents are

extracted from the EPO/OECD World Patent Statistical Database (PATSTAT). Building on

previous work by Lanzi et al. (2011) and Johnstone et al. (2010), we use International Patent

Classification (IPC) codes to select patents in two different fields, namely: renewable energy

generation, and fossil fuel energy generation.3

REN technology classes are aimed at creating and improving the generation of renewable

energy. In particular, we consider innovations in six different technological classes: wind, solar,

2A main caveat of working with patents is that not all inventions are patented, as for strategic reasons firms
may prefer not to disclose some valuable information in a patent. Also, the value of patents is very heterogeneous:
only few patents will lead to successful commercial applications, while many will in the end never be used. Yet,
patents have a close (if not perfect) link to invention and are strongly correlated with other indicators of innovative
activity such as R&D expenditures or new product introductions (Griliches, 1990).

3The IPC codes for REN and FF patents are borrowed from Johnstone et al. (2010) and Lanzi et al. (2011),
respectively.
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hydro, biomass, geothermal and waste. Regarding FF innovations, we consider the following

technologies: production of fuel gases by carburetting air, steam engines plants, gas turbines

plants, hot-gas or combusion-product positive displacement engine, steam generation, combus-

tion apparatus, furnaces and improved compressed-ignition engines.4 The definition of these

general classes of fossil-fuel technologies is described in more detail in Lanzi et al. (2011). The

authors started the classification by identifying energy efficient fossil-fuel patent classes (e.g.

improved steam engines, cogeneration) and by eliminating restrictions on the technology’s ori-

entation towards efficiency improvement. By selecting hierarchically superior IPC classes, they

were able to identify IPC classes that in general refer to fossil combustion technologies. Sub-

classes containing irrelevant patents (e.g. motor vehicle-related inventions within the improved

compressed-ignition engines category) and classes that are generic and applicable to energy

generation using a wide range of fuels (not only fossil) are not included (e.g. heat exchange

technologies).

Using the OECD HAN (Harmonised Applicants Names) database, we can link patent ap-

plications to firms. This database provides a dictionary with applicants’ names, corrected for

variations in spelling, which might in turn be linked with business register data. The HAN

database covers applicants’ names for patents filed at the EPO and via the Patent Cooperation

Treaty (PCT). We focus on a sample of approximately 7,000 European firms that we could

match with the HAN database and that have filed at least one renewable or fossil-fuel patent

over the 1978-2006 period. We count the number of patent applications filed by these firms at

the European Patent Office (EPO) and at 17 national patent offices of the EU-15 countries,

Switzerland and Norway.5 In order to select the most valuable patents, we only select ‘claimed

priorities’, i.e. patent applications that have been registered in at least two offices. Our dataset

is thus biased towards highly valuable inventions, worthwhile to patent in at least two countries.

Knowledge stock We use cumulative patent counts to construct firm-specific knowledge

stocks. At the same time, we have to account for the fact that knowledge becomes obsolete as

4In the remainder, we coin the REN technologies as follows: wind, solar, hydro, geo, waste/biomass, re-
spectively, and the FF technologies as: coal, engines, turbines, hotgas, steam, burners, furnaces and ignition,
respectively.

5We focus on these 17 European countries since, even though firms and inventors worldwide can apply for
patents at the EPO, we expect that non-EU applicants are more likely to (first) file patents at their domestic or
regional patent offices. Restricting the analysis to European firms should limit the possibility that we miss out
on a substantial part of a firm’s patent applications.
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time progresses, for example due to the creation of new knowledge. We assume that knowledge

stocks depreciate annually by 15%. We also assume that the pre-sample growth of the knowledge

stock was 15% and also depreciated at the same rate. That is, we compute the knowledge stock

at t = 0 as KS0 = P0/(g + δ) where KS is knowledge stock, P is the patent count, g is the

pre-sample growth rate, and δ is the depreciation rate. Subsequent knowledge stocks are then

computed using the perpetual inventory method as KSt = (1− δ)KSt−1 + Pt.

In addition, we have data on the pre-sample knowledge stock of every firm. This is the

total count of all patents (not only renewable or fossil-fuel) filed over the 1950-1978 period. We

will use this information in our estimations to control for unobserved firm heterogeneity as in

Blundell et al. (1995). Although the period before 1978 is prior to the existence of EPO, we

are able to track our firms in the other 17 European patent bureaus for this period. Again, we

only count claimed priorities, i.e. highly valuable inventions filed in at least two patent offices

before 1978.

Energy prices The Energy Prices and Taxes database of the IEA contains data on country-

level prices of the different fossil-fuel energy sources oil, gas and coal. These prices correspond

to the prices paid at the power plant for electricity generation, i.e. prices paid by electricity

facilities for a certain type of fuel. Unfortunately, price data for energy generation for the

various fuel sources, coal, gas and oil, are subject to a large number of missing values. Since

the price of gas and oil tend to be highly correlated6 and since coal prices have been relatively

stable over the whole period as shown in Figure 1, in the remainder of the analysis we will focus

on the impact of oil prices.

In order to make fossil-fuel prices firm-specific, we take into account the fact that firms might

be exposed to both domestic and foreign prices to different degrees as in Aghion et al. (2010).

As an illustration, we have to capture the extent to which a Dutch firm is influenced by German

prices. Arguably, this impact will be bigger, the more important the German market is for the

Dutch firm’s innovations. To capture this, for each patent in a firm’s portfolio we consider in

which different countries this patent has been validated7. For each firm i we compute a weight

wik which captures the share of country k in the firm’s overall patent validation portfolio. In

6In our sample, the correlation between oil and gas prices is of 0.75.
7Once granted by the European Patent Office, a European patent is a bundle of national patents, which must

be validated at the national patent office of the designated states.

7



0
10

0
20

0
30

0
40

0
P

ric
es

 p
er

 M
to

e 
(P

P
P

 U
S

$)

1980 1985 1990 1995 2000 2005
Year

Mean coal prices Mean oil prices Mean gas prices

Figure 1: Firm-level price developments per type of fuel (in constant PPP US$ per Mtoe)

addition, we weight the different countries’ prices with their FF market size in order to make

sure that small countries do not have a disproportionate impact on computed prices.

Taken together, this implies that the fossil-fuel price faced by firm i at time t is computed

as:

pit =
∑
k

wik × pkt (1)

where pkt is the oil price in country k in year t, wik = Pik×MkFF∑
k Pik×MkFF

, where Pik is the total number

of patents filed by firm i in designation country k and MkFF is the country’s FF average market

size.8

Market size To proxy market size, we use data on electricity output from renewable and

fossil-fuel energy sources. These data are derived from the Energy Statistics database from the

IEA and are expressed as the total number of GWh generated by power plants. Regarding

FF energy, we have separate data on electricity output by three different types of fuel sources,

8Our weights are fixed, i.e. we compute total patent counts Pik and average market sizes MkFF during our
sample period. If changes in FF prices affect the country mix of the patent portfolio or the size of the FF market,
not fixing the weights might feed back into the prices, causing potential endogeneity.
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namely coal, gas, and oil. Renewable electricity output breaks down into geothermal, heat,

hydro, waste, wind and solar. Market size variables are also likely to capture demand-pull

policies (e.g., guaranteed tariffs, investment and production tax credits) aiming to increase the

market demand for renewables.

As with prices in (1), we use fixed firm-specific country weights wik to construct firm-level FF

and REN market sizes. However, we now also introduce fixed firm-specific technology weights

wis to account for the fact that e.g. a firm innovating mainly in solar power will be mostely

concerned with the market size for solar energy. Hence we compute:

Mit =

N∑
k=1

S∑
s=1

wis × wik ×Mkt (2)

with wik = Pik∑
k Pik

and wis =
Pis∑
s Pis

. To compute FF technology weights wis we use a correspon-

dence between the FF technological areas and oil, gas or coal fuels as provided in Lanzi et al.

(2011). For instance, technologies in the field of production of fuel gases by carburetting air are

assigned to the market size of electricity output from coal. 9 For those FF innovations without

such a correspondence, we assign the weighted average market size of all three fuel sources.

Finally, we also compute firm-specific REN market sizes for firms innovating only in FF tech-

nologies. To do so, we assign country-level market size averaged across all REN technologies,

also using the relevant country-weights (wik). We proceed in a similar manner to assign FF

market sizes to (specialized) REN firms.

3 Descriptive statistics

Our analysis focuses on a sample of 26,269 patents filed by 6,934 firms. The REN and FF

patents represent 18% and 82% of the patents, respectively. As shown in Figure 2a, the total

number of patents applied for by the firms in our sample generally increases up until 2000, after

which it decreases. This overall trend is mainly driven by patent applications in FF technologies.

REN patents experienced a small peak in the early ’80s, an acceleration between 1995-2000,

after which the count stabilizes somewhat.

We make a distinction between so-called ‘specialized’ versus ‘mixed’ firms. Specialized firms

9See Table 1 on p.6 of Lanzi et al. (2011).
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Figure 2: Number of patents and firms (three-year moving averages

are firms that patent in one technology (e.g REN) in the 1978-2006 period and do not patent

in the other technology (i.e. FF) over the same period. Mixed firms are firms that patent in

both REN and FF technologies over the 1978-2006 period. We classify firms after observing

expost their innovation activities over the sample period. Our sample contains 361 mixed firms

(5%), 2,009 (30%) specialized REN and 4,202 (65%) specialized FF firms. Figure 2b counts

the number of firms that applied for patents in each sample year, and breaks them down into

specialized firms and mixed firms. The development in the number of REN firms mirrors the

developments of the corresponding patent count in Figure 2a. To a lesser extent this also holds

for the FF firm count, although the dip around 1995 is not present in the FF patent count. The

number of patenting mixed firms is relatively constant over time.

Since we are also concerned about relative innovation, i.e. how REN patents replace FF

patents over time, Figure 3 gives the evolution of REN and FF patents and the evolution of

the ratio of REN over FF patents by mixed firms, respectively. As shown in Figure 3a, mixed

firms patent much more in FF than in REN technologies. The number of REN patents by

mixed firms has been slowly increasing since the mid 1990s but remains far below the level of

FF innovations. Figure 3b shows that the ratio of REN over FF innovation by mixed firms

decreased sharply between 1980 and the beginning of the 1990s and has been increasing slowly

afterwards, suggesting that mixed firms increasingly conduct relatively more REN innovation,

in particular after 2000.

Figure 4a gives the evolution of REN and FF patents by specialized firms only. From 2004

on, REN firms file more patents than FF firms. In the case of specialized firms a relative increase
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Figure 4: Patents and entry by specialized firms

in REN innovation, i.e. the replacement of FF by REN patents, can only occur via the entry

of new firms. Figure 4b plots the number of new REN entrants over time. The trend closely

follows the number of REN patents, suggesting that REN firms file relatively few patents per

firm.

As suggested above, the patents are not equally distributed among the different types of

firms. Specialized firms account for 78% and 64% of REN and FF patents, respectively. Mixed

firms comprise approximately 5% of the total firm sample, yet they account for approximately

22% of REN patents, and for 36% of FF patents. Figure ?? illustrates how these shares develop

over the sample period. Each panel in the figure distinghuishes between mixed versus specialized

firms, where we also split both firm types into those that innovate only once during the sample

period (‘single’-innovators) and those that innovate multiple times (‘multi’-innovators).10 The

10Since we define single innovators ex post as firms that have innovated only once over the 1978-2006 period,
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Table 1: Years of innovation by different firm and
technology types

Firmtype Mean St. Dev. Min. Med. Max.

FF 1.8 2.1 1 1 28
REN 1.2 0.8 1 1 12
Mixed 6.2 5.9 1 4 29

Innovation in mixed firms

FF 5.2 6 1 3 29
REN 1.9 1.8 1 1 14

bars in the graphs denote the share of total patents of a particular technology type that have

been applied for by a particular firm type.

Panel a in the figure demonstrates that specialized firms are responsible for the big majority

of REN patents, and increasingly so over time. Within the group of specialized firms, a notable

shift has occurred from single innovators – that dominated the REN patent count during the

first half of our sample – to multiple innovators. Panel b shows a somewhat different pattern

for FF technologies. Here mixed firms apply for a substantially bigger share of patents, yet

this has been relatively stable over time. Moreover, within the group of specialized FF firms,

the shares of single and multiple innovators have also been rather stable, with single innovators

being much less important compared to their REN counterparts. Unsurprisingly, mixed single

innovators are much less important in both panels, which testifies of the fact that they are

relatively large.

Table 1 illustrates the differences in innovation frequency. The top panel shows the years of

active innovation for the different firm types, i.e. the years in which they had a positive number

of patent counts. Mixed firms have an average of 6.2 active innovation years, relative to 1.8

and 1.2 years for specialized FF and REN firms, respectively.11 The bottom panel of Table 1

decomposes mixed firms’ innovation into FF and REN technologies. This shows that mixed

firms spend most of their time innovating in FF technologies.

To identify possible complementarities between REN and FF patents in the technology

portfolio of mixed firms, we compute pairwise correlations between each pair of REN and FF

firms that entered at the end of the period are more likely to be a single innovator compared to firms that entered
early in the period.

11These results mirror those reported for UK firms in Geroski et al. (1997), who show that between 70% and
87% of their sample of firms innovate only once.
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Table 2: Pairwise correlations between REN and FF technologies
(mixed firms)

wind solar geo marine hydro waste&bio

coal -0.05 0.08 0.97 0.07 0.05 0.2
(11) (27) (1) (3) (7) (30)

engines 0.25 0.05 -0.03 0.29 0.28 0.18
(9) (17) (2) (6) (9) (17)

turbines 0.19 0.08 0.97 0.17 0.1 0.08
(24) (32) (1) (6) (14) (24)

hotgas 0.02 0.11 0.26 0.09 0.15 0.07
(16) (34) (1) (5) (9) (22)

steam 0.08 0.15 -0.03 0.36 0.12 0.13
(13) (32) (2) (3) (12) (34)

burners 0.05 0.1 0.31 0.04 0.06 0.28
(36) (127) (7) (7) (20) (113)

furnaces 0.08 0.07 0.97 0.02 0.08 0.15
(23) (88) (1) (6) (19) (66)

ignition 0.01 0.02 -0.04 -0.04 0.01 0.21
(13) (41) (3) (4) (9) (16)

Note: The number of mixed firms active in a particular REN-FF
combination is shown within parentheses.

technologies. The results are reported in Table 2. In particular, each cell depicts the Pearson

correlation coefficient, as well as the number of firms that engage in a particular combination

of FF and REN innovation (within parentheses). We find that a large proportion of mixed

firms combine FF technologies in burners with REN technologies in waste/biomass (correlation

coefficient of 0.28, N=113), suggesting complementarities between these technologies, as indeed

burners can not only be used for oil, coal and gas but also for biomass. Generally speaking,

the correlation coefficients between waste and biomass and many of the FF technologies are

relatively high. Many mixed firms also combine solar energy technologies with burners, furnaces,

and ignition technologies.

Next we investigate whether the patterns of innovation by specialized and mixed firms are

affected by technology characteristics. According to Table 3, solar is the largest category and

represents 43% of REN patents, followed by wind (41%) and waste and biomass (10%). Looking

at the distribution of the different types of firms across REN technologies in Table 3, we find

that mixed firms file 49% of their REN patents in solar energy, 21% in waste and biomass and

16% in wind. Instead, specialized firms file 42% of their patents in wind, 36% in solar and 7%

in waste and biomass. Mixed firms tend thus to be more specialized in solar and waste and
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Table 3: Specialized and mixed firms per REN technology type

Solar Wind Hydro Waste & Bio Geothermal Marine Total
Specialized firms 36% 42% 5% 7% 2% 8% 78%
Mixed firms 49% 16% 8% 21% 2% 4% 22%
Total 43% 41% 6% 10% 2% 8% 100%

Table 4: Specialized and mixed firms per FF technology type

Coal Engine Turb. Hotg. Steam Burn. Furnac. Ignit. Total
Specialized firms 3% 2% 7% 2% 6% 38% 33% 9% 65%
Mixed firms 4% 2% 12% 2% 6% 39% 27% 9% 35%
Total 3% 2% 8% 2% 6% 38% 31% 9% 100%

biomass technologies than specialized firms, which instead tend to innovate more in wind and

marine technologies.

Over the 1978-2006 period, Table 4 shows that burners and furnaces represent 38% and 31%

of all FF patents, respectively. Looking at the distribution of specialized versus mixed firms in

FF innovation shown in Table 4, it appears that the patterns of technology specialization are

similar for specialized and mixed firms in FF technologies. The two largest FF technology groups

are burners and furnaces for both specialized and mixed firms, with mixed firms innovating

relatively more in turbines than specialized firms.

In summary, we observe that FF patents make up the lion share of our total energy patent

counts, whereas REN patents have been less important. Only from the mid 1990s onwards do

we observe a relatively rapid increase in REN patents. Moreover, small and specialized firms

are mainly responsible for REN innovations, whereas specialized firms with multiple innovations

and mixed firms account for substantial shares in FF innovations. We have also demonstrated

that mixed firms are much larger than specialized firms, and that they are more frequent

and persistent innovators. Given their revealed comparative advantage in FF technologies, this

might imply that their technological paths are already firmly locked into these technologies, and

that directing research away from FF and towards REN technologies might be rather difficult

for these firms. We now turn to a more formal analysis of these issues.
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4 Empirical strategy and results

4.1 Empirical strategy

Building on the framework described in Acemoglu et al. (2012), the first empirical question

that we aim to answer deals with the factors affecting the rate of REN and FF innovations by

firms. We measure the rate of innovation by means of firm-level patent counts in FF and REN

technologies as described in Section 2. This means that we have to rely on count data-techniques

in our empirical strategy, since the number of patents are nonnegative integers. As is standard,

we assume that patent counts follow a Poisson distribution, so that we can estimate a log-linear

Poisson regression:

E(Pijkt|Xijkt, ηi, υk, νt) = log(λijkt)

s.t. λijkt = exp(β0i + β1 log pidt−1 + β2j logMijt−1 + β3j logAijt−1 + ηi + υk + νt)

(3)

where i, j, k and t index firm, technology (REN or FF), country, and time respectively. P is

the annual firm-level patent count, p is the fossil-fuel price, M is market size, proxied by REN

and FF electricity consumption, A is productivity proxied by the existing knowledge stock,

and η, υ and ν capture unobserved firm, country and time-specific heterogeneity, respectively.

As demonstrated by the subscripted beta coefficients, we will add REN and FF explanatory

variables simultaneously to the RHS of (3) to already probe their effects on the direction of

technical change. Since the number of patents is a nonnegative integer, we use count data esti-

mation techniques. Yet, the presence of unobserved firm heterogeneity in model (3) introduces

additional complexity. Hausman et al. (1984) suggest to use conditional ML estimation so that

the β’s can be estimated directly without estimating individual firm fixed effects.12 However,

consistency of this estimator hinges on the (strict) exogeneity of the RHS variables. In our

case, in particular market size M and knowledge stocks A are unlikely to be strictly exogenous.

Blundell et al. (1995) suggest an alternative estimator, in which they interpret the unobserved

firm heterogeneity to reflect entry level innovation. Specifically, they use the pre-sample mean of

12In particular, this requires a sufficient (observed) statistic, conditioning on which eliminates the dependence
of a firm’s likelihood contribution on the (unobserved) firm-specific effect. In the case of a Poisson model, this
statistic is a weighted average of a firm’s average values on P and X, with weights λit/λi.
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innovations for each firm to control for unobserved firm heterogeneity. We adopt this approach

in our estimation, while controlling for unobserved country and time heterogeneity through the

use of country and year dummies.

A final issue concerns the very high incidence of zero patent counts in our sample. In all

of our estimation samples, the incidence of zeroes ranges between 70%-90%. The standard

Poisson model can generate biased estimates in the presence of such a high number of zeroes in

the dependent variable. Therefore, we estimate the model in (3) using a zero-inflated Poisson

model (ZIP). This model decomposes the estimation in two stages, one which estimates the

probability of observing zero patent counts (the “inflation equation”), and one estimating the

standard Poisson model. We include knowledge stocks variables in the inflation equation as we

expect larger knowledge stocks to reduce the probability of zero patents.13

In terms of expectations, we expect energy prices to have a positive impact on REN patent

counts. The impact of prices on FF innovation is ambiguous. On the one hand if FF innovations

aim to improve the fuel efficiency of technologies, we should expect that higher prices would lead

to more innovation in these technologies. On the other hand, higher energy prices might lower

the incentives to innovate in FF technologies, in particular if these can be easily substituted by

REN technologies. An increase in the market size for REN inputs is expected to increase the

rate of REN innovation due to increased demand. The market size for FF inputs should have

a positive impact on FF innovations. Finally, REN knowledge stocks should have a positive

impact on REN innovation, and similarly for FF knowledge stocks on FF innovations. We

estimate (3) for both specialized and mixed firms. For mixed firms, we can in addition estimate

“cross-technology” impacts of knowledge stocks (i.e. the impact of REN stocks on FF innovation

and vice versa) since by definition mixed firms have built a knowledge stock in both technologies,

which is not the case for specialized firms.

The second empirical question that we aim to answer relates to the factors influencing not

only the rate but also the direction of innovation. In this case, we are concerned about the

factors inducing a shift away from FF towards REN innovation, i.e. how REN innovation can

replace FF innovation. By construction, we only observe within-firm substitution between REN

and FF innovation for mixed firms, which conduct both types of innovation.14 For specialized

13We tested the inclusion of additional additional variables in the inflation equations but these always turned
out insignificant.

14Recall that we qualify firms as specialized or mixed ex post, i.e. after having observed them throughout the
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firms, substitution from FF by REN innovation only occur between firms: a relative increase

in REN innovation can only occur via relatively more entry and more patenting by REN firms

compared to FF firms. To study the factors affecting entry into REN innovatin, we estimate

for specialized firms the probability to be a new innovator in REN technologies (versus a new

innovator in FF) as follows:

Pr(RENikT = 1|Xijkt, ηi, υk, νT ) = Φ(α0 + α1 log piT−1 + α2j logMijT−1 + ηi + υk + νT ) (4)

where, as before, i and k index firms and countries, T denotes the first year of innovation of

a specialized firm, and Φ is the cumulative normal distribution. REN is a binary variable

taking the value 1 if the new innovator is a REN firm and 0 if the new innovator is a FF

firm. Thus note that the sample underlying model (4) in principle is a cross-section. However,

because different firms innovate for the first time in different years T , we also have to account

for (unobserved) heterogeneity over time. As before, p is the fossil-fuel price and M is market

size. Since we consider the innovation entry-decision of REN innovators (versus FF innovators),

these firms have not innovated in REN of FF technologies in the past and hence we cannot

include knowledge stock variables in the model.

Equation (4) is estimated as a probit model with robust standard errors clustered at the

country level, and includes a full set of year and country dummies. Even though the cross-

sectional nature of this particular model does not allow us to properly control for unobserved firm

heterogeneity (ηi), we include as before the average number of pre-sample patent applications

of the firm as a control Blundell et al. (1995).15 We expect to find that the probability to be a

new REN innovator is positively associated with high energy prices (α1 > 0) and a larger REN

market size (α2,REN > 0), but is negatively associated with FF market size (α2,FF < 0).

For mixed firms, substitution between REN and FF technologies within the firm may occur,

so that we can directly estimate the factors affecting relative innovation, i.e. the ratio of REN

sample period. Therefore, we only observe that specialized firms have not switched technologies. That is, apart
from their relatively small size (cf. Section 3) there is nothing that we can observe which might prevent these
firms from switching between technologies. They just have not done so.

15Note that we are considering innovation-entry into either REN or FF activities. Hence, these firms may
already have innovated in the past and hence have pre-sample patent applications.
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Table 5: Summary statistics and pairwise correlations

Mean St. Dev. 1 2 3 4 5 6

1 PREN 0.02 0.55 1
2 PFF 0.11 0.92 0.03 1
3 pFF 5.06 0.29 0.01 0.01 1
4 MarketsizeREN 6.44 2.40 0.01 -0.06 0.11 1
5 MarketsizeFF 11.1 1.40 -0.01 0.04 0.00 0.02 1
6 Pre-sample patents 0.00 0.00 0.01 0.21 0.01 -0.12 -0.00 1

1 ProbREN 0.29 0.45 1
2 pFF 5.06 0.27 0.1 1
3 MarketsizeREN 6.57 2.14 0.34 0.09 1
4 MarketsizeFF 11.2 1.31 -0.27 0.02 0.04 1
5 Pre-sample patents 0.13 0.63 -0.07 -0.02 -0.08 -0.02 1
The top panel is based on N=183,666. The bottom panel is based on N=5,907.

over FF innovation. We estimate the following model for mixed firms:

log
(PREN,kt

PFF,kt

)
= γ0 + γ1 log pit−1 + γ2j logMijt−1 + γ3j logAijt−1 + εikt

s.t. εikt = ηi + υk + νt + ϵikt

(5)

where the indices and independent variables are as before. The dependent variable (PREN/PFF )

measures the (log) ratio of REN over FF patents. Accordingly, the estimated γ’s tell us some-

thing about the direction of technical change. For instance, if γ1 > 0, we know that an increase

in the price of FF energy induces an increase in the innovation rate of REN technologies relative

to FF technologies. That is, innovation in REN technologies increases faster than innovation

in FF technologies, which implies that technical change is indeed directed. A similar reasoning

applies to the other coefficients. We estimate the model in (5) by means of a (feasible) GLS FE

estimator, including year dummies to account for unobserved time heterogeneity.16

Table 5 presents some summary statistics and pairwise correlations for the different variables

in our sample. The top panel presents statistics and correlations for the Poisson models and

the linear model, whereas the bottom panel give statistics for the probit model. Due to the

significantly higher number of observations in the top panel (N=183,666 vs. N=5,907) these

correlations are substantially smaller than those in the bottom panel.

16As the firms in our sample never switch countries k applying the FE transformation also takes care of the
unobserved country-level heterogeneity.
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4.2 Baseline results

In Table 6 we present our baseline results. In columns (1) and (2) we study the rate of REN

innovation, in columns (3) and (4) the rate of FF innovation, and in columns (5) and (6)

the direction of innovation between REN and FF patenting activities. The first four columns

are all estimated using zero-inflated Poisson, with standard errors clustered at the firm-level.

Column (5) is estimated using the probit model, and column (6) is estimated using the FE GLS

specification, clustering standard errors at the country-level in both cases.

In column (1), we give the results on the rate of REN innovation for specialized firms. Fossil-

fuel prices have a positive significant effect on patenting by REN firms. A 1% price increase

is associated with a 0.98% increase in the number of patents by REN firms. The stock of

REN patents also has a positive significant effect on patenting activities by REN firms. A 1%

increase in the stock yields 0.76% more patents by REN firms. At last, a larger market for

renewable energy also has a positive significant effect on patenting by REN firms, although the

effect is small (0.09%). The market size of fossil-fuel energy has no significant impact on the

level of innovation by specialized REN firms. Results are somewhat different for mixed firms in

column (2). The most important determinants of REN innovation in this case are past REN

and FF knowledge stocks, which both have a positive and significant impact on REN patenting

activities. A 1% increase in the FF knowledge stock is associated with a 0.16% increase in REN

patenting activities by mixed firms. This suggests complementarity between past FF innovation

and future REN innovation in mixed firms, a result already found in Table 2 that showed for

instance that mixed firms innovating in burners also tend to innovate in waste and biomass

technologies. Further, the market size for FF energy has a moderately negative impact on

REN innovation by mixed firms. Finally, the coefficients on knowledge stocks in the inflation

equations always have the expected negative signs. Increased knowledge stocks tend to reduce

the probability of zero REN patents, but only significantly so for mixed firms.

Columns (3) and (4) In Table 6 show the estimation results of similar models for FF innova-

tion. We find that prices have a positive significant effect on patenting activities by specialized

FF firms in column (3). A 1% increase in the past fossil-fuel price is associated with a 0.64%
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increase in innovative activities by FF firms. Regarding the effect of the past knowledge stock,

we find that a 1% increase in the firm’s past FF knowledge stock is associated with 0.66%

additional patenting activities by FF firms. In addition, we find that the size of the market for

fossil-fuel energy has a small positive effect on FF innovation (0.09%), but the REN market size

coefficient is insignificant. For mixed firms in column (4), results are again somewhat different.

As in column (2), past knowledge stocks are the main factors driving current FF innovation. A

1% increase in past FF knowledge stocks is associated with a 0.74% increase in FF patenting

activities by mixed firms. In this case however, an increase in REN knowledge stocks reduces the

expected level of FF innovation, suggesting substitution. A 1% increase in past REN knowledge

stocks is associated with a 0.23% decrease in FF patenting activities by mixed firms.

The estimates in columns (5) and (6) in Table 6 pertain to relative innovation, i.e. to whether

innovation is not only towards REN innovation but also away from FF innovation. The probit

model in column (5) applies to specialized firms, and analyzes the likelihood that a firm files

its first innovation in REN rather than in FF technologies, capturing between-firm substitution

of REN and FF innovation at the industry level. We focus on a cross-sectional sample of 5,907

specialized firms innovating for the first time over the 1978-2006 period. Fossil-fuel prices show

the expected positive effect, indicating that a 1% increase increases the likelihood of REN versus

FF innovation entry by 0.37%-points. REN market size is positive and significant, indicating

that a 1% increase in REN market size increases the probability of a REN vs. a FF innovation

entry by 0.23%-points. For FF market size this is exactly the reverse, since a 1% increase

reduces this probability by 0.46%-points.

Finally, column (6) shows how the ratio of REN over FF patent applications, capturing

within-firm substitution of REN and FF innovation, in mixed firms is affected. We find that

fossil-fuel prices have no significant effect on relative innovation. A higher FF knowledge stock

on the other hand is significantly associated with a lower ratio of REN over FF patents. The

impact of REN knowledge stocks and REN and FF market sizes are not significant.

Summarizing, we find that prices, knowledge stocks, and market size are all important

determinants of the rate of innovation in specialized (REN and FF) firms. For mixed firms on the

other hand, only knowledge stocks are of key importance. Here we also find that the rate of REN
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innovation is positively affected by past FF knowledge stocks, suggesting complementarities

between REN and FF activities, whereas the rate of FF innovation is negatively affected by past

REN knowledge stocks, suggesting that mixed firms with past experience in REN innovation

are less likely to file FF patents in the future. Regarding the direction of innovation, we find

that lower FF market size, and higher FF prices and REN market size stimulate entry into

REN innovation vis-a-vis FF innovation (between-firm substitution). (Re)directing innovation

within mixed firms appears much harder, as only a decrease in FF knowledge stocks stimulates

a relatively more important increase in REN than in FF activities. In other words, mixed firms

with a large existing stock of FF patents will find it more difficult to substitute FF by REN

innovations.

4.3 Robustness analysis

In order to test the robustness of our baseline results in Table 6 we conduct a number of

robustness tests. First, we consider the possible non-linear effect of fossil-fuel prices. As we

explained above, the effect of prices on FF innovation is ambiguous. On the one hand, an

increase in prices might stimulate more FF innovation that is aimed at a more efficient use of

FF energy. On the other hand, it might also redirect innovation towards REN and away from

FF innovation, as REN energy becomes relatively cheaper.

Table 7 repeats the analyses in Table 6 while adding a quadratic term for prices. In columns

(1) and (2), we find that the quadratic price term has no significant effect on REN patenting

activities by specialized and mixed firms.17 On the other hand, in column (3) we find evidence

of a significant non-linear effect of prices on FF innovation by specialized firms.18 Hence, when

fossil-fuel prices are low, an additional increase in prices is associated with a rise in innovation by

FF firms. Firms will innovate in order to save on the expensive fossil-fuel factor of production.

Yet, when fossil-fuel prices are high, an additional price increase will be associated with lower

patenting activities by FF firms. There is thus a threshold price beyond which FF innovators

17Due to the addition of a quadratic term, the coefficients in Table 7 cannot be directly interpreted and
compared to the ones in Table 6.

18A likelihood ratio test rejects the null hypothesis that the model in column (3) of Table 6 is to be preferred
to the model in column (3) of Table 7 at p<0.01.
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do not find it profitable anymore to innovate in these technologies.19 Interestingly, we also

find a non-linear impact of FF prices on the entry of specialized firms in column (5). This

implies that as prices increase, specialized firms tend to enter initially into FF rather than REN

innovation, but as prices pass a threshold20 new innovators tend to enter into REN rather than

FF innovation. We do not find for a non-linear effect of prices on relative innovation by mixed

firms in column (6). Finally, the effects of the other variables in the regressions remain robust.

A second robustness test that we conduct considers the possible impact of knowledge

spillovers external to the firm. While so far, we assumed that firm’s innovation only builds

up on the firm’s past knowledge stock, there is a large literature that emphasizes that firms can

(partly) appropriate knowledge spillovers from other firms and use them as inputs in their own

innovation efforts. The fact innovation, research and development create externalities to other

firms is due to the public good nature of knowledge. (e.g. Romer, 1990; Keller, 2004). In order

to test whether the firms in our sample also benefit from knowledge spillovers, we construct

sector-wide knowledge stocks of REN and FF technologies. We again account for the fact that

firms may be active in multiple countries, and hence that all these countries’ knowledge stocks

might affect a firm’s innovation. Hence external knowledge stocks are computed similarly as

prices in (1), except that pkt now becomes KREN
kt or KFF

kt . Table 8 presents the results. We

include the external knowledge stocks both in the level equations, as well as in the inflation

equations (for the Poisson models).

Columns (1) and (2) in Table 8 show that sector-wide REN knowledge stocks do not have any

impact on REN patenting activities, neither for specialized firms nor for mixed firms. However,

the results in the inflation equation show that increased external REN knowledge stocks decrease

the likelihood of zero REN patents, whereas the opposite is the case for external FF knowledge

stocks in column (2). Columns (3) and (4) show the impact of external knowledge stocks on

FF patenting. For specialized firms in column (3), there appears to be a positive spillover effect

of the external FF knowledge stock on the rate of innovation by FF firms. For mixed firms in

19The coefficient estimates imply that the “ceiling” price is approximately US$ 192. The marginal ef-
fect of a variable in the Poisson model is given by ∂E(yi|xi)/∂xik = βk exp(x

′
iβ). Hence, in this case,

∂E(Pijkt|Xijkt)/∂ ln pijkt = (15.681 − 2 × 1.49 × ln pijkt) exp(X
′
ijktβ). Equating this to 0 yields ln pijkt = 5.26,

or pijkt = 192.
20(i.c. US$ 137)
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column (4), we do not find any significant effect of the sector-wide FF knowledge stocks on FF

patenting activities. Also, external REN knowledge stocks increase the probability of zero FF

patenting by mixed firms. Finally, there is no significant impact of external knowledge stocks

on the direction of innovation in columns (5) and (6). Moreover, the other results are rather

robust. The two notable changes are that FF market size becomes marginally significant in

column (5), and the energy price loses significance in column (5). Overall, these results suggest

that external knowledge stocks are not very significant drivers of REN and FF innovation, in

particular compared to the firm’s own knowledge base. The external REN knowledge stocks

increase the likelihood of innovating in REN but their impact is not large enough to influence

the level of REN innovation. 21

We conducted two other robustness tests for which we will briefly summarize the results.22

First, we dropped single (i.e. one-time) innovators in our sample. The main change relative to

the baseline estimates in Table 6 is that the positive effect of fossil-fuel prices only shows up

on REN patents by specialized firms (column (1)), whereas it becomes insignificant in columns

(3) and (5) in Table 6. Including the non-linear price term as in Table 7 does not change this

result. The effect of fossil-fuel prices on FF patenting activities appear thus to be mainly driven

by single FF innovators.

Second, we split our sample period in two: 1978-1993 and 1994-2005. The reason is that,

as we demonstrated in the previous section, the market for renewable energy and the related

innovations only started to gain momentum during the second part of the 1990s. Hence, our

results might be mainly driven by developments during the latter period. We indeed find that

this is the case. In particular, the impact of prices and FF market size on patenting activities

is more pronounced after 1994. Our main conclusions still hold.

5 Conclusion

In this paper we have investigated the determinants of directed technical change in the electricity

generation sector, a sector particularly relevant for policymaking. We focused on three main

21A potential problem with the analyses in Table 8 is the fact that external knowledge stocks for REN and
FF are strongly correlated with each other (0.88 in the total sample). This could yield problems when including
them simultaneously in the mixed firm regressions. In order to investigate this further, we also ran the models
in columns (2), (4) and (6) while including only external knowledge stocks (results are available upon request).
This did not affect our results.

22The results tables are available from us upon request.
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factors inducing energy innovation as described by Acemoglu et al. (2012): a price effect, a

market size effect, and a productivity effect. The price effect implies that innovation will be

directed towards innovation which saves on the use of the higher priced inputs. The market

size effect predicts that innovation takes place in areas where the (potential) market is large.

Finally, the productivity effect entails that innovation mainly builds on earlier innovations, and

hence takes place in areas where there already is a large body of established research.

We use firm-level data on patents filed in renewable (REN) and fossil fuel (FF) technolo-

gies by about 7,000 European firms over the period 1978-2006 to test these effects. We also

distinguish between (small) specialized firms – that only innovate in REN or FF technologies

– and (large) mixed firms – that innovate in both REN and FF technologies. We find that for

specialized firms the main drivers of REN and FF innovation are energy prices, market size,

and firms’ knowledge stocks. A differential impact arises for prices however, which has a pos-

itive and linear effect on REN innovation, but an inverted U-shaped effect on FF innovation.

Second, prices and market size drive the entry of new REN firms (relative to new FF firms)

into the industry. Third, we find that innovation by mixed firms is characterized by strong

path-dependencies. Past knowledge stocks are the major driver of the direction of innovation.

Mixed firms with a large existing stock of FF patents will find it more difficult to substitute

REN innovations by FF innovations (and vice versa). Fourth, we do not find much evidence

of knowledge spillovers from outside the firms’ knowledge base. Sector-wide REN knowledge

stocks mainly increase the probability of REN innovation, but not its level.

Our results have a number of policy implications. First, a short-term policy goal may

be to increase FF innovations (to the extent that these also lower CO2 emissions). Given the

responsiveness of FF innovations to prices and market size, as well as its huge existing knowledge

base, such a policy can be highly effective. In the longer term, however, a major policy question

is how to break the path-dependency towards ever-increasing innovation in FF technologies.

Our results suggest that policies are not likely to be “one size fits all”.

The general impression that arises from our analyses is that it will be difficult to steer large

mixed firms’ innovations away from FF and towards REN technologies, as they have already

specialized quite heavily in FF technologies. Our results show that innovation incentives by

mixed firms, which are large and persistent innovators, are largely path-dependent. In this
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case, R&D policies specifically targetted to increase innovation in renewable energy may be

useful to rebalance firms’ R&D towards REN innovation. It will take time before sufficient

critical mass has been accumulated that can match the existing expertise in FF innovation.

We also find that stimulating entry of new firms specialized in REN innovation can be

effective in driving innovation towards REN technologies and away from FF technologies. Higher

fossil fuel prices (or an equivalent carbon tax) and other policies aiming to increase the (relative)

market for REN technologies, can encourage entry of new REN firms over FF firms and have

a positive impact on the rate of innovation of these firms. Since the entry of small specialized

REN firms has been key in driving REN innovation after the mid-1990s, policies should be

cautiously designed not to deter entry and to enhance competition in this sector.
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