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Abstract

We use a pesw ecotonetrie model of whole prodinetion sets to analyse the mpact of
rnigation anst soil Gy pe on sugar cane produrtion The method used models & production
function as a comditional probability density function Consudening a produstion funetion
from this perapective allows us o depve expected profit and yield funetions without
knowledge of the frontier production funetion. Further, we are able to estimate the nisk
asseerted with varonus aput bevels We review werpel based technigues for estimating
conditional probabihiey density fanetions

1 Introduction

Production functions are traditionally delined as the maximal cutpun attainable with a given
set of inputs. This definition precludes the nse of rraditional mean based regression methods
stnce we actnn 'y seek 1o estimate imiting values tather than central values. Instead, a number
of ad hoe mcitods have been ased 10 estimate frontier production functions [1, 5. 12, 13}, For
a representative review see fi,

The frontier production function neglec's, for practical purposes, technically inefficient
data points, These data points may have an important economic interpretation, For example,
expected prouctivity, production risk, minimal productivity and the probability of attaining
a particalar auiput for a particular input.

In practive, we are interested in the probability of achieving a particular level of output
independent of whether or not it is derived {from technically efficient or ineflicient production.
Interestingly, we can derive a qualitative measure of the distribution of efficiency by looking
at the underlying probability density function. For example, a bimodal distribution would
indicate a mixture of efficient and ineficient producers but a nnimodal distribution would
indicate that producers were homogeneously efficient.  For decision making purposes. this
qualitative measure will usually suffice.

In {35, two of the authors argue that, the nse of. the conditional probability density function
{epdf) of the production data is more useful for decision making than traditional approaches.



Fhey discuss both, how the epdf can be used 10 support decision making and model the data,
and how <nch a epdl can be estimated from a data set,

In order toillustrate the advantages of using density methods for modelling production
sets, we analyse some sugar cane production data [17]. The production data consists of
212 data points taken from farms in the Fairymead region {Bundaberg) in 1993, Each data
vt consiats of yield per hectare, irrigation per hectare and soil type (since the farms are
dose together, we assume constant rainfall). We are interested in determining the optimal
frrigation level,

2  Production Functions and Technical Efficiency: A Density
Approach

Consider the Iikely components of production data. Some producers will be technically effi-
cient and others not, Further, the data will have a stochastic element due to variation in the
economic and physical environment. In fact, there will he a distribution of producers, with
varving degrees of efficiency, which will be differentially affected by exogenous environmental
factors. Tor a given data set the relative contribution of these factors will be difficult if not
inpossible to determine. Traditional approaches derive much of their awkwardness from try-
g to distinguish between efficient and ineflicient producers, in the presence of exogeno.sly
dernved variation. in an a priori manner. Thev foree the modeller to make unwarranted
asau poons such as all producers are efficient or all variability is one sided.

A berier way of modeling the data is to view it as being drawn from a conditional prob-
ability density function {cpdf). The epdf is that function which. given an input set, tells
us the probability that a given production level will be achieved, Using standard statistical
techuiques it is possible 1o estimate this epdf from a given data set (see section 3).

In practice, modeling the data with a cpdf will be better than traditional approaches
since we will not only be able to determine the maximum possible production level but also
exported production levels and production risk. To this extent our approach can be seen as a
generalization of existing approaches, albeit not a generalization of traditional methods (e.g.
in our approach. frontier production funetions can he seen as extreme percentile values of the
correspondiug cumulative probability density functions (cdf) or more usefully the upper mode
of the cpdf). Traditionally. we could only prediet the maximum attainable production level
but using our approach we are able to prediet the probability of achieving a given production
level and a number of other parameters,

Note, summary information, such as that derived from regression based methods, provides
only a partial model of the production set. For decision making purposes, we are not only
interested in the hull of the production set but its total structure. This loss of information is
illustrated by the fact that while it is possible to derive this summary information from the
cpdf the reverse is, not in general, possible. As an example of the benefits of estimating cpdf’s
over hulls. recent developments in risk analysis. such as stochastic efficiency theory (2, 16, 9],
require knowledge of ¢df's.

3 Estimating Density Functions

Since there is an extensive statistical literature on nonparametric density estimation we can
use efficient and statistically sound methods to model the data with a cpdf. For a represen-



r

tative survey of these technigues see {14, 11, 14, 10, 15]. Below, we confine aurselves 1o the
fundamentals of ponparametric donsity estimation.

Periaps, the maost ancient and well known method of estimating pdf’s is the histogram of
{7{. Fach bar in the histogram is an estimator for the probability density at its centre. In a
histogram all observations in an interval are given equal welght. Often, a better estimate of
the probability density at a point r can be gained by weighting points with some other kernel
Junetion. Whereas the histogram’s kernel function is:

Ku) = { 1 il - h: <u<z+h
0 otherwise

other kernel functions {e.g. the Gaussian) typically weight observations inversely to their
distance from 7. Further, if these kernel functions overlap then we can make use of more of
the data set and thus gain a better estimate of the pdf. Rather than estimate the pdf at all
points we need only estimate it at a series of knot points and interpolate between them with
splines, discrete Fourier transforms, ete. In essence, kernel based methaods differ primarily in
the choices made for such things as knot points, kerunel functions and interpolation methods.

Other methods exist for estimating pdf’s that are not based on kernel functions. We do
not review them here since they are typically more diflicult to apply and nnderstand (although
often more efficient). The interested reader is referred to the above references for pointers to
the literatyre.

4 Deriving Traditional Production Functions

Given a epdf fiylr) we can derive a odf F(ylF) = [J" f(y|F)dy. The frontier production
function is given by g(F) = limp(yp-1 ¥ or more readably. g(F) = limp_y F~(&,p) (note:
sinee F{ylFy is monotonic increasing F71(F, p) always exists). Similarly, for a given proba-
bility p and input set # the associated production level of g(#;p) is given by F~1(Z,p). The
expected production level #(F) is given by §{F) = [3° y flylf)dy and is a measure of the
average efficiency of production. The second moment of the expected production level s(F)
is given by [ (y ~ gt 7)) [i¥!#)dy and is a measure of production risk due to variations in
technical efficiency and ather exogenous factors.

In order 1o separate variations in technical efliciency from other exogenous factors one or
ather of the distributions would need to be known. We could then deconvolve the joint pdf
to give the other distribution. However, excopt in extrentely fortuitous circumstances, such a
deconvolution will not be possible.

5 A Case Study: Sugar Cane Production

In order toillustrate the advantages of using density methods for modelling production sets,
we analyse some sugar cane production data {17}, The production data consists of 212 data
points taken from farms in the Fairvmead region {Bundaberg) in 1993. Each data point
consists of yield (CCS and cane) per hectare, irrigation per hectare and soil type (since the
farms are close together, we assume constant rainfall). We are interested in determining the
optimal irrigation level,



The production data is plotted in figures | and 2. Kernel based methods were used to
estimate the epdf. the expected (ie. conditional mean) yvield and the upper huli (ie. the
frontier production fanction) of the data.

As we can see from figure 1 the frontier production function is a poor summary of the
data. H we wore 1o use it for decision making purposes, we could easily conclude that the
total cane vield for red voleanic soils v maximal beyond 2.5 megalitres/1la. However, as the
expected vield curve shows, this is misleading - the frontier does not give a good picture of
the production set, further a few isolated data points have biased our estimate of the frontier.
This bias is to be expocted as estimators (kernel based or otherwise) for the hulls of epd(’s are
notoriously for varyving greatly from sample to sample. Even so, it is worth noting that kernel
mwethods, unlike many traditional methods, can be used to estimate the frontier of nonconvex
praduction sets.

It i~ worth uwoting that optimal irngation levels broadly agree with Bureauw of Sugar Jix-
periment Stations { BSES 1 recommendations based on pan evaporation data.

Interostingly, if price and vosts are random viariables then it is suflicient to work with the
expected price pryt and expected cost Cly, 7 {3;. The conditional probability of incurring
a loss can then be found, analogously, by determining y such that p(i)g ~ Clj, ) = 0 and
caleulate 1140} qu NiuiFi.

In figure 3 we plot gross margin data and expected gross margins. (ross margins (M)
were calonlated as

GM o= (0.000pCCE - 4y + O3BYCANE - 751

where p, is the spot price of sugar. £°C°5 i the sugar content of the cane, CANE is the
tonnage of cane, and 1 is the irrigation level in megalitres.

Note: the optimal (in the sense of maximizing expected profit) irrigation levels conform
not only o the BSES recommended levels but also to those suggested by expected yield. The
optimal irrigation level suggested by the froutier production functions can be expected to differ
considerably from the profit maximizing level. See [3] for a proof that, under uncertainty. to
caleulate expected profit we need only know the expected production function and not the
frontier production function.

Many of the curves plotted in figures 1 3 show asymptotic behavionr. The most likely
cause of this is lodging (i.e. large crops of some varieties of cane collapse under their own
weight} leading to a diminishing returns effect. Note: the CCS level seems to reach an
asymptote niuch faster than cane tannage.

None of the curves in figures 13 go through the origin. There are two likely causes:
firstly, the approximately 500mm of effective rainfall that fell during the 1993 growing season
{1 megalitre is equivale * to 100mm of rainfall} and secondly, ground water (this is particularly
pronounced in the case of the alluvial and humic gley soil types).

The variability within soil types is most likely 1o be caused by variations in soil fertility,
cape variety. and farm practices (e.g. irrigation method: flood, trickle, spray). Note: due to
terrain. cortain irrigation methods are more likely to be used on certain soil types (e.g. flood
on alluvial). Note: farms in the study containing mixed soil types have been categorized
according to the dominant sail type.

The podzolic soils are structurally very similar but vary in fertility (red is the most fertile
and grey the least fertile).
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6 Conclusions

We bave argued that the cpdl of production data provides more useful information than
the frontier production function. From it both the expected yield and frontier production
functions can be derived. Also, we have argued ‘and proved elsewhere {3]) that, in the
prosence of uncertainty, the expected yield is more uselul for decision making than the frontier
production function.

We have discossed how kernel methods can be used to estimate the cpdf and thus the
expected yield and frontier produciion functions as well as measures of variability.

We estimate the expected vield and frontier production funetions for a variety of soil types
as well as gross margine. From our analysi- of gross margins, it appears that many sugar
cane {armers are underirrigating their crops. This result agrees with recommendations of the
BSES, based on pan evaporation data,

It is interesting 1o note that, as we predict, if farmeos were to use frontier production
functions rather than expecied yield to choose the optimal level of irrigation then they wouald
have a lower expected profit than if they had used the expected yield function,

I'he solodie sail type shows very interesting behaviour, 1t would be interesting to obtain
more data from soladic solls in order ro examine both the relationship between jrrigation level
ard vield, and the amount of vas biany in yiekds,

It seems likely that the meth - aripation used will have an impact on yield. Given
more data it wounld be jnteresting vy explore the effects of irrigation methods on yield and
prafitability.

Increasingly, in risk analysis, complete knowledge of the decision makers utility (profit)
function is not assumed. lustead, eriteria such as first and second order stochastic dominance,
which make use of the odf of some random variable such as profit, are used. Unfortunately,
primitive density estimators, such as the stationary histogram, are used 10 calculate stochastic
efficiency. Since, caleulating stochastic efliciency requires integration and reintegration over a
pdf, poor initial estimates of the pdf can lead to larger errors than if a better initial estimate
had been used (see for example {2]5. 1 would be worthwhile to investigate the use of more
powerful estimators, such as kerrol estimators, in caleulating stochastic efficiency for the
univariate categorical case,

In the multivariate mixed variable case the picture becomes more complex. In univari-
ate stochastic dominance theory the simplifying assumption is made that all producers are
behaving optimally. Thus inputs, apart from the categories under analysis, need not be con-
sidered. It would be interesting to examine the use of multidimensional kernels in stochastic
dominance problems. 1t seems, to the authors, that the use of ¢df’s in the multidimensional
case is not as fruitful an approach as the nse of cpdf’s and higher order moments.
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