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Abstract

Noy-Meirs predator-prey model of the dynamics of a grazing system is extended in this
study to include plant-herbivore competition. Such models of plani-herbivore competition
although common m the literature on the biology of herbivory, have been fittle used in
range management. In this paper this extended version of Noy-Meirs model is used as
the basis for a bioeconomic model of optimal stocking. Initially, a deterministic optimal
control model with plant-herbivore competition is developed. This is then extended to the
problem of optimal stocking under uncertainty. An optimal stochastic control approach
for the case of two state variables is used to determine the optimal stocking rate. The
results are general for a wide class of dynamic models.

1 Introduction

A number of optimal stocking models have been developed based on dynamic prograinming
and optimal control methods. Passmore and Brown (1991) developed a discrete-time, stochas-
tic, dynamic programming model of optimal stocking based on rangelands as a renewable re-
source. Torell, Lyon and Godfrey (1991) use a continuous-time deterministic optimal control
problem to analyze the effect of the planning horizon on stocking rate. Standiford and Howitt
(1992) develop an optimal stocking model based on discrete-time stochastic optimal control
methods. This model is then applied in a mixed land use setting with grazing, hunting and
forestry, to determine optimal land use strategies. Virtala (1992) develops a discrete-time
deterministic stock-recruitment model for Reindeer. Finally, Perrings (1994) has developed a
discrete-time stochastic optimal control model with endogenous range capacity. Such models
have in general relied heavily on ideas developed in the fisheries literature, such as linear
resource depletion. Within the ecological literature on rangelands this concept has fallen into
disreputel.

“Thanke are due to Anthony Bloesch, Colin Brown, John Mott, Mal Wegener and Simon Woodward for
discussions aud comments on the material presented in this paper.

!'See the critique of Noy-Mcirs early work by Johnson and Parsons (1982) and the forum edited by Levin
{1993).



All of these models have been developed in the context of an economy with private graz-
g rights to the extent that they ignore institutional features?. Furthermore, they have

all heen based on simple predator-prey models that ignore the dynamics of plant-herbivore
competition.

A recent attempt to remedy some of these deficiencies is Swanson (1994). Unfortunately,
Swanson’s model stops short of interspecific competition by treating the base resource (Land,
i.e. pasture biomass) as a parameter or decision variable but not as a state variable. Con-
sequently, rangeland degradation cannot be analyzed within Swanson’s model. Nevertheless,
his work does point in the right direction.

In this paper an attempt is made to integrate some of the concerns discussed 1. the ecolog-
ical literature un range management and the more general biological literature on herbivory
within a dynamic bioeconomic model of optimal stocking. A continuous time framework is
used for a number of reasons. Firstly, one can argue that real world processes are continuous
rather than discrete. Secondly, continuous time problems are easier to handle analytically
and modern computer technology no longer presents a barrier to the analytical or numeri-
cal solution of cuntinuous time optimal control problems®. A third reason is suggested by
Dutta and Radner (1994) who study a class of principle agent contracts called “bankruptey
contracts”. If one wished to study pastoral leases from the perspective of agency theory,
then it would appear desirable to allow for the bankruptcy of the pastoral enterprise. This
would require allowing for “bankruptey contracts™ in the sense of Dutta and Radner. Using
discrete time in such a scenario leads to difficulties with regard to overshooting the duration
of the contract. This can be avoided by using continuous time!. Fourthly, an extension of the
model *o traditional pastoralism and common property grazing problems is in preparation,
modelling such systems requires the use of continuous time models as the use of difference
games in natural resource allocation is known to lead to problems concerning the playability
of such games®,

In the second section an overview of the main issues being debated in range ecology and
in the literature on herbivory is presented. In the third section a simple model of grazing
technology is derived from a linear weight-gain function typical of the literature. In the fourth
section the model of plant-herbivore competition is embedded within a bioeconomic model
of optimal stocking in which graziers seek to maximize profit over time. A proposition by
Workman and Fowler that the optimal stocking rate is always less than maximum sustainable
vield stocking rate is proved. In the fifth section this model is extended 1o the stochastic case.
In the sixth section the results of a sensitivity analysis of key parameters are presented. finally,
conclusions are drawn and directions for further research presented.

In the case of Perrings and Virtalas work this is unfortunate as the assumption of private property is in
both cases is probably not justified. Both Sahelian and Sami grazing rights have been well documented in
anthropological and other literature. For a discussion of grazing rights in Africa see Livingstone (1986) and
Behnke (1994). Sami pastoralism from an anthropological perspective is discussed in Ingold (1976) and (1950).

*In this respect MAPLE V.3 has been of some assistance in solving and understanding many of the problems
presented in this paper.

*Dutta and Radner (1994): p. 487.

*Clemhout and Wan (1985): p. 477.



2 Range Ecology and Herbivory

The starting point of any biocconomic model of grazing would appear to be the predator-
prey model of Noy-Meir (1975). Although this model has certain deficiencies with respect
to ecological accuracy and detail Noy-Meirs basic conclusions are generally not questioned.
The main criticisms of his approach may be divided into three issues that are nevertheless
interrelated:

1. Noy-Meir does not take into consideration the coevolutionary nature of the relationship
between forage plants and herbivores.

2. Herbivores may in fact “optimize” plant growth either directly or indirectly by their
feeding behaviour.

3. Points | and 2 may in fact, under certain circumstances, lead to overcompensatory plant
growth thus precluding overgrazing.

The range ecological and herbivory literature has followed two separate paths since Noy-
Meir’s original model. One path has been taken by range ecology with the adoption of the
state and transition model. The state and transition model makes use of Markov chains
1o model changes in key rangeland state variables. The use of Markov chains presupposes
numerical data. Nevertheless, the implication is clear, the population dynamics of rangeland
ccosystems may be viewed as a Markov process, regardless of whether numerical data are
available or not.

The second path has been that taken by pasture and crop modellers. Beginning with
the work of Johnson and Parsons (1985) a need was perceived to extend Noy-Meirs original
model by introducing senescence into the equation. Johnson and Parsons model is of little
use to the economist relying as it does on a great deal of detail concerning plant physiology.
Nevertheless, the basic tenor of their argument is important for economists who wish to
develop bioeconomic models of stocking decisions. The primary point of Johnson and Parsons
paper was that plants are not a passive resource whose biomass is depleted in a linear manner
by grazing. Rather grazing has a complex impact on plant physiology.

These issues have largely been ignored in the economics of rangeland management.

It is one of the purposes of this paper to integrate some of these aspects from the ecological
literature into a hioeconomic model of grazing.

It should be noted that these issues are controversial and that any a-priori assumptions
concerning winners and losers in the plant-herbivore grazing game should, where possible, be
avoided.

In recent years considerable controversy has developed within range ecology as to the
nature of the interaction between forage plants and herbivores in particular to what extent
the impact of grazing (i.e. stocking rate) on forage plants is always detrimental, has been
questioned, The traditional approach has been based on ideas of Clementsian succession,
where a rangeland is more or less regarded as representing a climax plant community with
forage plants being viewed as r-strategists (opportunistic species) and man and his livestock



as something akin to a K-strategist (persistent species). This then leads to a scenario wheraby
grazing is perceived as being always detrimental and best modelled by a simple predator-prey
relationship. Furthermore the assumption of a climax community implies an equilibrium
situation in the sense of a steady-state. More recently, this approach has been rejected in
favour of models not based on the existence of a climax community, c.g. the State and
Transition model and models based on the so-called “herbivore or grazing optimization”
hypothesis. This hypothesis states that grazing at moderate stocking rates leads to levels
of plant biomass above those that would occur in the absence of grazing. This effect has
been extensively documented in grazing trials®. Controversy remains however as to how to
interpret these results and in particular the likely implications for modelling. The effect is
graphed in diagram 1. A simple Noy-Meir type predator-prey model would consider only the
downward sloping portion of the curve and ignore the upward sloping portion of the curve
which characterises overcompensatory plant growth.

This hypothesis has important implications for optimal stocking. On the one hand it
implies non-linearity o the optimal control problem, whereas previous predator-prey models
used such as that of Noy-Meir (1975) imply a “bang-bang” control’.

¢See the Forum-Grazing Theory and Rangeland Management, S.A. Levin (1993).

7See also Virtala (1992) whose madel of optimal stocking of reindeer in Finland, which to some extent is
based on on Noy-Meirs work, is of the “bang-bang” type. “Bang-bang"problems are characterized by state
equations that are linear in the control variable.
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Diagram 1: Herbivore Optimization Curve (adapted from DeAngelis (1992): p. 113. See
Also McNaughton (1979): p.696.).

On the other hand it begs the question as to the mechanism by which overcompensatory
plant growth may occur. There are three possible explanations for overcompensatory plant
-owth in circulation in the literature®:

1 Direct effects, e.g. nutrient cycling

8McNaughton (1979): pp. 692 lists nine possibilities, but all of these imply the use of an interactive
model. Thus they fall into the same class as nutrient cycling. 1 ignore these examples here as many are still
controversial. The interested reader is referred to the literature,



2 Plani-plant competition, e.g. reduced self thinning of plants

3 Plant defence mechanisms, e.g. proteinase inhibitors

Some authors support the nutrient cycling hypnthesis®. This approach would lead one
away from the nou-interactive model described in this paper to an interactive model in which
plant growth would depend directly and in a positive manner on stocking rate. A second
hypothesis is the reduced self-thinning hypothesis'?. Basically, this hypothesis explains over-
compensatory plant growth via the reduction in competition between plants that is induced
by grazing, this in turn leads to increased tillering and so to greater plant biomass. The
third candidate to explain the presence of overcompensation is that of grazing induced plant
defences. Induced plant defences unlike constitutive plant defences do not require evolution-
ary time to respond to the impact of grazing. By using a model of interspecific competition
between plants and herbivores predator-prey models may be generalized to allow for the
possibility of overcompensatory plani growth,

The resistance to herbivore optimization theery within the range management literature
has been primarily due to the failure to identify a plausible mechanism by which overcompen-
satory plant could occur in the presence of grazing. In the more general biological literature
on herbivory and in particnlar the literature on insect herbivory this is not controversial. In
this literature the main candidates for such a mechanism are plant defence mechanisms.

In the literature on insect herbivory it is common practice to model the population dy-
namics of grazing using models of interspecific competition hetween plants and herbivores,
Studies of plant-herbivore competition for mammalian herbivores have been somewhat rarer,
but it is thought that the dynamics are analogous to those of insect herbivore systems!’. The
primary competitive mechanism used by plants to counteract the impact of grazing is that of
plant defence mechanisms.

Plant defence mechanisms may be divided by strategy into three types: physical, chemical
and behavioural (including informational) and by telos into two types: induced and consti-
tutive. Physical defences include thorns and high cellulose concentrations, chemical defences
include various plant toxins and proteinase inhibitors, etc., behavioural defences include sig-
nalling mechanisms such as infochemicals as well as mimicry and association with known toxic
species. The latter leads to the formation of plant defence guilds, i.e. complexes of plant asso-
ciations that are characterised by the fact that they form a defensive unit consisting of plants
of different species.

In this paper these features will not be explicitly treated, I will not distinguish between
types of defence mechanisms in the proposed model, but instead will only postulate that such
a defence mechanism exists, is a function of total plant biomass and is successful in that it has
a detrimental effect upon herbivore fecundity. Such a model is relatively general and would
be consistent with a wide range of optimal defence functions.

An indication of the importance of such defence mechanisms is given by Culvenor (1984)

who estimated a total cost to the Australian economy of between $ 70-80 million per annum?2,

® Andrew Moore for example has communicated his belief to me that overcompensatory plaut growth may
be explained by nutrient cycling. Personal Communication, January 1995,

185ee Hiernaux et al, (1994) for a discussion.

' Crawley (1983) for example uses the same techniques to analyze the population dynamics of insects, small
herbivores and large herbivores

2Culvenor (1984): p. 3.




Note this figure ignores the opportunity cost of weight-gain foregone due to the response of
livestock to plant defences. 1t includes losses due to livestock deaths and the costs of veterinary
trcatment. What matters to us are the hidden costs of such defences upon which no economic
vaine can be placed,

In general grasses possess relatively poor defences. Crawley (1983) points out that com-
persatory growth may be associated with the curve of photosynthetic value versus leaf age
possessing a maximum and that one would expect chemical defences to be concentrated in
those leaves of maximum photosynthetic value'®. Therefore the issue is not so much the overall
level of chemical defences but how a plant, including grasses, concentrates the few chemical
defences it may have. Furthermore, the reality is that rangelands consist of a mixture of
grasses, woody weeds and other range plants with defensive potential, Such a community
of range plants is better characterized by interspecific competition. 1 will not however an-
alyze the process by which species composition changes, although such models are already
beginning to appear in the ecological literature'*.

The following model of the ecosystem is therefore proposed:

V=GV)=-cV)H (1)
A= F(V,A) - b(V)H (2)

where V is forage plant biomass, 4 = HL the total number of animals, Hl stocking rate,
G(V) the biomass regeneration function, F(V,A) the herbivore regeneration (reproduction)
function and ¢(V) > 0 and b(V) > 0 strategy functions assumed to be chosen by herbivores
and forage plants respectively. This model represents an extension of Noy-Meir (1978} in that
livestock numbers are also treated as a state variable. Note, that such a system is called an
indirect feedback control system'®. To see this replace /7 in equation 1 by 4. Clearly, the
control H acts on V' only indirectly via the time derivative of A,

Some explanation is required of range management terminology. Grazing systems are
slock management strategies that are designed to increase yield and aver land degradation
by reducing grazing pressure. Grazing pressure refers to the amount of stress imposed by
herbivores on a grassland ecosystem. A common measure of grazing pressure is the stocking
rate expressed in animal units per hectare and unit of time. Animal units are not individual
animals, Individual animals cannot be directly compared and therefore aggregated. Animal
units are calcylated based on forage intake. A set of animals with equivalent forage intake is
called an animal unit. Such units are aggregable and provide a measure of grazing pressure
in a given place and time.

3 Production Functions, Weight-Gain Functions and Stock-
ing Rate

In empirical work done by Van Heerden and Tainton (1989) a negative linear relationship
between individual weight-gain and stocking rate was found'®. A linear relationship of the

B Crawley (1983): pp. 41-42,

" See for example Lundberg, Jaremo and Nilsson (1994).
¥ Lefschetz (1965); p. 18,

1%Sec also Whecler and Freer (1986) pp. 176-177.



type discovered by Van Heerden and Tainton conforms to the following form:

Y=a-bH (3)

where ¥ is the average liveweight and a,6 > 0.
Prom this one may derive a production function for a fixed area of land (V1) (short-run
production function) in the following manner®:

Yy, = ke(VYH ~ mH?, (4)

This results in the revenue-cost diagram, Diagram 2.

S Humphreys (1987): p. 125,
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Diagram 2: Revenue-Cost diagram for the optimal stocking problam,

This diagram possesses the typical form of revenue-cost functions used in the literature
on renewable resources. This is important because it implies that bionomic equilibria may
still exist, whereas the linear weight-gain {(production) functions used by Noy-Meir preclude
the existence of bionomic equilibria.

Two parameters of the revenue function are particularly important. these are the max-
imum sustainable yield stocking rate ., and econamic grazing capacity Heqp. Note that
cconomic grazing capacity may differ from the ecological grazing capacity. Economic grazing
capacity is defined as the least upper bound of the set of zero revenue stocking rates. To
calculate Mg, differentiate ¥, and set ‘%} Lo zero:

d¥Yy ,

L = ke(V) = 2mil =

10 ke(V)—2mlil =0 (5)
From this one obtains M,y = ke(V)/2m. To obtain Hegp set Y7, = 0 and solve for I,

This gives Heap = ke(V)/m. Note that Hygy = § Heape

8



4 Optimal Stocking in a Continuous-Time Deterministic Model

with Sole Ownership

The optimal stocking problem for a grazing enterprise under sole ownership and in continnous
time is given by

T . .
max / {p(ke(VVE = mi?)L = rA} e*dt 4 R(V, H,T)e™T (6)
1 (1]

given the equations of motion

V= GV) - (V) (7)
A= F(V,A) - oV (8)

and V), b(V) and “stocking cost” r > 0. Note the variables V, /I are time dependent.
L is a constant parameter. pis the sale price of animal liveweight and ¢ is the discount
rate. R(V,H,T) is the value of the grazing enterprise on the expiry of the pastoral lease or on
retirement of the grazier'”. thus R(V, I, T) = (wyV + woll )1, where wy and w; are weights
which refelect the relative value of available forage and livestock in the final period. The
corresponding Hamiltonian is

WA ot = {p(ke(V) I = mH?)L = o H L} e~ 4 NG(V) = (V) )+ F(V, 1 L)=b(V) H]
(9)

The maximum principle gives

AY

(plke(V) = 2mH)L - rL)e™ — Ae(V) + “% —pub(V)=0 (10)

and the transversality conditions

Vv, I >0,

then

IR _ir
ave

Y Striculy speaking modelling a leasehold enterprise waould require the use of a principal-agent framework.
It is however not possible to treat principle-agent problems from a deterministic approach, [ have clected
not 1o analyse leaschold land tenure using this approach in this paper, as it first requires the development
of a stochastic optimal stocking theary, Furthermare, the development of continuous time principal- agent
models is still in its infancy. See, however Dutta and Radner (1994) for a discussion of the continuous time
principle-agent problem with moral hazard.

= MT)




and

R _op
g-/—{a“'”’ = u(T) (11)

Substituting these values into () gives

(p(ke(V) = 2mH) L = rLYe™ = w Le™ T (V) 4+ wae T (£l = b(V)) = 0 (12)

If one assumes F(V, I L) to he logistic wuh the form nil L(1 ~ i%-,’f) then this becomes

. R A & 4 g ‘ 32
(pke(V) = 2mH)L = v LYe™ — wyLe™ T e(V) 4+ wae™ T ((nL(1 - %L) - 331{7!—-— -~ b(V)) = 0(13)

From this one obtains

1(e Y (phe(VIL = rL) = e T (wy Le(V) 4 wonl, — web(V)))V (14)
2 (L(pne=tV 4 woe=TnlL))

n =

The impact of the discount rate on the optimal stocking rate is indeterminate due to
the exponential nature of the discount factor. Myopia cannot therefore provide a generic
explanation for overgrazing. If one were however to assume a steady-state this situation
would however change, the discount rate would lead to a reduction in stocking rate and not
increase. Similar results have been obtained by Perrings (1994) and Virtala (1992). I will
however not assume a steady-state here in order to facilitate a comparison with the stochastic
case. A steady-state assumption is incompatible with a stochastic model. Furthermore it is
not. compatible with more recent thinking in the range management literature such as the
“State and Transition”model.

4.1 The Workman-Fowler Proposition

Workman and Fowler {1986) proposed that the optimal stocking rate always lies below the
biological optimum (maximum sustainable yield). Although they provided numerical exam-
ples they gave no formal proof of this claim. The Workman-Fowler proposition is interesting
because it exposes some of the problems involved in applying results from the fisheries liter-
ature to pastoral problems.

Propesition 1 (Workman and Fowler (1986)):
IT* < Hypgy.

Proof: First note that the revenue function P(V, I7) takes on a slope of zero for 1 = Hypgy.

Furthermore as H approaches zero g{; approaches infinity. Given r > 0, then by the mean
value theorem, there exists a point between H = 0 and I = IH,,4y, where the total revenue

10



function and the total cost function are of equal slope. This point is the optimal stocking
rate 11*. Therefore the following condition must hold: 0 < HI* < H,,, and the proposition
is shown to be true 00

This result holds even in the presence of discounting. Thus sole ownership in the rangeland
setting will not produce overgrazing based on discount effects. This result differs consider-
ably from sole ownership in a fishery’®. Although I shall show later that other factors may
contribute to overgrazing in rangelands.

5 Optimal Stocking in a Bioeconomic Model with Stochastic
Environmental Fluctuations

The use of «deterministic models is subject to considerable criticism and indeed a number
of models have attempted to introduce stochastic elements by modelling forage growth as
a Markov process'®. Both economic and ecological models that have taken this path have
been developed. The difficulties involved in such an approach are considerable, in particular
if the derivation of general results is the desired objective. Nevertheless, the development of
stochastic models is not only necessary for reasons of realismn, but because certain questions
can only be analyzed within the context of a stochastic model. An example of such a question
is that of the incentive effects of leasehold versus freehold land tenure. This issue is best
analyzed within a principle-agent {ramework. Analyzing optimal stocking within a principal-
agent framework will however require the development of a stochastic model as priciple agem
problems by definition involve decision making under risk.

In this section, the deterministic model developed above is extended by replacing the
deterministic state equations by a system of stochastic differential equations.

It has been traditional in stochastic optimal stocking problems to assume particular
stochastic processes. Thus, Passmore (1992) and Passmore and Brown (1991) postulate a
discrete-time Markov process. Furthermore, this supposition fits in well with the so-called
State and Transition model which is currently held in high regard in range ccology and which
also views rangeland ecosystem dynamics as a Markov process®®.

Perrings (1984) takes a different approach by introducing two state variables: herd size
and range carrying capacity. This introduces an “historical” aspect into the model, where the
current state of the sysiem depends on all previous states?!. It is important however to note
that this does not imply that the underlying stochastic process is not Markovian. Perrings
does not specifically assume a particular stochastic process, but the form of the difference
equations used would appear to imply that he was considering a Markov process.

In the following a general time-indexed stochastic process is assumed which may or may
not be Markovian. Extending the general grazing model used above to the stochastic case
gives the following system of stochastic differential equations:

V=V(V,H,1) (15)

B Clark (1990): Ch.2.

®See Renshaw (1991) for a gond discussion of the relationship between deterministic and stochastic models
in poulation biology.

“*Westoby, Walker and Noy-Meir (1989a) and (1989b),

2 Phis differs from other models, where the current state usually depends only on the previous state.

1




A= AWV, H,1) (16)

Typically, this system of stochastic differential equations would have an additive specifi-
cation:

Vo= V(V, H,t)+ g(V)E(t) (17)
A= AV H )+ R(HYC( (18)

where g(V') and A(17) are measures of the intensity of noise and £ and  are noisy processes.
The functions V(V, H,t) and A(V. H,t) are the deterministic component of the differential
equation,

1t should be noted that the State and Transition model may be recovered from the model
presented here in the following manuer.

Given a probability space (£2,.4,7) and interpreting V as a vector of key range condition
indicators then the State and Transition model is characterized by the following additional
assumptions:

P&V, 0= 0

2 £(1) is a continuous-time Markov process

Interesstingly, the claims of Westoby, Walker and Nay-Meir that the state and transition
model is a disequilibrium model appear somewhat premature. In a stochastic context equi.
librium may be interpreted in a number of different ways, The underlying stochastic process
may be interpreted as a:

1 Strongly Stationary (strong - quilibrium concept)

2 Weakly Stationary (weak equilibrium concept)
process??.

If one were to totally reject all forms of equilibrium then analysis would become impossible.
Such a situation would be characterized as “chaotic™ in e sense of non-linear dynamic
systems theory. The existence of chaotic behaviour in real biological systems is however
contentions to say the least®3,

The stochastic optimal stocking (control) problem may be solved analogously to the de-
terministic case. The objective functional will however differ slightly as it is necessary to
assume that graziers attempt to maximize expected profit:

22The term ergo.-c is sometimes used instead of stationary.
#3Renshaw (1991): pp. 4.5.

12



7 o
nwxE{/(mkqvwi*mnﬂLmrny"WQ4-MVanﬂ (19)
0

given the equations of motion:

Vo= V(V L)+ g(V)E(L) (20)
A= AV, H O+ h(H)C(1) (21)

In order to solve this problem a number of extra assumptions are needed. In the follow-
in~ it is assumed that the processes £(t) and (1) are Wiener processes. A Wiener process
is a homogenous Markov diffusion process, thus this specification still follows the spirit of
the State and Transition model, but introduces the possibility of plant-herbivore competition
which the state and transition model ignores. Rewriting the above system of equations as
Wiener processes one obtains:

Vo= V(VH )+ (V)W () (22)
A= AV, H,t)+ h(H )W (1) (23)
Note that in our model V(V, H,t) = G(V)-C(V)H and A(V, H,t) = F(V,H L)~ b(V)H.
This gives us an optimal stochastic control problem in two state variables, such a problem
may be solved by using a “two-state variable™ (25V) analogue of the Hamilton-Jacobi-Bellman
(HIB) equation?.
The 25V HIB equation for this problem is given by:

0 = mmﬂmmwuhqmﬂy¢ﬁmw“%mwwy
quﬂ+uumaum-mvun+%hwmunﬁpguﬂmnf} (24)

Evaluating this equation at the maximum gives the following condition:

0 = (plke(V)=2mH)~rL)e™ — Jye(V) + JA(%
J 0
=0(V)) + Jeven(H) g5 + Jaaoal ) 578 (25)

This is a second order partial differential equation which is casily solved given the terminal
data (value matching condition)

#*For a treatment of the application of “single-state variable™ optimal stochastic control problems to natural
resonrce management see Mangel (1985). A discussion of optimal stochastic control with two state variables
as applied to renewable resources may be found in Beard (1994).

13



J(V, A ) = RV, )™ (26)

IFurtherinore consider the case where F(V, 1 L} is a logistic function nH L(1 ~ 1{—,’—‘), then

one obtalns:

0 = (plhe(V)=2mH)L - rL)e™ —wLe™Te(V) +
" J ] J?
woe™ T(nL(1 - !{_{‘,) - E%L - b(V})) (27)

This then gives the following optimal stocking rate

1(e Y (phLe(V) = rL) - wyLe™ Te(V) + woe T nl — woe™ TH(V))V
2 L{¢=*pLmV + wqe=Tnl)

Interesstingly, the use of a weighted average to represent the terminal value of the en-
terprise also leads to a certainty equivalence result. This would not however be the case
in the infinite time context. Pastoral enterprises do not however possess infinite time hori-
zons, although such an assumption may well be justified for society as a whole. Further,
the assumption that the value of the enterprise is a weighted average of available forage and
livestock inventory appears not only plausible but has a close affinity to certain results in the
literature on option pricing and valuation. Note that the terminal value of the property can
be considered as the option value of the rangeland. It would seem therefore that the certainty
equivalence result is a natural result which holds for sole ownership pastoral enterprises with
finite time horizons.

Note that this optimal stocking rate varies with regard to available forage between zero
and an upper limit dependent upon the digestive ability of the livestock. The existence of an
upper limit to the digestive ability of large herbivores was first introduced into the literature
by Westoby (1974)%.

The introduction of institutional factors, such as sharecropping, principle-agent relation-
ships, grazing rights characteristic of common property and transhumance may however lead
to different results where “uncertainty matters”. This has long been recognized by New-
Institutional economists such as Douglas North:

H* (28)

The major role of institutions in a society is to reduce uncertainty by establishing
a stable (but not necessarily) efficient structure to human interaction?®.

The certainty cquivalence result obtained here for the sole ownership case is therefore
important as a benchmark for comparing the success of various institutional regimes in man-
aging rangeland resources. In addition to sustainability the ability of an institution to manage
risk needs to be addressed when making such comparisons.

The choice of ¢(V) will determine whether or not such an upper limit exists. A common functional form
suggested in the literature is the Michaelis-Menten function used in reaction kinetics. See Murray (1989),
Chapter 5.

% North (1990); p. G.
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6 Sensitivity Analysis of Key Parameters

A number of key parameters influcuce the optimal stocking rate. For example, discount rate
1, farm size L and the date t. An analysis of the impact of each of these factors was carried
out using asymptotic methods. The results confirm more or less the current state of debate
in the literature

The impact of discounting on the optimal stocking rate is, even after repeated application
of L'Hopital’s rule, indeterminate. The reason for this is that both the numerator and de-
nominator in the optlimal stocking rate expression are exponentially decreasing in 2, In this
context, it is interessting to note that previous optimal stocking studies have found conflicting
results with regard to the impact of discounting®. For example, Passmore and Brown (1991)
and Passmore (1992) conclude, in line with received opinion in the natural resources liter-
ature, that discounting is environmentally detrimental. Perrings (1994} and Virtala (1992)
imply the opposite in their conclusions. Furthermore, Perrings (1993) provides a detailed
analysis of why the impact does not possess a unique sign?®,

The impact of of grazing area L (farm size) on the optimal stocking rate f1™ is interesting,
The limit of H*® as L approaches zero is undefined. If however one takes the limit as L
approaches infinity then the optimal stocking rate approaches zero.

limity—eoH* = 0 (29)

This result. is consistent with one of the stylized facts of the range management literature
namely, that small farm sizes lead ceteris paribus to overgrazing.

Finally, the impact of of ageing or the approach of the lease expiry date is of interest,
As graziers age or a lease approaches its expiry date, stocking decisions are likely to change,
Graziers in different generations are often perceived as making different decisions due to
experience or the lack thercofl. In modelling the grazing firm with a finite time horizon rather
thar an infinite time horizon the impact of ageing and Jor time remaining to lease expiry can
be analyzed.

Consider the limit of T as ¢t — T

l(pl,kc(V) + woln — rL — wye(V)L — wb(V))V
2 L{pmV + wynl)

In order to determine whether or not this expression is smaller than the optimal stocking
rate for positive gross margins it would be necessary to parameterize the model numerically.
Preliminary simulations and intuition suggest that as t approaches T the optimal stocking
rate will fall. However, this issue does need further examination and it is still somewhat
premature to place a definitive sign on the impact of “date” on stocking rate.

iy H™ = (30)

7 Conclusion

In this paper, an extended version of Noy-Meirs original population dynamic model of grazing
is analyzed from a biceconomic perspective. In particular Noy-Meirs model is extended to

27 passmore and Brown (1991), Passinore (1992), Perrings (1994) and Virtala (1992).
28 Perrings (1993): pp. 89-92,

15



include features of plaut-herbivore competition which appears to give a biologically more
realistic account of the interrelationship between rauge plants and herbivores, than the simple
predator-prey model used by Noy-Meir. This extended model was first analysed from a
deterministic perspective where it is shown that, given private property rights, overgrazing is
impossible even in the presence of discounting. The model is then extended to a stochastic
framework, where it is shown that discounting has an unclear impact on stocking rate and
that even the presence of uncertainty fails to account for range degradation. The area grazed
is the only factor which could possibly account for overgrazing and this result is consistent
with that of other studies. The assumption that the dynamics of both range condition and
livestock follow a Wiener process requires some ad loc assumptions to guarantee feasibility
of the solution. A more realistic assumption may be to postulate a Poisson process, but as a
first approximation a Wiener process does deliver some interessting results. A second avenue
of future research may be to examine alternative models of grazing impact, such as an Ivlev
model?,

Generic explanations of overgrazing are, with the exception of grazing arca (farm size), still
out of reach of this model and an extension toother institutional settings appears desirable, In
particular an issue that is not addressed here is the “tragedy of the commons” as a theoretical
model of overgrazing., The “tragedy of the comrons” fails to account for the stylized facts of
overgrazing in both developed and developing countries. In addition, one should bear in mind
that property rights in Australias rangelands are hardly “well-defined” in the sense of private
property. The model presented here might therefore be extended to include institutional
aspects such as grazing rights, land tenure and market institutions, in the hope of developing
a theory more in harmony with the stylized facts of land use in the worlds rangelands. In
coraparing such a model with sole ownership one should bear in mind that not only is the
overall grazing pressure associated with an institution important but a'<2 the capacity of an
institution to manage risk.

8 Appendix

A Linear Weight Gain Functions and Returns to Scale

in this appendix it is shown that both Noy-Meirs linear production function and a Cobb-
Douglas function are not compatible with weigt-gain stocking rate tradeofs that have been
observed experimentally.

Given the following Cobb-Douglas technology:

Y = ke(V)AC L'~ (31)

where A is the total number of animals, L land, ¢(V) > 0 consumption per animal, ¥ plant
biomass, k a weight-gain parameter and a the elasticity of substitution.

Taking output per hectare one obtains

31. = ke(V)A°L™® = kc(V’)(-’})" (32)

#®Note an Ivlev model is non-linear in the control variable even in the absence of interspecific competition,

for this reason it does not fall within the class of models discussed in this paper.
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Defining Y7, = «} and H = f; one obtains the following weight-gain per hectare function
dependent upon stocking rate I,

¥y, = ke(V)HT®, (33)

The individual weight-gain function is then given by

e Y _V
Y= AT H

t

= ke(VYHO! (34)

Differentiating with respect to H gives the slope of the individual weight-gain function,

Y o
fm = (@ = Dke(V)H*~? (35)

Examination of {45) shows that for ¢ < 1 the individnal weight gain function has nega-
tive slope. Differentiation again one obtains:

i

d*Y

-3 = (o - 1)(a = 2)ke(VIH*™? = (a? — 3a 4 2)ke(V)H*"3 (36)
If Y(H) is linear then
0’ -3a+2=0 (37)

Solving for alpha one obtains a = 2 or @ = 1. If @ = 2 the technology is not diminish-
ing returns. For a twice differentiable diminishing returns technology a = 1, but this implies
that the individual weight-gain function has zero slope. Note that substituting a = 1 back
into (2) gives Noy-Meir's linear production function. Noy-Meir's linear production function
which is derived from a Cobb-Douglas function implies therefore that individual animals do
not lose condition as a result of increased stocking rate. This result is both counterintuitive
and contrary to experimental evidence.
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