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ABSTRACT 

This paper considers a stochastic frontler production function which has 

addltlve, heteroscedastlc error structure. The model allows for negative or 

positive marginal production risk of inputs as orlglna.lly proposed by Just 

and Pope (1978). An empirical application is presented using data on Central 

Ethiopian peasant farmers who used no fertiliser in their operations. The 

null hypothesis of no technical inefficiencies of production among these 

farmers is accepted. However, the flexible risk model does not represent the 

data on peasant farmers a.s well as the tradi tiona! stochastic frontier model 

with multiplicative error structure. 
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1. Introduction 

Bulldl.ng models that are consistent with economic theory and reality is 

the ultimate goal of econometricians. The stochastic frontier production 

function proposed by Aigner, Lovell and Schmidt (1977) and Meeusen and van 

den Broeck (1977} is more ln line with the definition of a production 

function than the so-called average production function; and more realistic 

than the deterministic frontiers pioneered by Farrell (1957) and Aigner and 

Chu (1968). 

However, a significant aspect of production, which has not pr·evlously 

been adequately accounted for in stochastic frontier production models, is 

production risks. In fact, production risk attracted little attention in the 

development of conventlonal production functions (Antle 1983) whereas 

marketing and price risks have been considered [see Lippman and McCall (1982) 

and references therein]. Nevertheless, production uncertainty is one of the 

most important ingredients in the formulation of government policy and the 

decision making of producers [see Just and Pope (1978). Pope and Kramer 

(1979). Griffiths and Anderson (1982), Wan, Griffiths and Anderson (1992)]. 

Incorporating production risk into stochastic frontier models is of 

particular relevance because the main purpose of frontler production 

functions is the prediction of technical efficiencies. In essence, technical 

efficiency measures the degree of utilisation of technologies adopted in the 

production process. It is commonly accepted that production risks affect the 

decision making of producers concerning the adoption and utilisation of new 

technologies. Given the importance of technical changes in production growth 

and the inevitable existence of the risk effects on economic efficiencies, it 

can be concluded that risk considerations should be incorporated into 

stochastic frontier functions in order to realistically account for, and 



2 

predict, technical efficiencies. 

ln this paper, we consider an alternative stochastic frontier model 

function for cross-sectional data, such that the marginal risks of inputs may 

be negative or positive. The model incorporates the structure of the 

stochastic frontier function within the framework of the preferred flexible 

risk t1odel suggested by Just a11d Pope (1978). Thus output is speciflr>d to be 

the sum of a deterministic function of inputs and a heteroscedastic error 

term which depends on a different function of the inputs. The model is a 

modification of that presented in Wan and Battese (1992). The latter paper 

did not contain an emrirical example. Kurnbhakar (1.993) recently proposed a 

production functlon model with flexible risk properties, but the output 

values are specified to be a rnultlpllcatlve function of a function of inputs 

and an error term of components-of-variance type for panel data. The time 

and firm effects are. however, specified to be fixed (rather than random} 

effects. 

The model is defined and discussed in Section 2. An empirical 

application of the model is presented in Section 3. Some basic theoretical 

results required in the derivation of the likelihood function and the partial 

derivatives of the logarithm of the likelihood function are presented in the 

Appendix. 

2. Flexible Risk Frontier Model 

Consider the stochastic frontier production function for a cross-section 

of N sample firms 

Y
1 

= f(x
1
;o:) + g(x ;f3HV -u ] , 

1 . 1 1 
i = 1,2, ... ,N, (1) 

where Y
1 

is the production for the 1-th firm during the period involved; 
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x is a vector of K explanatory variables for the 1-th firm; such that 
l 

the first element is the base of the natural logarithm, e; 

~ «k ~ ~k 
f(x iCX) IE n x and g{x ;jl) IE n x are known functions (here assumed 

1 lk 1 lk 
k=O k=O 

to be of Cobb-Douglas form) of the explanatory variables. which depend on 

unknown parameters. «=(a, a, ... , ~.)' and 13 = (/l. ~, ...• 13 )', to be 
0 1 k 0 1 1: 

estimated; 

the V s are assumed to be independent and identically distributed 
1 

standard normal random variables; and 

the U s are non-negative random variables, assocla.ted wl th the existence 
t 

of technical inefficiency of the firms in the industry~ which are assumed to 

be independent and identically distributed truncations of the N(J.t., o-2 ) 

1 distribution, independently distributed of the v1-random errors. 

The productlon function {1) is of Cobb-Douglas type for convenience of 

expo.sition of the stochastic frontier model involved. It is required that 

all explanatory variables are parametric functions of inputs and other 

variables, such that they have positive values. Other functional forms can 

be used for f(·) and g(·), provided they are non-negative. 

The mean and variance of production for the 1-th firm, given its level 

of inputs and technical inefficiency effect, are 

1 
The model as originally proposed by Wan and Battese (1992) defined 

~ Ilk 2 
g(x

1
; ~) = k~1x 1 k and V

1 
..... N(O, o-v). The above model is a reparameteri-

~o 
sation for which a- = e and the random varlables, V and U , are scaled v 1 1 
by dividing through by a- • Thls parameterisation is preferred for v 
estimation. 



and 

E(Y lx ,U) 
1 1 1 
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(2) 

(3) 

The marginal production risk associated ~lith the j-th explanatory 

variable, defined to be the partial derlvative of the variance of production 

(3) with respect to the J-th explanatory variable, is thus 

8V(Y !x ,U) 
1 l l ---=---- = ax1J 

2{3 V(Y jx ,U ) 
j 1 1 1 

xl J 
(4) 

Clearly, the marginal production risk (4) may be positive or negative, 

depending on the sign of 13 , which is not necessarily the same as the rate of 
j 

change of the mean of production with respect to the j-th explanatory 

variable. This is a rr,ore flexible property than is obtained wlth the 

traditional production functions with multiplicative errors, for 

which the marginal production rlsk is the same sign (generally positive) as 

the rate of change of the mean of production with respect to a given 

explanatory variable. 

The technical efficiency of the 1-th firm, denoted by TE
1

, g.iven the 

values of the explanatory variables, x
1

, is defined by the ratio of tbe mean 

of production for the 1-th firm, given the realized value of its fl.rm effect, 

U
1
,- associated with the inefficiency of production, to the corresponding mean 

of production if there were no inefficiency of production [cf. Battese and 

Coelli (1988, p.389)], i.e., 
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Given the stQchastlc frontier model (1), it follows from equation (2) 

that the technical efficiency of the 1-th flrm is given by 

x f3 -a, 
TE = 1 - U ln X k "]· • 

' l ·. lk 
(5) 

=0 

Thus the technical efficiency of the 1--th flrmt given its levels of 

factor inputs, is not only a function of its firm effect, U
1

, but also of the 

values of the explanatory variables and the parameters of the production 

front.ler. includlng the risk parameters (the fls}. 

If the parameters of the stochastic frontier production function were 

known, then the best predictor for the technical efficiency (S) is the 

condi tiona! expectation of TE , given the realtzed values of the random 
l 

variable E
1 

liE V - U • [cf. Jondrow, et al. (1982), .Battese and Coe111 
l t 

(1988)], 

(6) 

It can be shown tbat, given the assumptions of the model (1). the 

conditional distribution of U
1

, given that the random variable, E
1

, has 

2 value, e
1

, is defined by the positive truncation of the N(fli,cr•) 

2 distributlon, where Ai and (f'• are defined by 

~~ - e ri 
1 

J.l. = ----
1 a-2 + 1 

2 (1'2 cr.=---
0'2 + 1 

(7) 

[8) 

The conditional expectation of Ue given tha,t E
1 

has value e
1

, can be 

shown to be 
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(9) 

where;(·) and~(·) repres~nt the denslty and distribution functions for the 

standard normal random variable. 

We cons.1der maxi.mum-likellhood estimation of the parameters of the 

stochastic .frontier model (1). The logarithm of the likelihood function for 

sample observations on the firms involved is presented. ln the Appendix, 

together with the first partial derivatives which are used by the 

Davidon-Flelcher-Powell algorithm to obta.ln the maxlmwn.,..llkellhood estimates. 

Tests of hypotheses for the tnodel can be obtained using the generall~ed 

likelihood-ratio statistic and tradl ti.onal asymptotic methods.. There is 

particular interest ln the null hypotheslf;, H0 ~ cr = o. whJch implies that the 

stochastic frontler productlon function is identical to the preferred Just 

and Pope (1978) model, ln which technical lnefficienoies are assumed not to 

exist. 

The null hypothesls, H
0

: cr = o. is tested by calculating the .generalised 

likelihood ratio statistic, A.= -2b)[L(H )IL(H )], where L(H) is the 
0 1 . 0 

likeliho.od funct.ion for the Just and Pope (1978} model, Y = g(x ;a.) + 
1 1 

g(x
1

;fJ)V
1

, and L(H
1

) is the likelihood. function for the flexible risk 

frontier model, defined by equation ( ll. The null hypothesis, H
0

: cr = 0, is 

rejected if the value of A exceeds the (l~·a.)10QY. value for the obi-square 

distribution with two degrees of freedom, where a. is the desired slze of the 

2 test. The x
2
,..dl.strlbutlon is involved because the distrlbutlc:m of U

1 
is 

specified by two parameters, f.1. and rr2 • Ho...,ever, if cr is zero, then th~ 

technical lnefflciency effects are non-existent and llen.ce, g-iven the 

specificatipn of the frontier model defineci by eq~a,tlon (l), the J\lst and 

Pope ( 1978) model app 1 ies. 
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An operational predictor for the. techhlcal efflclency. TE
1

• 1~ obt«~.1f)ed 

by substl t.utlng e~tlin~tors for the parameters. involved in the e~pre!i~Ho11s. ·Of 

equations (6)-(9). !he pre<ilc:tor for the random vari~ble, e
1

, involved ln 

th~ condl tlonal mea,n. ~·, defined by equation (7), ls 
1 

where y
1 

represents the obs~rved value of production for the 1-th firm; and 

the carets above the pararneters denote the appropriate maximum-likelihood 

estimators of the parameters involved. 

3, Emplrlcal Appllcq.tlon 

The flexible risk stochastic frontier model (1) ls applled in the 

analysis o.f data obta.lned from a survey of Ethiopian farmers in 1990. The 

data were analysed in Kidane and Abler (1994) and provided to the senior 

author by Professors Abler and Kldane. Although the survey involved data 

from all administrative regions in Ethiopia, we consider only those data for 

Central Ethiopia. 

The output variable for which data were obtained in the survey is the 

value of output for cropping and livestock enterprises for the farmers 

concerned. The input variables for which observations were obtained .for the 

sample farmers are equipment, as measured by the number of implements (hoes, 

plows. etc. } used in the farming operations; the number of cattle owned and 

the amount of Jand (in hectares) operated. No da.ta were collected on labqur 

lnput~ of the sample farmers. Data were also collected .on the amount of 

artificial fertilisers used in the cropping enterprises, but. about 

53 per cent of the sample farrn.ers in Central Ethiopian used no fertiliser. 

Hence we consider only the data for those farmer!; wnq applled no fertiliser 



a 
in the sample year. These are considered to be tl1e aost tradltl:Qnal gro\)p of 

the farmers involved in the survey. Data for 447 farmers are. involved ln 

this data set. 

We use these sample data to estimate the flexible risk stochastic 

frontier, deflned by equation (l), for which the output variable l,s value of 

output divided by 1002 and the input variables are equJ.p~nent., cattJe and. Jand 

( 1. e., K = 3), as defined above. 

The maximum likelihood estimates for the parameters of the production 

frontier are obta.ined by using a set of procedures from the maximum~ 

3 likelihood module in the GAUSS system. The estlma,tes obta.ined for the 

flexible rtsk frontier and the Just and Pope (1978) moc:lel are presented in 

Table 1. Inl tial estimates for the a.- and ~-parameters for the maximum-

likelihood routine we.re obtained using the final maximum-likelihood estimates 

for the Just and Pope ( 1978) model. Ini tlal estimates for J.f. and f1' were 

obtalned by maximising the 11kelihood function (conditional on the a:~ and 

~-estimates) over a grid of values of 1J. and u, where J.t ranged from -Jp- to 3cr 

and CT ranged from 0. 1 to 2. 0 (by steps of 0. 1). In genera.l, the search 

procedure was quite sensitive to the choice of initial values of the 

parameters. 

2 

3 

Given that value of output is the output variable for the stochastic 

frontier (l). then the random variable, u1, arises from all types of 

inefficiencies of production. including technical inefficlenc:les. If all 

farmers faced the same prlce structure, then u1 would ~easure only 

techni.cal inefficlencles. Hence u1 is associated with ec::ono~lc 

inefficiency of pr:oductlon of the farmers involved, 

The estimation was programmed in GAUSS .3.1.5 Aptech Systems, Inc. 
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Table l: Maximum-likelihood Estlmates for Parameters of 

Flexlble Rlsk Frontier Models for Farmers in Central Ethlopl~ 

Who Use No Fert111ser1 

Variable 

Constant 

Equipment 

Cattle 

Land 

Constant 

Equipment 

Cattle 

Land 

Parameter 

cxo 

(X 
1 

{30 

2 
(j 

Model 1 

0.97 
( 1. 86) 

0.560 
(0.092) 

-0.006 
(0.057) 

0.46 
(0.44) 

-0.15 
(2.21) 

0. ( j 

(0.093) 

0.007 
(0.099) 

0.202 
(0.068) 

0.0042 
(515) 

1.4 
(6.3) 

Hodel 2 

0.41 
( 1. 21) 

0.52 
(0.12) 

-0.018 
(0.076) 

0.65 
(0.46) 

-0.17 
(0.23) 

0.611 
(0.088) 

0.019 
(0.097) 

0,199 
(0.073) 

0.062 
(2.6) 

0 

Hodel 3 

0.38 
(0.17) 

0.520 
(0.093) 

-0.02 
(0. 11) 

0.659 
(0.075) 

-0.17 
(0.46) 

0.61 
(0.15) 

0.02 
(0.18) 

0.199 
(0.094) 

Loglikelihood function -1218.502 -1218.741 -1218.760 

1 Model 1 refers to the general flexlble r1$k front.ier 
model, defined by equation (1). Model 2 refe,rs to the 
flexible rlsk model for which the inefficienc;y effects 
have half-normal distribution. Model 3 refers to the Just 
and Pope ( 1978) model for which the inefficl.ency ef.fects, 
ul f are absent. 
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The values of the logllk:elihood function f01· the thr~e Jll()~els conslci~red 

in Table 1 are aJ:-proxlmately equal, but increase slightly ln value froin the 

Just and Pope (1978) model to the front.ler model with JL = 0 to the •ore 

general frontier model with ~ a parameter to be estimated. The estlmatec.i 

standard errors of the maximum-likelihood estimators for th~ two stochastic 

frontier models are obtained by the GAUSS systeD1 using the flrst partial 

derivatives of the logarithm of the likelihood function, The$e value.s are 

generally quite large re~atlve to the corresponding estimates for the Just 

and Pope (1978) model, whose estimated standard errors are obtained uslng the 

matrix of the second partial derivatives. This is particularly the case for 

estimation of the constant parameters (a
0 

and fJ
0

) and the parameters, cr and 

4 
~~ associated with the inefficiency effects, U . 

l 

Given the specifications of the flexible risk frontier model, estimated 

under the column headed Model 1, in Table 1, tests of hypotheses that simpler 

dlstrlbutlonal assumptions are adequate are presented in Table 2. The first 

null hypothesis considered in Table 2, H : ~ = 0, is that the inefficiency 
0 

effects in the frontier model have half-normal distrlbutlon. The generalized 

likelihood-ratio statistic, ;\, has value 0.48, which is not greater than the 

2 95 per cent point for the x -distrlbution and so the null hypothesis, 
1 

H
0

: ~ = 0, would be accepted. 

The second null hypothesis considered in Table 2, H
0

: cr = 0, implies 

that the inefficiency effects are not present in the model, which then 

4 Efforts to obtain standard errors of the maxlmum-llkelihood estimators 

based on the second part.lal derivatives of the logarithm of the llkel~hpod 

function, for the two frontier models, were not successful because the 

Hessian was not invertible, 
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1'able 2: Test~ of Hypotheses for Parameters of the Inefficiency ~ffect!; 

in the Flexible Risk Frontier Hodel 

Null hypothesis 

Ho 

ll = 0 

(J' = 0 

Likelihood Test 

LLF 

-1218.741 

-1218.760 

Statistic 

A 

0.04 

0.10 

2 
X 

3.84 

5.99 

reduces to the Just and Pope (1978) model. The generalised likelihood-ratio 

statistic, A, has value 0.52 which is considerably less than the 95 per cent 

2 point for the x
2
-distributlon. Hence the hypothesis that the inefficiency 

effects are absent from the stochastic frontier, given the specifications of 

the general flexible risk frontier model, would also be accepted. 5 

The estimates for th~ a- and (3-parameters of the production functions 

are very close across the models considered in Table 1. Since the 

(3-parameters are of particular significance in the flexible risk model 

involved, we note that the estimates associated wlth the three explanatory 

variables, equipment, cattle and land, are positive. This implies that 

increasing the levels of these inputs is estimated to have an increasing 

eff~ct on the variancP. of the value of output, l.e., the three variables 

have positive marginal risks. The marginal risk associated with cattle is 

not significantly different from zero. 

The estimates for the a-parameters in the model are positive for 

equipment and land, but negative for cattle, although the latter estimate is 

not significantly different from zero. The a-parameters associated with the 

5 
This result implies that the technical efficiencies of the sample farmers 

in Central Ethiopia are equal to one. 
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explanatory variables are not elasticities under the specifications of the 

6 flexible risk frontier model, unless the inefficiency effects are zero. 

\ole seek to compare the fit of the proposed flexible risk frontier model 

with the more traditional stochastic front.ier model of Cobb-Douglas type, 

defined by 

Y ( 
.: a.k) v, -u • 

l = 11 x
1 

e , 
k=O k 

1 = 1,2, ... ,N, (10) 

2 where the V s are independently and identically distributed N(O, u )-random 
l v 

errors; and the 

U s are independently and identically distributed, non-negative 
1 

truncations of the N(~. u2 )-distrlbution. 

Maximum-likelihood estimates for this stochastic frontier model are 

obtained using the program, FRONTIER, Version 2.0, written by Tim Coelll for 

estimation of a production frontier model for panel data, for which the 

technical inefficiency effects are an exponential function of time, see 

Coelli (1992) and Battese and Coelli (1992). The maximum-likelihood 

estimation of the parameters in the frontier model (10) involving the three 

explanatory variables, equipment, cattle and land, are listed in Table 3, 

2 2 2 2 2 where CF = u + cr and r = u lu . 
s v s 

6 

Although the estimates for the elasticity for this stochastic model are 

The elasticity of the expected production with respect to the J-th factor 

input, conditional on the input variables and the inefficiency effect for 

the i-th farmer is equal to 

a E(Y jx , u 
1 1 1 
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Table 3: Maximum-Likelihood Estimates for Parameters of the 

Cobb-Douglas Stochastic Frontier for Farmers in Central Ethiopia 

Who Use No Fertiliser 

Variable Parameter Estimate 

Constant « 0.65 
0 (0.18) 

Equipment 0: 0.510 
1 {0.080) 

Cattle ex -0.011 
2 (0.048) 

Land ex 0.735 
3 (0.052) 

Variance Parameters 2 5.5 (j 
s (3.6) 

r 0.970 
(0.019) 

fl -10.5 
(8. 1) 

Loglikellhood function -1129.155 

quite simllar to the estimates for the corresponding ex-parameters for the 

flexible risk models estimated in Table 1. the logarithm of the likelihood 

function of this traditional Cobb-Douglas frontier model is somewhat greater 

than for any of the flexible risk models. 7 Further. the traditional 

Cobb-Douglas frontier model differs significantly from the corresponding 

7 
The logarithm of the likelihood function presented in Table 3 is not the 

value calculated directly by FRONTIER which gives the logarithm of the 

likelihood function for the logarithm of the output values. The sum of 

the logarithms of the output values is subtracted from the value given by 

FRONTIER in order to obtain the appropriate logarithm of the likelihood 

function to compare the two models. 
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traditional production function, ln which the technical inefficiency effects 

are assumed to be absent (L e., U = 0 for all farmers). Thls is evident 
1 

2 2 2 from the estimate for the ratio parameter, '1 = o- /(o-v + o- ). which has value 

strictly between zero and one if the tech.r.tlcal inefficiency effects are 

present in the stochastic frontier model. The estimated value of 7, 0. 970, 

8 is highly significant, given its estimated standard error of 0.019. 

Although a formal non-nested test procedure for the two stochastic 

frontier models is not presented, the results obtained suggest that the 

flexible risk model ls not a good fit for the input-output data for 

traditional farmers in Central Ethiopia. 

4. Conclusions 

The stochastic fronlier production function estimated ln this paper has 

flexible production risks which are desirable for the analysis of data on 

different production systems. For the empirical application presented in 

this paper none ~r the three input variables involved in the frontier had 

negative marginal risk. However. it appears that the flexible risk model is 

not an adequate representation of the data involved. However, the model may 

prove to be better than the traditional non-flexible risk production 

frontiers. 

8 
Further results on the estimation of traditional Cobb-Douglas and translog 

stochastic frontier production functions using the data on the sample 

farmers from Central Ethiopia are presented in Nsanzugwanko (1994). 
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Appendix 

Given the assumptions on the random variables, V and U , in the 
l 1 

stochastic frontier model (l). it follows that the joint density function of 

V and U ls 
1 l 

=------
2 .2 exp[- 112(u -~) /~] 

l 

.J; ~ ~(~cr) 

The joint density function for E E V -U and U can be shown to be 
1 1 t 1 

where ~· and cr: are defined by equations (7) and (8), respectively. 
1 

Further, the denslty function for E
1 

can be shown to be 

It follows readily from equations (A.2) and (A.3) that the condlt1cma1 

density function for U 
1

, given the random variable E
1 

has value, e
1

, ls 

The density function for the product.ion of the 1-th firm is 

(A. 1} 

(A.2) 

(A.3) 

(A.4) 
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(~.5) 

J; « l ~ 
where JL• = {f.t - tr[(y - U X")/( TT X ")}/(o-

2+ 1) 
1 . l lk lk 

k=O k=1 
(A.6) 

2 and o-. is as defined by equation (8). 

From equation (A.S), it is evident that the logarithm of the likelihood 

function is given by 

N [ ] N t.: 
+ l": ln ~(f..l0/tr•) - l": l: f3 ln X 

l k . lk 
1=1 1=1 k=O 

- ~(JL/u)2 + ~ ~ (flilo-.}2 (A.7) 
l =1 

Where a = (CX1 
t /3 1 

t 0', J.L) I • 

If the technlcal inefficiency effects, U
1

, are absent f'rom the frontier 

model (1), then the Just and Pope {1978) model applies, whose logarithm of 

the likelihood function is given by 

I« I 

L(a•; y) = - ~ ln(2n) - t t 13" tn x
1
k 

1 =1 k=O 

and a• = (a' , f3' ) ' • 

(A.8) 
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The partial derlvatlves of the logarlttua of the lUc:ellhQcxi functl.on (A. 7) 

with respect to the paramet..ers~ « .. {3, tr and fl are as follows: 

(A.9) 

where 

J = 0, 1,2 •••. ,K; 

(A.lO) 

(A.11) 

(A. 12) 




