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Abstract 
 

This paper develops and compares two alternative approaches to accommodate scale 

heterogeneity (also referred to as heteroskedasticity) in latent class models. Our 

modelling approach compares two different representations of heteroskedasticity, 

respectively associating the heterogeneity in scale factor with respondent's 

characteristics (i.e. observed scale heterogeneity) or deriving it probabilistically (i.e. 

unobserved scale heterogeneity). The results reveal a number of benefits associated 

with this type of approach, particularly when heterosckedasticity can be linked to 

observed characteristics of the respondent. Our data comes from a discrete choice 

experiment eliciting recreational users preferences for farmland walking trails in 

Ireland. 
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M. Boeri, E. Doherty, D. Campbell, A. Longo Accommodating for taste and variance heterogeneity

1 Introduction

For many years the assumption of homogeneity in preferences has dominated the early

literature on non-market valuation of recreational goods with a few exceptions (e.g.,

Morey, 1981; Morey et al., 1993). In his seminal paper, Train (1998) emphasized that

the explicit recognition of taste heterogeneity is important in the estimation of recre-

ational choice to avoid biased welfare results. As a consequence, choice models that

can capture individual level taste heterogeneity are now commonplace in estimation of

choice behaviour.

The wider literature on modelling choice behaviour has noted a further important

type of heterogeneity, namely scale heterogeneity, also referred to as heteroskedasticity

(e.g., Louviere et al., 1999; Louviere and Eagle, 2006). This refers to unobserved

heterogeneity in variance associated with the random component of the utility. In recent

years effort has been made to develop models capable of accommodating both scale and

individual taste heterogeneity within the same model. The desire to accommodate both

types of heterogeneity simultaneously recognises that, as noted by Thiene and Scarpa

(2010), ‘addressing only preference or scale heterogeneity negates the fact that true

choice behaviour is likely to be in some middle ground with some variation attributable

to scale and some to taste’.

The identification of individual scale parameter is, however, problematic as this is

equivalent to perfect positive correlation across all random parameters of the indirect

utility function. Hess and Rose (2012) demonstrate how the attempts in the literature to

disentangle scale heterogeneity from heterogeneity in individual coefficients in discrete

choice models are misguided. In their paper, they show how the various model specifi-

cations (eg. using log-normal distributions or WTP-space models) can simply be seen

as different parameterisations using more flexible distributions, rather than identifying

individual scale heterogeneity.
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Instead of comparing models assuming continuous distributions for the random

parameters (as in Hess and Rose, 2012), this paper focuses on discrete distributions.

In particular, we explore alternative specifications of the LC model to also incorporate

heteroskedasticity in estimation of site-choice models.

While Magidson and Vermunt (2007) developed a scaled-adjusted LC model that

accommodates between class preference heterogeneity and within and between class

unobserved scale heterogeneity (i.e. specified probabilistically), we add to the litera-

ture by developing two further heteroskedastic Latent class (HLC) specifications. The

first HLC model accommodates between class preference heterogeneity and within and

between class observed scale heterogeneity1. We also estimate a more general version

of the scale adjusted LC model that does not suffer from the constraint that the scale

classes are of the same proportions across all taste classes. For comparison purposes

we estimate a standard LC model.

Our case-study explores preferences for farmland walking trails in the Republic of

Ireland. In Ireland, the majority of land is owned privately as farmland and property

rights are defined in such a manner that recreational users do not have a de-facto le-

gal right of entry and landowners can prohibit walkers from entering their land. As a

result, Ireland does not have a network of well defined countryside walking opportu-

nities and many of the recreational walking opportunities in the Irish countryside are

limited to public roads. Additionally, national parks in Ireland and other public lands

for recreation are relatively limited. Previous research suggests that substantial supply-

side potential exists to develop a network of countryside walking trails. The present

study seeks to establish demand side preferences for these trails.

1The Heteroskedasticity is specified with a discrete distribution based on known groups–namely rural and

urban respondents–within the data
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2 Background Literature

The literature on accommodating scale heterogeneity in random utility models can be

characterised by authors who account for scale heterogeneity between known groups

within the data and by others who model scale heterogeneity without the need to iden-

tify a priori groups. The seminal paper in this area was developed by Swait and Lou-

viere (1993) who outlined and tested a modelling approach to represent scale hetero-

geneity in a MNL model with a discrete variable based on known groups. Since then,

other advances in the area have been initiated through a number of studies. For exam-

ple, Swait and Adamowicz (2001) specify the scale parameter as the ability to choose

which is a function of choice task complexity and respondent effort. In the recreational

literature, DeShazo and Fermo (2002) parameterise scale as a function of a number of

measures of choice sets complexity to examine the variability across individuals in-

duced by different experimental treatments in a choice experiment (CE). Another early

example is given by Scarpa et al. (2003) who estimates scale heterogeneity as a func-

tion of traders’ experience related to valuing cattle breeds.2 Finally, Breffle and Morey

(2000) proposed a modelling approach assuming homogeneity in tastes and allowing

for scale heterogeneity through a continuous mixing distribution without the need to

specify discrete groups.

Despite the development of these approaches some researchers have questioned the

accuracy of just accommodating either only taste or scale heterogeneity since it is pos-

sible that what the researcher is interpreting as preference heterogeneity could in fact

be scale heterogeneity and vice versa (e.g., Louviere et al., 1999; Louviere and Eagle,

2006). Recognising that human behaviour is likely to be characterised by a combina-

tion of both preference and scale heterogeneity has given rise to models that attempt to

2Other early attempts to incorporate scale heterogeneity include Hu et al. (2006)— reference point effects in

demand analysis, Cameron and Englin (1997)— experience in contingent valuation of environmental goods,

Brownstone et al. (2000)— revealed and stated preferences data in transport and Hanley et al. (2005)— price

vector effects for CEs.
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accommodate both simultaneously. The models include the generalised multinominal

logit model (G-MNL) (Fiebeg and Wasi, 2010), the scale-adjusted LC model (Magid-

son and Vermunt, 2007; Campbell et al., 2011) and the WTP-space model (Train and

Weeks, 2005).

More recently, with particular emphasis on G-MNL and WTP-space models, Hess

and Rose (2012) argue that these efforts to separately identify random scale hetero-

geneity have been misguided. In particular, they base their argument on the fact that,

econometrically, a linear in parameters specification of the logit model perfectly con-

founds scale with taste sensitivity. They note that models estimated in this manner

simply allow for more flexible distributions, thus uncovering from the data particular

correlation structures within the heterogeneity that is being modelled whilst maintain-

ing the scale/taste sensitivity confound.

This paper focuses on alternative methods to accommodate scale heterogeneity

within a LC framework. In this context, Magidson and Vermunt (2007) proposed a

scale-adjusted LC model, allowing for the simultaneous accommodation of preference

and unobserved scale heterogeneity. In their paper, unobserved scale heterogeneity

is probabilistically described by a discrete mixing distribution (not based on a priori

groups) within each latent class. We further explore this approach by estimating and

comparing it with two HLC models, firstly developed within this paper. In particular,

we develop a HLC model that enables us to specify scale differences with a discrete

variable based on known groups within the data. This approach is more closely aligned

to Swait and Louviere (1993) and it enables more straightforward identification of scale

influences within our data. Using this approach we can determine on a per class basis

whether a particular group exhibits higher or lower variance. For our second contribu-

tion to this literature we generalise the scale-adjusted LC model by relaxing the con-

straint that the scale classes need to be in the same proportion across all taste classes,

which is a restrictive feature of the scale-adjusted LC model.
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3 Methodology

3.1 Modelling data from discrete choice experiments

Statistical analyses of the responses obtained from DCEs are grounded in the Random

Utility Maximization (RUM) theory (Thurstone, 1927; Manski, 1977), which assumes

that the respondent’s choices are driven by the maximization of his utility function:

Unit = β
′xnit + εnit. (1)

Where n indicates the respondent, i the chosen alternative, t the choice occasion, x is a

vector of attributes, β is a vector of parameters to be estimated, and ε is a random com-

ponent, unobserved by the researcher, assumed to be iid Gumbel distributed3. Given

this functional form, the probability for the individual n of choosing alternative i over

any other alternative j in the choice set is defined as:

Pr (int) =
exp (λ · β′xnit)

J∑
j=1

exp
(
λ · β′xn jt

) , (2)

As under the MNL assumptions it is not possible to estimate both β and λ the latter

is conveniently fixed to 1. It is possible to explore the issue of Scale heterogeneity by

mean of the heteroscedastic MNL (HMNL) model as specified in Swait and Adamow-

icz (2001)4. Instead of assuming λ = 1 for everybody in the sample, the HMNL model

relies on the assumption that the scale parameter is heterogeneous and its heterogene-

ity can depend upon observed characteristics of either respondents (e.g. Scarpa et al.,

2003) or choice situations (e.g. DeShazo and Fermo, 2002). In their paper, Swait and

Adamowicz (2001) assume that tastes are constant and that only the scale parameter (λ)

varies across the sample. In their conclusions, they propose an extension based on an

3For a derivation of the model see Ben-Akiva and Lerman (1985)
4For more comments and details on the derivation, refer to Swait (2006).
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exploration of simultaneous representation of taste and scale heterogeneity. Given the

flexibility of LC models, now it is possible to accomplish this task of accommodating

heterogeneity across scale and preferences by estimating HLC models as described in

what follows.

3.2 Taste and scale heterogeneity: Heteroskedastic Latent class models

As traditionally estimated, LC models are a semi-parametric variant of the MNL model

based on a finite mixing distribution. This type of models is based on the assumption

that individuals can be implicitly sorted, up to a probability, into a set of C classes,

each of which is characterised by unique class-specific utility parameters, βc, for the

attributes in the choice sets. Given membership to class c, the probability of respondent

n’s sequence of choices yn over the Tn choice occasions (i.e., yn =
〈
in1, in2, . . . , inTn

〉
),

is:

Pr (yn|c, xnit) =

Tn∏

t=1

exp
(
β′cxnit

)

J∑
j=1

exp
(
β′cxn jt

) . (3)

Considering now the probability of membership to a class c defined as πc (where 0 ≤

πc ≤ 1 ∀c and
C∑

c=1

πc = 1),5 the probability of a sequence of choices is:

Pr (yn|xn) =

C∑

c=1

πc



Tn∏

t=1

exp
(
β′cxnit

)

J∑
j=1

exp
(
β′cxn jt

)


. (4)

The modelling approach proposed in what follows builds on the idea of a scale-adjusted

LC model (Campbell et al., 2011; Magidson and Vermunt, 2007) and the HMNL model

(Swait, 2006).

5Membership probability can be based only on a constant (Scarpa and Thiene, 2005) or be informed by

socioeconomics covariates (Boxall and Adamowicz, 2002). In our paper, we follow the former approach in

order to facilitate a more direct comparison between models, and we leave to further research the specifica-

tion of heteroskedastic LC models informed by socioeconomics covariates.
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Two HLC models are derived: the first accounts for observed heteroskedasticity

(in which we assume that the analyst can observe the characteristics on which the

heterogeneity in the scale factor depends), while the second accommodates unobserved

(probabilistic) heteroskedasticity.

The first model, that we call Observed Heteroskedastic Latent class (ObsHLC), can

be described as a LC built on a HMNL model as developed by Swait and Adamowicz

(2001) therefore by allowing λ estimated for an observed group of respondents. While

Swait and Adamowicz (2001) proposed this within a MNL modelling framework, we

extend this to a LC specification allowing for within class scale heterogeneity. As a

result the choice probability becomes:

Pr (yn|xn) =

C∑

c=1

πc



Tn∏

t=1

exp
(
λc · β

′
cxnit

)

J∑
j=1

exp
(
λc · β′cxn jt

)


. (5)

The second model, that we call Probabilistic (or Unobserved) Heteroskedastic La-

tent class (ProbHLC) builds on the model developed by(Magidson and Vermunt, 2007)

and further applied by Campbell et al. (2011). The model developed in this paper al-

lows the researcher to relax the constraint requiring the same probability for the scale

classes across all taste classes (eg. the Scale adjusted LC model (Magidson and Ver-

munt, 2007) allows to estimate for each class c, s classes with different scale parameters

λcs, but in all classes those s scale classes must have the same membership probability,

in our ProbHLC the scale classes have different membership probability in each taste

class. Assuming that within each class there are S classes with different scale factor,

each associated with a scale membership probability πcs, the model can be represented

as:

Pr (yn|xn) =

C∑

c=1

πc



S∑

s=1

πcs



Tn∏

t=1

exp
(
λcs · β

′
cxnit

)

J∑
j=1

exp
(
λcs · β′cxn jt

) ,




, (6)
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where
S∑

s=1

πcs = 1 and 0 ≤ πcs ≤ 1 ∀s in each taste class c and πc ≤ 1 ∀c and
C∑

c=1

πc = 1.

Note that if πcs is the same over classes πcs = πs the model in Equation 6 is a Scale

Adjusted latent class (ScaleAdjLC).

As we are interested in how the scale parameter differs in each group from a base-

line group (for which the scale factor is fixed to one to avoid specification problems),

we specify λ = 1 + η, (η being the difference in scale from the baseline group or

class) subject to the constraint η > −1. We then estimate for each group how its scale

parameter differs from the baseline group.6

The models were estimated with Pythonbiogeme (see Bierlaire, 2003, 2009) using

maximum log-likelihood estimation procedures. In order to deal with the problem of

local maxima in LC models, we used the CFSQP algorithm (Lawrence et al., 1997)

and we run the estimations between 100 and 200 times (depending of the model) using

random starting values.7

3.3 Welfare analysis

Given that one of the main objectives of environmental recreational site choice studies

is the assessment of users’ welfare, we develop compensating variation (CV, also re-

ferred to as Consumer surplus) estimates to determine users’ welfare associated with

specific policy changes.

For models that incorporate random variation, in order to compute both willing-

ness to pay (WTP) and CV estimates it is necessary to obtain the individual-specific

posterior estimates. As shown by Scarpa and Thiene (2005) for LC models, individual-

specific posterior class probabilities can be computed using Bayes’ theorem. They also

illustrate how the individual-specific posterior parameter estimates can be computed

6This simplification, which allows to reduce the computational efforts of estimating the scale factor µ =

exp(λη), is possible as the software used for estimations (Biogeme) is very efficient in handling constraints

on estimated parameters.
7This was coded in ‘PERL’ and used in combination with Pythonbiogeme run under Ubuntu 10.04 LTS - the

Lucid Lynx. See Boeri (2011) for a more in-depth discussion of the software.
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using the predicted class membership probabilities as weights of the average of the pa-

rameters over classes. Following Scarpa and Thiene (2005) therefore, it is possible to

retrieve the individual-specific WTP.

Additionally once the individual-specific posterior parameters are retrieved, the CV,

conditional to class membership, is simply another weighted average as follows:

ĈVn =

c=C∑

c=1

π̂ncĈVnc

=

c=C∑

c=1

π̂nc

{
−

(
β̂ACnc

)−1 [
ln
(∑

exp
(
λ̂β
′

ncX1
n

))
− ln
(∑

exp
(
λ̂β
′

ncX0
n

))]}
(7)

where X0
n reflects the attribute levels for respondent n prior to the policy change and X1

n

is the level of the attributes after the policy change.

4 Survey design and data description

The paper uses data from a DCE used to elicit public preferences for the development

of farmland walking trails in Ireland. Given the strong policy focus, the study design

involved gathering opinions from a wide-range of stakeholders interested in addressing

public access concerns within Ireland as well as conducting focus groups with members

of the general public.

After extensive discussions with key stakeholders and insights from focus group

participants, it was decided to use labels to reflect the diversity of farmland in Ire-

land, and, hence, the potential for diverse types of farmland walking trails. The labels

reflected the main types of potential farmland walks that could be implemented at a na-

tional level: Hill, Bog, Field and River walks. In the final version of the questionnaire,

five attributes were decided upon to describe the walking trails. These attributes were

chosen on the basis of their choice relevancy to members of the general public as well

as their suitability and relevance for farmland recreation. Questions were also included
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in the pilot and main questionnaires to explore respondents’ acceptance of the choice

scenarios presented to them.

The first attribute, ‘Length’, indicated the length of time needed to complete the

walk from start to finish (all walks were described as looped (circular) so that people

using the walks did not have to walk back along the same route). This attribute was

presented with three levels with the shortest length between 1–2 hours, the medium

length between 2–3 hours and the longest length between 3–4 hours. The levels of the

Length attribute were presented using interval levels to reflect the fact that not every-

one walks at the same pace. These levels were informed by discussions at focus groups

as well as information on the current recreation walking activity of the Irish popula-

tion. The second attribute, ‘Car Park’, was a dummy variable denoting the presence of

car parking facilities at the walking trail. The third attribute, ‘Fence’, was a dummy

variable used to indicate if the trail was fenced-off from livestock. This attribute only

applied to the field and river walk alternatives, since these are the most likely types of

walks where livestock would be encountered. The fourth attribute, ‘Path and Signage’,

was a dummy variable to distinguish if the trail was paved and signposted. These three

attributes represented the infrastructural features that were deemed important and re-

alistic for farmland walking trails based on findings from the qualitative part of the

study. The final attribute, ‘Distance’, denoted the one-way distance (in kilometres) that

the walk is located from the respondent’s home. The attribute was presented with six

levels (5, 10, 20, 40, 80 and 160 kilometres) reflecting realistic distances that would

be travelled in Ireland for a recreational day trip. This attribute was later converted to

a ‘Travel Cost’ per trip using estimates of the cost of travelling by car from the Irish

Automobile Association. Findings from focus group discussions indicated that this

represented a conceptually realistic and acceptable payment mechanism.

Each respondent was asked to complete a panel of twelve choice tasks, which were

constructed using a a Bayesian efficient design (Ferrini and Scarpa, 2007). For each
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task, respondents were asked to choose between a combination of the experimentally

designed alternatives and a “stay at home” option. When making their choices, respon-

dents were asked to consider only the information presented in the choice task and to

treat each task separately. Respondents were further reminded that distant trails would

be more costly in terms of their time and money.

[Figure 1 about here.]

The survey was administered to a sample of Irish residents in 2009 using face-to

face interviews. A quota controlled sampling procedure was followed to ensure that

the survey was nationally representative for the population aged 18 years and above.

The quotas used were based on known population distribution figures for age, gender

and region of residence taken from the Irish National Census of Population, 2006.

4.1 Urban-Rural exploration of scale heterogeneity

In the HMNL and ObsHLC models we accommodate scale heterogeneity based on a

priori expectations of scale heterogeneity between known groups in the dataset. This

requires that we have expectations regarding likely scale differences in the dataset be-

tween groups. In this case study, we exploit potential differences in scale between

respondents who reside in either rural or urban locations.8 Our focus on urban-rural dif-

ferences reflects a priori expectations that these respondents may have different levels

of familiarity and experience of countryside recreation in general and farmland recre-

ation specifically. As a result we may expect that rural and urban residents may have

different scale parameters. In addition, it is further possible that there may be differ-

ences within each subgroup (i.e. between rural residents or urban residents themselves)

8For the purpose of this case-study we define rural respondents as those who reside outside the main cities

in Ireland and urban respondents as those who live in one of these cities. This classification reflects the

ease with which respondents located outside the main cities can access farmland compared to their urban

counterparts. The sample breakdown is 281 and 189 rural and urban respondents respectively.
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in their scale parameters. 9 As we show below, we can use the ObsHLC model to ac-

count for these possibilities. While we restrict our analysis to exploring rural-urban

differences our modelling approach can be applied to accommodate a host of factors

that could cause scale differences, such as choice task complexity or respondent effort

in stated preference studies (DeShazo and Fermo, 2002; Swait and Adamowicz, 2001),

experience levels (Scarpa et al., 2003) or differences between revealed and stated pref-

erence data (Brownstone et al., 2000), for example.

5 Estimation results

In this section we present the results of models estimation. We firstly compare the

models in terms of model fit and then we present the estimates from the best LC models

specifications – all the LC models with 6 classes are reported in Table 2 and 3, however

only results from ObsHLC and ScaleAdjLC are discussed for reasons of brevity.

All models are estimated from our balanced panel of 470 respondents, providing a

total of 5,640 observations. The explanatory variables for choice probabilities are four

dummy variable attributes: Length–over two hours, Car Park, Fence, Path and Signage

(equal to one if the option contained, respectively, a walk longer than two hours, Car

park facilities, fence and/ or path and signage, and zero otherwise), the ‘Travel Cost’

coefficient, and four alternative specific constant, one for each type of walk (hill, bog,

field and river–the baseline being the “stay at home” option).

5.1 Model comparisons

In Table 1 we compare different LC models specifications. To decide the number of

classes with different preferences, we use the information criteria discussed in Hurvich

9We should also expect differences in preferences between urban and rural respondents, that could be mod-

elled introducing covariates in the class membership probabilities of our LC models, however this is not the

focus of the present paper .

Draft paper — September 3, 2012 Page 13



M. Boeri, E. Doherty, D. Campbell, A. Longo Accommodating for taste and variance heterogeneity

and Tsai (1989)10.

[Table 1 about here.]

Based on the criteria repeated in Table 1 for each of the four types of LC models

(namely LC, ObsHLC, ScaleAdjLC and ProbHLC), the best fit for the data is provided

by the six classes specification of the three HLC, while the eight classes specification

provides the best fit for the data within the context of the traditional LC model.11 In

addition by comparing the goodness of fit criteria across the four groups of LC mod-

els, we notice that the specifications with 6 classes for both ObsHLC and ScaleAdjLC

outperform the LC and the ProbHLC models. Additionally we note that the increased

number of parameters estimated in the ProbHLC (compared to the ScaleAdjLC ) are

not justified by its increased flexibility and potential ability to explain the data more

accurately. However, this is likely to be data specific and therefore, an open empiri-

cal question. For the ObsHLC and the ScaleAdjLC model specifications the BIC and

crAIC suggest that both fit the data in a similar manner.

5.2 Model estimates

To reduce the number of tables we do not present the results from the MNL and HMNL

models, however, our results from both models confirm that respondents have negative

and significant coefficients associated with the travel cost attribute and for length of

walks that are over two hours duration. Additionally respondents show positive and

significant preferences towards the coefficients representing carpark, fence and path

10The information criteria statistic (C) is specified as −2lnL+Kδwhere lnL is the log likelihood of the model

at convergence, K is the number of estimated parameters in the model, and δ is a penalty constant. There

are a number of different types of information criteria that can be employed depending on the value taken

by the penalty constant δ. For δ = 3 we have the Akaike Information Criteria (AIC); for δ = lnL(N) we

obtain the Bayesian Information Criteria and finally, for δ = 2 + 2(K + 1)(K + 2)/(N − K − 2) we have the

corrected AIC (crAIC), which increases the penalty for the number of extra parameters estimated (Hynes

et al., 2008).
11However, inspection of the model highlights many non-significant coefficients and membership probabili-

ties. We further tested models specifications with 9 classes, but we found these models to be problematic

because of identification problems and in some instances the models did not converge.
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and signage attributes. The coefficients representing the walk alternatives are positive

albeit the coefficient for bog walk is not significant. Our HMNL model, which accom-

modates observed scale heteroegenity, reveals that respondents from rural areas are

estimated to have lower variance when making their choices, resulting in a higher scale

parameter, compared to urban respondents in this model.

Estimates from LC models are presented in Table 2 and 3. As the ObsHLC and

ScaleAdjHLC models with 6 classes respectively represented the best models based on

certain IC criteria, our discussion and analyses focuses on these specifications.

[Table 2 about here.]

[Table 3 about here.]

In the ObsHLC model –presented in Table 2– a negative coefficient is associated

with the longer length walk attribute except for classes four and five (where the coeffi-

cient is not significant for these two classes). This suggests that Irish residents have a

strong preference for walks that are generally of a shorter duration, which most likely

reflects the broader walking patterns of Irish residents. For instance, Curtis (2002)

in a survey of the recreational behaviour of the Irish population, has shown that most

Irish people who participate in recreational walking, mostly engage in relatively shorter

walks. The travel cost coefficient is negative as expected and is significant in all but

one class (Class 5).

In the case of class one, the 20 percent of the sample who are assigned to this

class have positive and significant preferences for the carpark, fence and path and sig-

nage attributes as well as the walk alternatives. This class may characterise people

who like walking, but generally prefer quite a structured walk with facilities. Respon-

dents in class two dislike longer length walks and walks that are located further from

their homes but generally do not care for facilities. Respondents assigned to this class

also show positive and significant preferences for the walk alternatives. These results
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suggest that respondents in the first two classes have preferences for all the walk al-

ternatives (to various degrees) but generally differ in which attributes they care for.

For classes 3-6, there is some variation in terms of which attributes and walk alterna-

tives that respondents show a preference for. Respondents in class 3 have significant

preferences for river walks compared to the stay at home option. The other walk al-

ternatives are not significant nor are the coefficients representing the Fence and Path

and Signage attributes. Most of the coefficients representing the attributes in class 4

are not significant at the five per cent level, while all the coefficients representing the

walk alternatives are significant at the 10 percent level and the travel cost coefficient is

marginally below the five percent significance threshold. Respondents in class 5 have a

significant coefficient for the path and signage attribute and for the river and field walk

alternatives only. For class 6, the coefficients representing the longer length attribute,

the travel cost coefficient and the hill walk are significant. In terms of the probabil-

ity of class membership the class sizes are relatively evenly distributed, with no one

particularly large class or very small class.

The ObsHLC model can be viewed as a natural extension to the HMNL. An advan-

tage of this model is that it is possible to determine on a per class basis whether rural

or urban respondents exhibit higher or lower variance. In addition, we can explore the

added dimension of preference heterogeneity within this framework compared to the

HMNL model. Using this approach, we find that rural respondents in class 3 have a

higher scale parameter implying less uncertainty (lower variance) in their preferences.

This class exhibit a scale parameter for rural respondents similar to the outcome from

the HMNL model. Class 2 and 4 do not exhibit significant scale heterogeneity between

rural and urban respondents assigned to this class. Whereas classes 1, 5 and 6 are as-

sociated with higher variance (lower scale parameter) for rural respondents assigned to

these classes. Potentially, the proportion of rural respondents assigned in one of these

classes may be more aware of present difficulties associated with accessing farmland
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for recreation in Ireland. As a result, this could be reflected by more uncertainty (and

higher variance) regarding their preferences for farmland walking trails.

Results from the ScaleAdjLC model are presented in Table 3. While we do not go

into a detailed overview of the model, a number of features are noteworthy. First, while

the model produces similar class probabilities compared to the ObsHLC model, there

are some differences in terms of the estimated coefficients. For instance, there is a class

(class 2) in this model where the coefficients associated with all the walk types are all

negative relative to the stay at home option, albeit only the coefficient associated with

the bog walk alternative is significant. In addition, similar to the previous model, the

coefficients for the attributes are significant in some classes and not in others. This is a

relatively common finding in LC models, as it reflects the heterogeneity in preferences

between respondents in different classes. The interpretation of scale heterogeneity is

arguably less meaningful in the ScaleAdjLC model than in the ObsHLC model. This

is because we cannot state what factors may influence this heterogeneity within and

between classes. We are only able to determine what proportion of respondents are

estimated to have higher or lower variance in each class. In class 1 and 3, for instance,

we find that approximately 40 per cent of respondents have a lower scale parameter

compared to the remaining respondents in these classes. In Class 4 and 6 we do not

find any significant differences in scale heterogeneity.

5.3 Post-estimations and policy implications

5.3.1 Welfare analysis

In Table 4 WTP for each attribute of the different types of walk and CV for four policy

scenarios based on individual-specific posterior parameters are shown for the models.

We report a range of measures to illustrate the heterogeneity associated with WTP in

this data. We present median WTP estimates along with the mean estimates as our
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mean estimates appear to be influenced by outliers. Based on the ObsHLC model, re-

spondents have a median WTP of AC11 to avoid walking trails that are over two hours

duration. This translates into a willingness to travel further distances to access shorter

walking trails. Respondents are willing to pay most for the path and signange attribute

and least for using trails that are fenced-off from livestock. Similar estimates are re-

trieved from the models for the WTP associated with the walk alternatives. In terms of

model comparison, there are noticeable differences between the ProbHLC model and

the other LC specifications in terms of the retrieved WTP estimates. For instance in the

case of the length and the path and signage attributes the median WTP estimates are

approximately 40 and 80 per cent lower respectively in the ProbHLC model compared

to the ObsHLC model.

[Table 4 about here.]

Examining the change in quality or quality of an environmental good is an im-

portant policy consideration. As a result we estimate the CV associated with four

scenarios. The hypothetical scenarios that we consider are:

• Scenario 1: No car park is provided close to any of the farmland walk;

• Scenario 2: No path and signage is provided for any of the farmland walk;

• Scenario 3: There is always a car park provided close to all the farmland walk;

• Scenario 4: There is always a path and signage available at all the farmland walk.

Our scenarios are useful in the context of farmland trails because it provides policy-

makers with information on the welfare impacts associated with the potential design of

trails. For instance, policy-makers can trade off the welfare impacts associated with

providing a path and signage at the walks with the cost of providing these facilities.
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The results in Table 4 reveal that the scenarios associated with not having a car park

or a path and signage have a negative impact on respondents’ welfare, while the latter

two cases, related to having a car park and a path and signage leads to positive overall

welfare effects. A noteworthy finding is that the magnitudes of the welfare effects of

the first two scenarios are larger than the welfare effects of the latter two scenarios.

This suggests some evidence of loss aversion behaviour whereby respondents’ place a

greater welfare impact from not having these facilities compared to the welfare effect

of having these facilities.

5.3.2 Direct Elasticities

As a final investigation we derive direct choice elasticities for the walk alternatives.

Given a one percent change in the level of an attribute, the choice elasticities provide

the percentage change in the probability of choosing the type of walk characterised by

that specific attribute.

[Table 5 about here.]

Direct elasticity values are computed for each attribute (longer length , car park,

fence and path and signage) for each type of walk (hill, bog, field and river). Re-

sults based on individual-specific posterior parameters retrieved from the models are

reported in Table 5. The elasticity of demand for the longer length attribute is relatively

more elastic across the walk alternatives. This suggests that respondents’ choice of a

particular walk changes relatively more as a result of a change in the level of the length

attribute. Additionally, the elasticities for this attribute are quite different across the

walk alternatives. For instance demand for the bog walk alternative would be most re-

sponsive to changes in the length attribute, while demand for the river walk alternative

would be least responsive. For the other attributes demand is relatively inelastic. For

example, demand for the walk alternatives would not change substantially by changes
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in the level of car park facilities. Since these attributes were presented as dummies, this

suggests that demand for a walk type does not change much based on whether a car

park is provided or not, even though welfare estimates are impacted by the provision of

these facilities. We also note that there are some differences in the retrieved elasticities

particularly for the longer length and car park attributes across the models.

6 Discussion and conclusions

This paper examined and compared alternative ways of incorporating scale hetero-

geneity in a LC modelling framework using data on site-choice for farmland walking

trails in Ireland. We contrasted a modelling approach that only incorporates preference

heterogeneity, namely the standard LC model, with representations which incorporate

scale heterogeneity, namely the ObsHLC, the ScaleAdjLC and ProbHLC models. We

specifically examined and compared the impacts of assuming a discrete representa-

tion of scale based on known groups in the data (ObsHLC model) as well as to the

case were the scale heterogeneity is unobserved and probabilistically assigned within

classes (ScaleAdjLC and ProbHLC models). This is the first study to undertake such a

comparison. It is also the first study to incorporate observed scale heterogeneity in a LC

model and to develop a more flexible scale-adjusted LC model – the ProbHlc model.

Our focus on a LC specification stems from the fact that the model has a number of

advantages in the recreational site choice context, through allowing us to identify dis-

crete groups with particular recreational preferences, which in the case of recreational

goods is highly useful (Hynes et al., 2008).

The focus of the study fits within the wider discrete choice literature that attempts

to accommodate both scale and taste heterogeneity in discrete choice models, assuming

discrete distribution of both scale and taste heterogeneity. In terms of the overall com-

parison of models we note that the ObsHLC and the ScaleAdjLC represented the best

fit for this data based on a number of information criterion. While we acknowledge that
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the ProbHLC model represents a more general model, as it does not require the same

proportion of respondents in each scale class and therefore represents a substantial ad-

vance to both the traditional LC model and the scale adjucted LC model developed by

Magidson and Vermunt (2007), we do not find any evidence, in the case of this study,

the extra parameters were not warranted and did not improve the fit of the model. We

do believe, however, that is likely to be data specific and an open empirical question.

Based on our analysis we find there are a number of benefits associated with speci-

fying a discrete distribution for scale based on known groups within the data, as in the

ObsHLC model. While the information criterion did not suggest that this outperformed

the ScaleAdjLC. However beyond just comparing model fit, we believe that the key ad-

vantage of this model is its ability to identify the influence of class variability. There-

fore, from a policy context this model can be used to inform on potential differences

that exist between (groups of) individuals estimated to have homogeneous preferences

(within class), and between individuals estimated to have heterogeneous preferences

(between classes), in the variance associated with their choice behaviour. Addition-

ally, incorporating observed scale heterogeneity into the estimation also aligns more

closely with the concept of scale heterogeneity as was originally conceived by Swait

and Louviere (1993). Further additions to the literature can be incorporated within

this approach in particular through the inclusion of covariates to potentially drive class

membership probabilities in these models, as is commonplace with the traditional LC

model.

From a policy context it is evident that substantial heterogeneity exists both in the

preferences that individuals hold for farmland walking trails. In particular we found

significant taste heterogeneity associated with the attributes and alternative walking

trails. In terms of our post-welfare analysis we determined that welfare is most nega-

tively impacted by trails that are longer in length (over 2 hours) and is most positively

impacted with the provision of a path and signage at the trails. Based on the median
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elasticity estimates, we also noted that demand for the walking trails is relatively unre-

sponsive to whether a car park, fence or path and signage are provided at the walks and

is relatively more elastic to whether the length of the walk is less than or greater than

two hours.

These results lead us to conclude that implementation of a policy should take into

consideration that variety of trails would be needed to accommodate heterogeneous

preferences. Our findings further confirm that residents have preferences for car park-

ing facilities close to the walking trails but these facilities would not be a requirement

at every walking trail. The same conclusion holds for the path and signage attribute.

In terms of the walk alternatives, relative to the stay at home option, residents show

positive preferences for all the walk alternatives. Our welfare results confirm that river

walks and hill walks are slightly preferred but the differences in preferences between

the four walk alternatives are not substantial.

We also observed significant heterogeneity in the variance associated with choice

behaviour. In the context of this study we observed differences in variance both be-

tween and within rural and urban respondents. This may reflect differences in famil-

iarity, and their experiences related to countryside recreation including farmland recre-

ation. While not specifically explored within this study, rural and urban residents may

also differ in their individual tastes for the attributes and alternative walking trails.

Despite the substantial heterogeneity surrounding both preferences and variance our

overarching finding is that significant demand side potential exists for the provision of

farmland walking trails in Ireland. Given that the vast majority of land in Ireland is

privately owned as farmland, this suggests that a wide provision of trails could be pro-

vided throughout the Irish countryside that would satisfy residents preferences. On the

other hand, the recent improved profitability of farmland in Ireland as an agricultural

resource may impede the supply-side realisation of the non-market benefits associated

with farmland walking trails.
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Overall, based on our analysis, the results indicate that significant demand exists

among Irish residents for the provision of the farmland walking trails. farmland walk

would have positive welfare benefit.
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Figure 1: Example Choice Card
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Table 1: Comparison between LC models using different criteria for Number of Classes*

Model LogLik. K ρ̄2 χ2 BIC AIC 3AIC crAIC

MNL -6,882.982 9 0.101 1,561.084 13,843.703 13,783.964 13,792.964 13,784.316

HMNL -6,863.299 10 0.103 1,600.450 13,812.974 13,746.598 13,756.598 13,747.067

2LC -5,931.986 19 0.223 3,463.076 12,028.087 11,901.972 11,920.972 11,904.812

3LC -5,521.889 29 0.276 4,283.270 11,294.270 11,101.778 11,130.778 11,111.395

4LC -5,410.646 39 0.289 4,505.756 11,158.160 10,899.292 10,938.292 10,922.139

5LC -5,308.935 49 0.301 4,709.178 11,041.114 10,715.870 10,764.870 10,760.583

6LC -5,221.007 59 0.311 4,885.034 10,951.635 10,560.014 10,619.014 10,637.426

7LC -5,173.348 69 0.316 4,980.352 10,942.693 10,484.696 10,553.696 10,607.853

8LC -5,123.368 79 0.321 5,080.312 10,929.110 10,404.736 10,483.736 10,588.913

2ObsHLC -5,903.298 21 0.227 3,520.452 11,987.986 11,848.596 11,869.596 11,852.380

3ObsHLC -5,503.292 32 0.278 4,320.464 11,282.988 11,070.584 11,102.584 11,083.393

4ObsHLC -5,349.495 43 0.296 4,628.058 11,070.408 10,784.990 10,827.990 10,815.424

5ObsHLC -5,243.398 54 0.309 4,840.252 10,953.229 10,594.796 10,648.796 10,654.366

6ObsHLC -5,172.844 65 0.317 4,981.360 10,907.135 10,475.688 10,540.688 10,578.839

7ObsHLC -5,146.949 76 0.318 5,033.150 10,950.359 10,445.898 10,521.898 10,610.032

8ObsHLC -5,107.203 87 0.322 5,112.642 10,965.881 10,388.406 10,475.406 10,633.906

2ScaleAdjLC -5,803.145 22 0.240 3,720.758 11,796.318 11,650.290 11,672.290 11,654.615

3ScaleAdjLC -5,418.23 33 0.289 4,490.588 11,121.502 10,902.460 10,935.460 10,916.472

4ScaleAdjLC -5,311.541 44 0.301 4,703.966 11,003.138 10,711.082 10,755.082 10,743.645

5ScaleAdjLC -5,225.556 55 0.311 4,875.936 10,926.182 10,561.112 10,616.112 10,624.003

6ScaleAdjLC -5,168.404 66 0.317 4,990.240 10,906.892 10,468.808 10,534.808 10,576.739

7ScaleAdjLC -5,164.198 77 0.316 4,998.652 10,993.494 10,482.396 10,559.396 10,653.039

8ScaleAdjLC -5,125.094 88 0.320 5,076.860 11,010.300 10,426.188 10,514.188 10,680.199

2ProbHLC -5,798.735 23 0.240 3,729.578 11,796.136 11,643.470 11,666.470 11,648.385

3ProbHLC -5,414.511 35 0.289 4,498.026 11,131.339 10,899.022 10,934.022 10,915.663

4ProbHLC -5,307.494 47 0.301 4,712.060 11,020.957 10,708.988 10,755.988 10,748.532

5ProbHLC -5,221.775 59 0.311 4,883.498 10,953.171 10,561.550 10,620.550 10,638.962

6ProbHLC -5,166.516 71 0.317 4,994.016 10,946.304 10,475.032 10,546.032 10,609.099

7ProbHLC -5,133.720 83 0.319 5,059.608 10,984.364 10,433.440 10,516.440 10,646.805

8ProbHLC -5,105.390 95 0.321 5,116.268 11,031.356 10,400.780 10,495.780 10,719.972

* The full output from each version of LC model with 6 classes (LC, ObsHLC, ScaleAdjLC and ProbHlc) are reported in

the next tables. The outputs from the other models not reported in the paper are available from the authors’ upon request.
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Table 2: LC and ObsHLC estimates, 5,640 observations.
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Table 3: ProbHLC and ScaleAdjLC estimates, 5,640 observations.
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Table 4: Welfare analysis based on individual-specific posterior parameters

Conditional WTP Conditional WTP Conditional WTP Conditional WTP

for 6LC for 6obsHLC for 6ScaleAdjLC for 6ProbHLC

Median Mean Median Mean Median Mean Median Mean

long walk -14.7 -37.2 -11.2 -31.6 -11.5 -48.1 -6.4 -12.5

car park 4.2 8.6 3.4 8.1 4.0 19.0 4.9 5.3

fence 1.6 7.9 1.9 7.4 1.5 12.2 2.0 3.1

path and signage 7.5 19.2 7.2 24.5 6.4 31.5 1.5 4.3

hill 17.1 74.6 15.6 65.9 16.8 24.6 16.6 147.6

bog 15.3 46.9 14.3 48.9 13.8 44.4 6.8 14.9

field 16.6 131.0 14.4 154.1 17.4 151.4 16.2 139.9

river 17.1 199.3 15.2 216.0 17.6 236.3 16.2 148.6

Comp. Variation Comp. Variation Comp. Variation Comp. Variation

for 6LC for 6obsHLC for 6ScaleAdjLC for 6ProbHLC

Median Mean Median Mean Median Mean Median Mean

Scenario 1 -1.9 -4.2 -1.8 -11.9 -2.1 -9.8 -2.2 -2.5

Scenario 2 -5.6 -12.5 -4.5 -24.3 -3.9 -21.9 -0.4 -3.3

Scenario 3 1.4 3.5 1.5 8.7 1.7 7.7 1.7 1.7

Scenario 4 1.5 5.1 1.5 8.2 0.8 8.4 0.2 0.6
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Table 5: Elasticities based on conditional parameters

Elasticities based on 6LC

LONG WALK

(over 2 hours) CAR PARK FENCE PATH AND SIGNAGE

Median Mean Median Mean Median Mean Median Mean

hill -0.2705 -0.6333 0.0029 0.1808 - - 0.0571 0.1664

bog -0.3462 -0.7001 0.0000 0.1801 - - 0.0874 0.1877

field -0.2931 -0.6092 0.0031 0.1740 0.0000 0.0692 0.0598 0.1598

river -0.1625 -0.5466 0.0000 0.1505 0.0000 0.0656 0.0459 0.1471

Elasticities based on 6obsHLC

LONG WALK

(over 2 hours) CAR PARK FENCE PATH AND SIGNAGE

Median Mean Median Mean Median Mean Median Mean

hill -0.1863 -0.5122 0.0014 0.1281 - - 0.0714 0.2087

bog -0.3398 -0.5720 0.0000 0.1309 - - 0.0943 0.2304

field -0.1932 -0.5000 0.0099 0.1233 0.0000 0.0704 0.0859 0.2001

river -0.0762 -0.4567 0.0000 0.1152 0.0000 0.0698 0.0577 0.1770

Elasticities based on 6ScaleAdjLC

LONG WALK

(over 2 hours) CAR PARK FENCE PATH AND SIGNAGE

Median Mean Median Mean Median Mean Median Mean

hill -0.4281 -0.6084 0.0000 0.1630 - - 0.0635 0.2658

bog -0.4381 -0.6621 0.0000 0.1679 - - 0.0670 0.2864

field -0.3381 -0.5689 0.2386 0.1510 0.0000 0.0374 0.0656 0.2416

river -0.1655 -0.4969 0.0000 0.1338 0.0000 0.0302 0.0550 0.2072

Elasticities based on 6ProbHLC

LONG WALK

(over 2 hours) CAR PARK FENCE PATH AND SIGNAGE

Median Mean Median Mean Median Mean Median Mean

hill -0.1619 -0.8156 0.0041 0.2497 - - 0.0000 0.2420

bog -0.3340 -0.8946 0.0000 0.2431 - - 0.0000 0.2988

field -0.1489 -0.7922 0.0050 0.2302 0.0000 0.1114 0.0000 0.2711

river -0.0744 -0.7264 0.0000 0.2020 0.0000 0.1093 0.0000 0.2538
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