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Adaptive Expectations, the Exponentially Weighted
Forecast, and Optimal Statistical Predictors:

A Revisit

By David A. Bessler*

Abstract

Relationships between adaptive expectations, the exponentially weighted moving average, and
optimal univanate statistical predictors are reviewed We show that the behavioral-based adaptive
expectations are a subclass of both the exponentially weighted moving average and the (0,1,1)
ARIMA model The applicability of the adaptive expectations model to 25 empirical price and
guantity series is investigated The adaptive expectations behavior and the optimal statistical
forecasts are equivalent for 13 series- 11 on yields and 2 on pnces Numerous price semes, while
exhibiting the general form of the adaptive expectations (a (0,1,1) ARIMA process), did not have
a coefficient of expectations within the onginally hypothesized range The behavior consistent
with the model underlying these price series would be trend extrapolation rather than averaging
(averaging the most recent observation and its forecast) Sernes measured at monthly or quarterly
intervals were not adequately modeled by adaptive expectations or as a (0,1,1) ARIMA process
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A popular expectation model used in agricultural response
studies 1s the adaptive expectations scheme Its statistical
properties and theoretical motivation are given 1n Nerlove
(15) ' The model suggests that period-to-period changes n
expectations of economic agents are linearly dependent on
the most recent forecast error Muth notes, *“its main a priort
justification as a forecasting relation has been that 1t leads to
correction of persistent errors, without responding very
much to random disturbances” (12, p 299} Although this
model seems to have been onginally specified on ad hoc
grounds, 1t can somewhat coincidentally be represented as an
ophimal, univanate, statistical predictor of a particular
process, which, in fact, 1s fairly common 1n many agncultural
senes

Our purpose here 15 twofold (1) to exphicitly review the re
lationships between the adaptive expectations model, the
exponentially weighted forecast, and optimal statistical
predictors, and (2) to present some empirical models of
such a process The first part of this article 1s not a new con-
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tnibution to the literature, these relationships were presented
almost 20 years ago by Muth They have since appeared in
bits and pieces elsewhere, including Box and Jdenkins

(5, p 107) and Dhrymes (7, p 56) Our justification for the
first part of the article 1s that the exposition m the references
cited 1s not particularly easy And, although the exposition
given here may not be any easier or revealing to some, 1t may
help others In addition, our empincal results and recom-
mendations will make sense only 1f a knowledge of these
more basic relationships 1s assumed

First, we review the relationship between the adaptive
expectations model and the exponentially weighted moving
average process Second, we extend the discussion to the
class of autoregressive, integrated, moving average (ARIMA)
processes Finally, we present some empincal senies which
can be adequately represented by such processes The new
contnbutions to the literature are our empincal results
which, along with the accumulating Monte Carlo evidence,
we hope will move us to a better understanding of dynamic
processes in agriculture

The Relationship Between Adaptive
Expectations and the Exponentially
Weighted Moving Average

The adaptive expectations model is discussed 1n Nerlove We
present it 1n the following equation
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YE=YE  +B(Y, ;- YE ), 0<A<1 (1)

where Yj 1s the ¢th observation on the vanable it whose ex-
pectation we have an interest, Yf represents 1ts forecast or

expectation based on the information through (f - 1), and

B 15 a parameter sometimes referred to as the coefficient of
expectation

The model given by equation (1) suggests that economic
agents revise their expectations hnearly, according to the
most recent expenence with their prediction accuracy The
model, used by Cagan, Nerlove, and many others, 1s based on
the economic dynamics of Hicks

Before we demonstrate the conditions under which equa-
tion (1) 1s equivalent to an exponentally weighted moving
average of past observations on Y, 1t 1s useful to mntroduce
the lag operator L, which 1s defined by LY, = Y;_; Thus
equation (1) can be rewntten as

(1- 8L)Yf=BLY,, 6=1-3 (2)

For 1llustrative purposes, we carry out the algebra in (2) to
see that we do indeed have an expression equivalent to (1)

YE-0YE, = BY,
YP = 6Yg g +BYy
= (1-B)Yg 4 +BYy g
= Yiq +B8(Yy 1 - Yip)
Solving (2) for Yf 1n an alternative fashion we have
Y§ =g - oLy 1LY,
The senies, Y§, can be expressed as an exponentially weighted

average for |L| < 1,1f [§] <12 That s, for |#| <1, we have
a’product.involving the infinite sernes

Ye = B(1+6L+02L2+ )y, ;

=B(Yy 1 +0Y g +02Y, g+ )

=8 a-ply,, (3)
1=1

! The assignment of an absolute value to the Ia
operator 1s an operation described 1n Box and Jenkins
(chap 3) Dhrymes (chap 2) rather extensively dis-
cusses the algebra of L that permits us to treat 1t as a
complex variable

The required conditions on || can be restated in terms of
-8 <1 >-1 <(@1-§<1
- -2 <-4<0
- 0 < <2

This last condition suggests that for Yf to be expressed as an
exponentially weighted average, 3, the coefficient of expecta-
tions, must fall between zero and 2

A natural question which one rmght then ask 15, “Why did
Nerlove restnict § to the umit interval?”’ To suggest an answer

to this question, we might recall the motivating foree behind
s model Quoting Nerlove (15, p 52)

Hicks, 1t will be remembered, distinguished two
limiting cases an elasticity of zero, implying no
effect of a change 1n current pnice upon expected
future pnces, and an elasticity of one implying
that 1f prices were previously expected to remain
constant, 1 e , were at their long-run equilibrium
level, they will now be expected to remain con-
stant at the level of current price By allowing
for a range of elasticities between the two ex-
tremes, Hicks impheitly recopnized that a partic-
ular past price or outcome may have something,
but not everything, to do with people’s notion
of the normal

Thus, Nerlove was not particularly interested 1n modeling
exponentially weighted expectations per se, but rather, was
interested 1n modeling a hypothesized behavior—a behavior
which suggests that economic agents change theur expecta
tions as a convex combination of the most recently observed
actual and expected value of the random vanable Forf> 1,
the expectation, Y{ wilt Lie outside the interval (Yy_q, Yi_q)—
a case Nerlove evidentily found not very appealing

The Relationship Between Adaptive
Expectations and a Class of Optimal
Statistical Predictors

The relationship between the “adaptive expectations” model
and an optimal statistical predictor can be obtatned from the
analysis of two equivalent forms of a general linear statistical
model Following Box and Jenkins, we can wnte Y, as equa-

tion (4)~a hinear function of independent shocks—or as egua-
tion (5)—a linear function of past observation on Y,, pius an

added shock

Y, = E wiet—1+€t=E{€t} =0 (4)
1=1
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Yy = ZﬂlYt—1+et'E{Et} =0 (5)
1=1

At a particular time, t - 1, for known parameters, w, and 7,
and for observed shocks, €;_,, 1 2 1, we can wnte the equiv-
alent expectations on equations (4) and (5) as

Y? = E WIEg_, (6)
1=1

Y§ = 3 MY, (M)
=1

Lagaing equation {4) } pertods, substituting each Y;_ , Into
equatton (7}, and rearranging terms, we have

Y§ - Z%rr](et_” ):i W€y ) 8
1= 1=

Writing out the first few terms of (8), we have

e
Y§ = M6 1+ w611 + Wo 21 +* )

+ Mo(6p g+ wi€p_1.p * W€t g 2 + )
+ lgleg_g+ wig 1.3+ wWoepa3 + )
+

Following Muth, we can rearrange terms of this last expres-
ston, paying explicit attention to like indexes on €;_,, that 15

YE = Mgy
+ lhywye o + Moy g
+ Mywoey_3 + Ngwie g +Tge 3
+

Factoning out €;_,, we have Muth’s equation (2 2)

o= -1
YE = Mpeq + 90 (M + D Mew_Je,  (9)
1=2 =1

which 1s an alternative expression of our equation (6} By
comparing coefficients of equations (9) and (6), we have the
necessary relation between parameters w,, associated with

18

the latent shocks, and Il,, associated with the history of the
process

wy = I

]

-1
w o= I+ Ne, 1-2,3, (10)
=1

We can carry the apa]ysis further by companng the § weights
of equation (3) with the results given 1n equation (10) This
will allow us to characterize the time series for which the
exponentiaily weighted forecast and thereby ‘Nerlove’s
adaptive expectations model 1s an optimal statistical pre-
dictor We can substitute
m= s8-8l 1-12
of the exponeniially weighted forecast into the equations
g@iven by (10) We obtain

(AJl = ﬁ
-1

w, = BA-f-1+ Y (1-frlw,,, 1=2,8,
1=1

It follows that
w, = B,foralli=1

Thus, we can wrte {4) 1n terms of 3, our coefficient of
expectation

Y, = e +BY e, (11)
1=1

By lagging equation (11) one penod and subtracting, we have

Yi-Yiy = - 0-Be

It

et" aet_l (12)

which for, -1 < 8 <1 (or 0 <p.<2)us an integrated (dif-
ferenced) moving average process of order 1 The one-step-
ahead forecast, YE, based on equation (12} 1s given as

Y§ = Yy 1~ 86

where ét-l is given as the one-step-ahead forecast error
Equation (12)"15 a specia! case of the general, univanate,
autoregressive integrated moving average (ARIMA) process
of order {p,d,q) The models given by equations (4) and {5)
can be représented (under rather general conditions) as



H(L)(1 - L)3(¥y - m) = 8(L)e

where ¢(L) 15 an autoregressive operator of order p, given as
(1- ¢1L1 - ¢L2- - ¢pLP)

A(L} 1s a moving average operator of order q, given as

(1- 94L1- 8,L2- - gqL9)

Here, as above, L refers to the lag operator, d 1s an integer
indicating the number of differences required to reduce the
senes Y, to stationarity, m 15 the mean of the Y, senes, and
€¢ 15 a white noise (random) disturbance.

More explicitly, equation (12) can be wntten in this form
where

$(L) = 1,d=1,and 6(L)=(1- 6,L1)
1(1- LYYy~ m) = (1- 6,LY)e,
Carrymg out the lag operations, we have
Ye-m-Y, g +tm=¢~ 06
Yi= Ye1 =€~ 061
This process 15 often referred to as a (0,1,1) ARIMA model

We can 1dentify and fit to time seres more general ARIMA
processes (different orders of p, d, q) by studying the cor-
relation pattems of the observed senes at vanous lags This
identification process essentially allows the data to suggest
whuch particular process “best” represents the observed
data

The following relations between the autocorrelation and par-
tial autocorrelation functions of the senes, Y, can be used to
identify the more general (p, d, g) ARIMA model

(a) For a nonstationary process, the autocorrelation
function tails off slowly,

{b) For a purely autoregressive process of order p, the
autocorrelation function tails off and the partial
autocorrelation function has a cutoff after lag p,

{¢) For purely moving average process of order g, the
autocorrelation function has a cutoff after lag g
and the partial autocorrelation function tails
off, and

(d) For a mixed autoregressive process of order p and
a moving average process of order g, the auto-
correlation function 1s a mixture of exponential
and damped sine waves after the first g-p lags, and
the partial autocorrelation function 15 dominated

by a mixture of exponential and damped sine
waves after the first p-g lags

Box and Jenkins (5) suggest companng the eshimated auto-
correlation and partial autocorrelation functions applied to a
parttcular senes with the above patterns

The results we have summanzed here suggest that the adap-
tive expectations model 15 a subclass of a much larger class
of optimal statistical predictors (For an explicit demonstra-
tion of this point 1n a miimum mean squared error sense,
see Box and Jenkins ) We suggest that Nerlove (15) was not
necessarily interested in modeling optimal statistical predic-
tors, but rather a hypothesized behavior—a behavior which
suggests that economic agents form their expectations as a
convex combination of their previous expectation and the
most recently observed actual value

Before we move on to the consideration of particular em-
pincal senes, we might make a istoncal note with the
purpose of better defiming Hicks’ role in the theoretical
foundations of adaptive expectations Indeed, 1f we reread
chapter 9 of Value and Capital, we note Hicks has a notion
of a best or cptimum representation of the stochastic process
{(9,p 126)

Thus we shalt formally assume that people ex-
pect particular definrte pnces, that they have
certain pnice-expectations But we shall be pre-
pared on occasion to interpret these certain
expectations as being those particular figures
which best represent the the uncertain expecta-
tions of reahty

Continuing in chapter 15, we see that thus notion of “best”
ncluded values of §, the coefficient of expectations, dif-
ferent from those specified by the adaptive expectations
model For example (9, p 205)

The elasticity of expectations will be greater than
unity, 1f a change in current prices makes people
feel that they can recognize a trend, so that they
try to extrapolate, 1t will be negative iIf they
make the opposite kind of guess, interpreting

the change as the culmunating point of a
fluctuation

Thus, while Nerlove (15) relied on Hicks’ work as a basis
for adaptive expectations, he chose to model only a por-
tion of Hicks’ onginal hypothesis

As a final note 1n this section, we should properly recognize
Nerlove's contributions to expectations modeling—a con-
tnbution that goes far beyond modeling adaptive expecta-
tions About a decade after introducing us to adaptive expec-
tations, he made & case for modeling optimal statistical
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predictors—evidently recognizing the limitations of constrain-
1ng our representation of expectation to suboptimal descnp-
tions of dynamic economue processes Recall Nerlove’s words
wrntten n his seminal work, “Ihstributed Lags and Unob-
served Components in Economic Tune Senes” (14, p 129)

One might argue, for example, that the economic
agents have a clear conception of what the
stochastic mechamism really 1s, then determine
optimal predictors, and, finally use optimal
predictors directly as vanables 1n a subsequent
statistical analysis

He reiterates this point nearly 5 years later in his more pop-
ular paper, “Lags in Economic Behanior” (17, p 230)

As long as the variables forecast are treated as
exogenous in the behavior relationship studied,

and if we assume that those econormmc agents

whose behavior we are observing have knowledge
of the underlying structure generating the time
series to which they react, all manner of dis
tnbuted lag relations may be developed For
stationary processes, minimum mean-square-

error forecasts and conditional expectations are
equivalent That part of the lag structure ansing
from expectation formation may be estimated inde-
pendently of the behavior studied from observations
on the vanables which are assumed to be forecast

Finally, in 1979, Nerlove argues (16, p 879)

If we assume the economic agents, whose be
havior we are attempting to descnbe, are aware
of the underlying structure, quasi-rational expec
tations offer an approximation to fully rational
expectations and a far less arbitrary, less ad hoc,
approach to expectabion formation than the
adaptive expectations used 1n the basic supply
response model

The above arguments support the position that in 1980
adaptive expectations are not particularly relevant—that

1s, 8 more general way of doing things exusts, and this

more general scheme ought to be used, whenever possible
This conclusion would ordinanly be of little importance

1n that numerous authors have previously made similar
appeals (13, 14, 17), however, a teview of the agncultural
economics hterature suggests that this feeling 1s not
generally held Indeed, Just (10, 11} Turnovsky (18), Askan
and Cummungs (1), and others all wrote well after the above
mentioned appeals And although we recognize that in some
cases adaptive expectations may be an appropnate specifi-
cation, we do not think their distinction as a particular or
special type of expectation scheme deserves more than a
histoncal footnote (albeit an illusinous one)
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Analysis of Some Empirical Series

Finally, we will explore a few empurical agricultural sertes f
Our motivation for proceeding in this fashion 1s essentially

that ziven by Nerlove (17)—namely, that our analysis of

expectattons formation may, under fairly general conditions, .
proceed independent of our analysis of the economic be-

havior in which we have a more fundamental mterest Thus,

in constructing models of agricultural supply response, for

example, we can replace the future values of our exogenous

variables by thelr minimum-mean-squared error forecasts

These forecasts can be made independent of all other econo-

metric estimation

As suggested above, this part of our article 15 1ts major con
tnbution to the hiterature Even if we had been the first to
argue the contents of part 1 (which we were not), the skeptic
will remain unconvinced, at [east until empirical data have
been presented and thoroughly analyzed It 15 quite conceiv-
able that the more general stochastic models represented by
equations (4) or (5) have no empincal validity beyond a
(0,1,1) ARIMA representation, which has a moving average
parameter between zero and 1 That 1s, 1t may well be that
series which we treat as exogenous 1 our econometric
models are 1n fact properly modeled as adaptive expectations

We have fitted a first order moving average process to the
first differences of 25 agnicultural price and yield series
Table 1 gives the estimated moving average parameters, 8,
upper and lower bounds on 95 percent confidence intervals,
and diagnostic Q statistics (and their degrees of freedom)
for each sertes

Recall that for an optimal univanate statistical representation
and for adaptive expectations behavior to be equivalent,
must lie 1n the interval [0,1] In addition, the residuals as-
sociated with the fitted model must be white noise That 1s,
adaptive expectations behavior and optimal statistical predic-
tions (and thus Nerlove’s quasirational expectations) will be
equivalent 1f our estimated & value 1s between zero and 1 and
if the unexplained portion associated with the application of
such a model i1s random from time peniod to time penod

In table 1, notice that sernes 1, 6, 8, 9, 10, 11, 12, 13, 14, 15,

16,17, and 19 meet the conditions cutlined above That s,

the moving average parameters fall between zero and 1, and

the diagnostic Q statistics do not indicate anything but |
white noise residuals for these series > The remainming senes
2,3,4,5,7,18, 20, 21, 22, 23, 24, and 25 fail to meet the

outlined conditions .

We dllustrate the identification of a particular ARIMA model
with the autocorrelation and partial autocorrelations on

* @ 1s a diagnostic statistic applied to the residuals from
the fitted model It 1s described tn Box and Jenkins



Table 1—Estimated (0,1,1) ARIMA processes applied to 25 agricultural series

Series 2 3 4 5 X
number oL 9 fy Q d

1 006 034 062 10 50 14
2 - 97 - 78 - b9 757 14
3 - 36 - 05 26 736 14
4 - 65 - 35 - 05 517 i4
5 - b6 - 26 05 6456 14
6 08 41 75 10 20 14
7 74 93 111 1110 14
8 -12 27 66 7 64 14
9 36 64 92 13 30 14
10 17 49 81 12 40 14
11 35 65 94 1110C 14
12 12 46 81 774 14
13 26 59 92 842 14
14 28 57 85 1572 14
15 29 56 84 12 45 14
16 23 50 78 1010 14
17 21 49 77 11 57 14
18 -17 05 28 62 23* 19
19 - 16 06 29 1911 19
20 09 30 51 47 277* 19
21 84 92 100 277 80* 19
22 42 61 81 194 10* 19
23 - 27 - 16 - 06 57 68 59
24 - 867 - 58 - 48 335 24* 5%
25 - 17 - 08 02 256 7% 59

' Sertes names are listed 1n the appendix table

2 8, refers to the lower bound on a 95-percent confidence interval around the estimated moving average parameter (Here L

1s not to be confused wnth the lag operator )

3§ refers to the estimated moving average parameter associated with the process (1 - L)Z, = (1 = 8 L)a, of the particular

series

* @ refers to the upper bound on a 95-percent confidence interval around the estimated moving average parameter

3 Q refers to a diagnostie statistic applied to the estiiated residuals from the (0,1,1) process applied to each particular senes
An astenisk (*) indicates that the caleulated Q statistic 1s above the cnitical chi-squared value at the 5-percent level

sdf refersto the degrees of freedom associated with the Q statistic reported in the preceding column

1936-76 Indiana Dubois county corn yields in table 2 (senes
15 of table 1) Here note that the estimated autocorrelations
on the levels tail off slowly—indicative of possible nonsta-
tionary behavior The autocorrelations on the first differences
of the corn yields cut off at lag 1--indicative of nonauto-
regressive behavior The partial autocorrelations of the
cifferent series, however, seem to tail off, suggesting a mov-
ing average behavior We fit a first-order moving average term
to the differenced seres

Yt - Yt—l =-0 5661;_1 + Et

The residuals associated with this model appear to be non-
autocorrelated (table 2) That is, there appears to be no
further systematic structure to this series This 15 noted by
the relatively small autocorrelations assoclated with varous
lags of the residual senes

Of the 13 series which do meet the conditions, 11 are yearly
yield senes, the other 2 are prnice sertes Of the senes which
do not meet the outlined conditions, senes 2, 3, 4, 5, and 23
are adequately fit by the (0,1,1} process, however, the esti-
mated § values are negative That 1s, the diagnostic Q statis-
tics associated with the residuals from a (0,1,1) model fit to
these series are acceptable, but the estimated 9 values sug-

gest nonadaptive behaviors These four seres are price series
Senes 2, 3, 4, and 5 are measured yearly, and seres 2315
measured monthly

The remaining senes, which do not meet the conditions for
equivalence between adaptive expectations and a (0,1,1)
ARIMA process, fail on two accounts, we suspect both under-
fitting and overfitting Senes 18, 20, 21, 22, 24, and 25 are
measured quarterly or monthly The Q statistics associated
with the fitted (0,1,1) model suggest the inappropnateness
of the specification That 1s, a more complex ARIMA repre-
sentation 1s probably required for these senes However,
series 7 seems to have been overfitted The moving average
parameter 1s quite close to the invertility upper bound (1)
Elsewhere (2) we have suggested that the levels of this senes
are white noise Differencing will tend to introduce a non-
stationary behavior, and, thus, a (0,1,1) specification 15 1n-
appropnate A much simpler process 1s likely to give a better
representation for seres 7

The above results suggest that many senes can be adequately
modeled as adaptive expectations In particular, we find many
yield senes exhibit a stochastic process for which adaptive
expectations behavior 1s optimum For these senes, revision
of expectations as a convex combination of the differences
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Table 2—Estimated autocorrelations and partial autocorrelations on 1936-76 Dubois County, Ind , comn yields

Auto- Lags
correlation 1 2 3 4 5 | 8 [ 7 ] 8 | o 10
¥, Al 073 0 64 0 60 0 49 041 038 0 40 026 018 005
p? 73 22 17 - 09 - 01 04 17 ~ 25 - 11 - 28
_— Al - 49 - 03 07 - 11 09 -19 28 - 13 10 - 27
p? - 49 - 34 - 17 - 24 - 13 - 37 - 05 - 09 14 - 34
g’ Al - 20 - 10 - 04 - 15 00 -12 24 - 05 01 - 22

! A refers to estimated autocorrelations at various lags Approximate standard error 15 0 16
* P refers to estimated partial autocorrelations of various lags Approximate standard error 15 0 16

* ¥ refers to the levels of the yield series
* VY, refers to the first differences of the yield series

* €, refers to the residuals from the fit first-order moving average representation

between the previous observation and its forecast makes
sense Drawing an analogy with the macroeconomic literature,
we can then say that for these yield series a notion of perma-
nent yield might be a useful concept {(similar to Fnedman's
permanent income) That 1s, farmers forming cptimal expec-
tations on these yield series might view yield as composed of
both permanent and transitory components (For more on
the relationship between the (0,1,1) process and the model-
ing of permanent income, the reader 15 referred to Nerlove
(14) ) Such behavior might be justified 1f one notes that
specific changes in yield might be viewed as permanent n
that they reflect basic changes in technology (new crop
vanefies, pesticides, and herbicides), whereas other changes
mught reflect year-to-year vanability in weather Itis only
the former which farmers will want to incorporate in their
future expectations

Alternatively, we have noted other senes are not adequately
modeled as adaptive expectations—in particular, most of our
price series The yearly senes generally follow a (0,1,1)
process, however, the optimal process will tend to extrapo-
late trends That 13, many of the yearly pnces we studied
have an elasticity of expectation (f) greater than 1 Thus,
instead of finding some rmuddle value between the most
recent observation and its forecast, the econorme agent who
follows an optimal statistical predictor of these senes will go
outside these upper and lower bounds

Finally, the senes measured quarterly and monthly tend to
indicate a more complex univanate ARIMA process Else-
where, these seres are modeled as seasonal autoregressive
and/or moving averages (see 3, 4)

Discussion

We have reviewed the relationships between adaptive expec-
tations, the exponentially weighted moving average, and
optimal univanate statistical predictors We have shown that
the behavioral-based adaptive expectations are a subclass
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of both the exponentially weighted moving average and
the (0,1,1) ARIMA model These results have been known
heretofore, our review here was a simple prelude to the em
pirical section of this article

We have investigated the applicability of the adaptive expecta-
tions model to 25 empincal price and quantity series The
adaptive expectations behavior and the optimal statistical
forecasts are equivalent for 13 sertes—11 yield series and 2
pnce senies We suggest that histoncal advances in technology
and seemingly random weather make this behavior on yield
expectations guhte reasonable

The empincal results suggest that 12 senes are not appro
pnately modeled as adaptive expectations Numerous price
series, while extibiting the general form of the adaptive
expectations (a (0,1,1) ARIMA process), did not have a
coefficient of expectations within the onginailly hypothesized
range The behavior consistent with the model underiying
these price series would be trend extrapolation rather than
averaging (averaging the most recent observation and its
forecast)

Finally, senies measured at monthly or quarterly intervals
were not adequately modeled by adaptive expectations or as
a (0,1,1) ARIMA process

Although adaptive expectations behavior does represent an
optimum behavior for many series, it does not for all Con-
tinued use of adaptive expectattons in a behavioral model
will ikely lead to serious specification bias (13} Although
we have not actually measured economic agents’ expecta-
tions, until we do so, it seems reasonable that modeling
them as suboptimal 1s not recommended
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Appendix table—Series number, title, interval measure, and number of observations for 25 agricultural time sernes

Series Number of
number Title Interval observations
1 Tintner's wool prices Yearly 47
2 Califormia rice prices Yearly 44
3 California corn prices Yearly 44
4 California wheat prices Yearly 44
5 California barley prices Yearly , 44
6 California central valley barley yields Yearly a2z
7 Califorma central coast barley yields Yearly 32
8 California central valley wheat yields Yearly 32
9 Cahfornia central coast wheat yields Yearly 32
10 California central valley sugar beet vields Yearly 32
11 California central coast sugar beet yields Yearly 3z
12 Indhana Park County soybean yields Yearly a3
13 Indiana Tippecance:County soybean yields Yearly a3
14 Indiana Hancock County corn yields Yearly 41
15 Indiana Dubois County corn yields Yearly 41
16 Indiana Knox County wheat yields Yearly 41
17 Indiana QOhio County wheat yields Yearly 41
18 U S hog prices Quarterly B6
19 U S cattle prices Quarterly 86
20 U S broiler prices Quarterly 86
21 U'S sow farrowings Quarterly 84
22 U § cattle on feed Quarterly 68
23 U S hog prices Monthly 300
24 Indiana, 1908-32 corn prices Monthly 300
25 Indiana, 1933-57 corn prices Monthly 300

23




