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MODEL VALIDATION AND THE NET
TRADE MODEL

By William E. Kost*

In this article I discuss valida-
tion of structural economic models 1
emphasize goodness-of-fit measures
for histoneal simulations plus
compansons with alternative models
I then use these procedures to
evaluate the world trade forecast
modehng system being developed
tn the International Economics Divi
sion, ESCS

VALIDATION

A common approach to analyzing
economic 1ssues involves developing a
model that simulates economie
behavior This model becomes a
proxy for reality The model’s be-
havior 15 then evaluated to provide
insight into analyzing economsc
1ssues Used this way, models have
to represent reality accurately
One determines whether or not a
model 1s good through the process
known as validatton Determining
the “goodness” of a model 15 a sub-
Jective process that involves using
both economic and statistical cnte-
na One usually begins to construct
and validate 8 model by defining the
economie problem that model will
analyze Thes procedure restricts
the model’s size and scope to only
relevant aspects of economic be
hawor

Once the problem has been
1dentified, an mitial structural
hypothesis can be proposed Gen-
eral statements are developed
concemning the form of the struc-
tural equatrons, the avaitability
of data, structural shifts over time,

*The author 18 an agnicultural
economist in the International
Economics Division, ESCS

The article discusses processes of
validating structural forecasting
models It summarizes methods of
evaluating the goodness of fit of
model simulations over historical
periods and methods of compar-
ing the forecasting behavior of
structural models with that of
simple time series models The net
trade model provides a case study
for these two validation processes
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and the signs and magnitudes of
coefficients An appropnate
sampiing and equation estimation
procedure 1s defined and the pre-
himinary model 1s estimated These
initial equations are evaluated on
the basis of both the pnor economic
hypotheses and statistical, econo-
metric cnternia In hght of this evatua
tion, several equations may have to
be made more accurate through an
alternative equation specification
{(and/for possibly estimation proce-
dure) that s also consistent with
the set of hypotheses previously
specified In some instances this
equation evaluation leads to rejec
tion of the previously specified
hypotheses The prior hypothesis
framework must then be redefined
and new equattons specified and
estumated that will be consistent
with the new hypotheses This
process may also lead to the rejec-
tion of the data base, which then
requires the generation of a new
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data base that will iead to different,
more acceptable model parameters
An initial model 1s constructed
with this process of hypothesis
generation, data base construe-
tion, equation estimation, and
equation evaluation QOnly after
these steps have been taken can
we evaluate the behavior of the
complete model How does the
complete model track within the
histoncal period of the sample?
How does 1t respond to shocks? How
does the model forecast outside the
penod of the sample?

Simulation Methods

The purpose of model vahdation
1s to tncrease one’s confidence in
the ability of the model to provnide
useful information Attention
focuses on goodness of fit of the
complete model (as opposed to good-
ness of fit of any single equation}
Therefore, model vahdation
continues throughout model con-
struction and even into model use

Tracking the model through the
histoncal period of fit allows evalua
tion of interdependence between
1ts equations The iowest level of
interdependence in any histoncal
simuiation 1s the residual check
Under a residual check simulation,
all equations are assessed with ali
explanatory variables set at their
actual values For example, assume
the model can be represented by a
set of n equations

Ye=F¥p Y
Yop XpXoqs (1)
Xi-p &)



where

the number of endoge-
nous vanables in the
model,

the number of exoge-
nous varnables in the model,
the time penod,

an n column vector of
endogenous vanables,

the maxiymum number of
lag periods on endogenous
vanabies,

an m column vector of
exogenous vanables,

the maximum number of
lag periods on exogenous
varables, and

an n column vector of
errors

-
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A restdual check simulation would
be the solufion of

Y, =F(Y,, Y,
t tr -1
(2)

Yt_f' xtl xt—l: !x )

=)

for ?t. Estimates of model parame-
ters, F, and actual values for all
nght-hand vanables are used n this
calculation This 1s equivalent to
solving each equation independently
It prownides a check on the accuracy
of the solution algonthm The
residuals

HeY- ¥, @®

will be 1dentical to those produced
in the econometne estimation of F

The next level of interdependence
involves solving

2

Y_ . X,X X

t-p e -1 t-_r)
In this static simulation, all exoge-
nous and lagged endogenous vanables
are set at actual values This provides
a series of ssmultaneous solutions for
endogeneous vanables, each for a
single time penod Statie simulation
errors will typically be larger than
those 1n a residual check as this simu-
lation allows for interactions among
current-pericd endogenous vanables
A dynamic simulation provides
the highest level of interdependence
The dynamic simulation involves

solving

Y= F¥p Yeeq
- (5)
Ypp Xp Xpopr 2 X))

=1

where only exogenous vanables and
the mmtial : penod endogenous van-
ables are set at actual values The
first time penod simulated will have
the same solution as the static
simulation The second time period
will differ, its ssmulation will use
values of the estimated lagged
endogenous vanables from the
previous pentod, Y, , rather than
the actual values, Y,.; The third
time perniod sumulated will use esti-
mated endogenous vanable values
for the first two hime penods, and so
on throughout the simulation hon-
zon

The dynamic stmulation furmishes
a simultaneous sclution that starts
at an mitial point in time, based on
a set of imitial conditions, then feeds
on itself for additional inputs
throughout the stmulation time hon-

zon A dynamic simulabion differs
from a static simulation, 1t generates
a single multipenod simulation rather
than a series of single-pernod simula-
tions All multipenod forecasts of
future behavior are dynamie simula-
tions These forecast ssmulations, of
course, also require forecasted, rather
than actual, values for the exoge-
nous variables 1 Dynamic simulation
errors will typically be larger than
those 1n a static simulation Errors
can be propagated throughout the
system both by interactions among
current-penod endogenous vanables
and by interactions among current
and lagged endogenous variables

Each of the three simulations can
be evaluated for goodness of fit As
a restdual check simulation yields
information identical to that from
the econometnc evaluation of indi-
vidual equations, this article will
focus on static and dynamie simula-
tions

Validating Multivariable Models

Problems anse 1n evaluation of
models that simulate many endoge-
nous vanables simultaneously Vir-
tually no techniques exist for over-
all goodness-of-fit evaluation of
multiple-response simulation models
One can sometimes circumvent
this multiple-response problem,
either by viewing a simulation with
many responses as many siumulations,
each with a single response, or by
combining several responses and
treating the combination as a single
response

1A dynamic simulation that

forecasts future behavior invoives
sobvng ¥, = F(¥,, Y21, , ¥y,
xh xf—l- 3 x!—])



The mathematician says that 2+2

1s wlenticially equal to 4 The statisti-
cian says that 2+2 1s approximately
4 The economist asks, “What kind
of nu.mber are you looking for?”’

Oral tradition

Wallace suggests that “if the
question that promotes the research
relates to a specific vanable, the
research should be keyed on that
vanable Rehability of the model
should be based upon how well the
key variable 1s predicted” (12,

p 15) 2 By their nature, models
contain several variables that are
relatively unumportant However,
the problems for which models are
typically used require more than
one key vanable Wallace's approach
narrows the range of focus but still
leaves a subjective decision regarding
a model's goodness of fit

GOODNESS-OF-FIT
MEASURES

Several goodness-of fit measures
are now presented for each endoge
nous vanable To the extent they
are favorable, they increase one's
subjective confidence in the model,
and help evaluate changes tn the
model A companson of prechange
and postchange simulations, m terms
of these goodness-of-fit measures,
provides information concerning the
mentt of the structural change Five
types of goodness-of-fit measures
will be examined errors, regression,
correlation, inequahty coefficients,
and turning.points

Errors

Several alternative measures of
stmulation error can be calculated
They all measure the deviation of a
simulated vanable from the actual
path The simplest measure 15 mean
error

2]tahicized numbers 1n paren
theses refer to items 1n References
at the end of this article

1 T .
Mean error = *T- z (Yt_ Yt) (6)
=1
where
T = the number of penods

. simulated,

Y, = the simulated level of the
vanable at time penod t,
and

Y, = the actual level of the

varnable at time peniod t

The mean error can be misleading
Large positive and negative errors
offset each other and bias the mean
error downward

The mean absolute error (MAE)
15 defined as

1T .
MAE=— T IY,- Y, (7)
T 1

The mean absolute error Is not
subject to the bhas associated with
the mean error

Probably more frequently used
in the literature 15 the root-mean-
square (RMS} error

RMS error =

1T . 9
— X (Yt_ Yt) (8)
T =1

This measure weights large errors
more than the mean absolute error
These three errors can best be
evaluated relattve to the average
size of the vanable They, there-
fore, become more relevant ex-

pressed 1n percentage terms

mean percentage error =

1T (Y Y,
— 2 (9
T =1 Y!
mean absolute relative error
{MARE) =
1 T fi'( - Yfl
- Y (10)
T =1 Y,
RMS percentage error =
v 2
T/Y,-Y
Lot} ay
T =1 Y,

In all cases, the smaller the error, the
better the fit

Regression

A linear regression of actual values
of a vanable on predicted values
has been suggested by Cohen and
Cyert'(1, pp 112-127) as a'method
of testing goodness of fit

Y, =By +By Y, g, (2)

Y, would equal ¥, for all { in:perfect
models and the resulting regression 1s
one with zerc intercept (8y’= 0) and
unit slope (#; = 1} Parameters of
the regression would be tested to see
if they differed significantly from
zero and one and 1f the £,'s are small

Correlation Coefficient

Associgfion between predicted
and actual values for a vanable can
be measured by the correlation
coefficient (R) or by R-square
R-square measures the proportion of

3



the vanation explamed by a linear
regression of predicted on actual
values A disadvantage of the R or
R-square as the sole measure of
goodness of fit 1s that perfect correla
tion only imples an exact linear
relationship between predicted and
actual values For simulations to be
unhiased, and therefore perfect,
regression parameters of g = 0 and
87 = 1 must also exist

Theil’s Inequality
Coefficients

Theil proposed the inequaiity
coeffictent as a measure for analyzing
accuracy Several definitions of the
inequality coefficient exist in the
literature Even Theil presents differ-
ent definitions at different points
The first inequality coefficient
was proposed by Theill in Econonuc
Forecasts and Policy (11, pp
32-33) 2

1T
—E(Y Y)

T =1
/ /”2
Ttl T

This inequality coefficient s
bounded by zero and one When
U=0,%,= Y, for all peniods, and a
pert‘ect simulation exists When

(13)

3This 1s the definition used 1n
the FEDEASY *“'Actfit” comparison
of actual and predicted time series
FEDEASY refers to the set of
linkules added to SPEAKEASY by
the Federal Reserve System SPEAK
EASY s a software package widely
used for analysis by ESCS econo
mists
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U =1, either the model always pre-
dicts zero for nonzero actual values,
or the model predicts nonzero values
for actual values that are always zero,
or negative proportionality exists be-
tween predicted and actual values
Unlike the correlation coefficient,
this inequality coefficient penalizes

a consistent bias in the simulation
However, again unlike the correlation
coefficient, it is sensitive to additive
transformation of vanables 4 When
one 15 evaluating alternative varia
tions of a single model, where general
leveis of endogencus vanables remain

relatively unchanged, this disadvan
tage 1s not a serious drawback How
cver, this version of the mequality
coefficient may not he comparable
across models

To overcome sensitivity to an
additive transformation, Thel
proposed defiming the inequality
coefficient in terms of changes n a
variable The base from which all
predicted and actual vanables are
measured 1s fixed, and comparisons
can then be made across models
This inequality coefficient 1s defined
as

1 T
/— Z((Y Y,
T =

u, =

2
S LLTRR FY)

(14}

1T 2
TE(Y_ Yi-1)

+\/lr§ Y, - Y, )2
Te=1 ¢ 1

4Adding a constant, k, to any set
of predicted and actual values will
reduce the value of this inequality

coefficient by inereasing the denomi-
nator and leaving the numerator of
the fraction defining U unchanged

/E ((Y +k)- (Y, +k))?
=1

T
/E (Y, + &)
=1

T
T (Y, +k)?
=1 !

/Z(Y+k Y-k)
t=1

//E

Z (Y, +k)

-~ T ¥
2, = (Yt+k)‘)'
1 ! t=1
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The Math-Econ make exquisite modls finely carved from the

bones of walrus Specimens made by therr best masters are judged
unequalled in both workmanship and raw material by a unanimous
Econographic opinion If some of these are "“useful”'—and even
Econ testimony 1s dwided on this point—1il 1s clear that this is purely
cowntcidental in the motwation for their manufacture

Axel Leyonhufuud
“Life Among the Econ"”

The U inequality coefficient also
ranges between zero and one with
U; = 0 occurning when a perfect
simulation exists Uq 15 always less
than U as only the denominator
changes from one formulation to
the other °

Theil proposed a third inequality
coefficient in Applied Economic
Forecas‘tulg (10, pp 26-29)

U, =

1 T . 9
;13 Y, - Y,_p- (Y, - Y,

(15)

1T 9
r Y

This Up inequality eoefflicient
ranges from zero to infinity Fora
perfect ssmulation, when ?t =Y,
for all periods, Uy = 0 A no.change
forecast model, where ¥, =Y, 4
for all periods, generates a Ug 1n-
equahty coefficient of 1 No upper
bound on the Uy inequahty
coefficient means that there can
be a model that 1s worse than a no-
change forecast model

Regardless of the definmtion
chosen for the mnequality coefficient,
the numerator remains unchanged
It 15 the RMS error defined 1n equa-
tion (8)

The square of the RMS error can
be decomposed into several terms,
each reflecting a different type of
error

1 T A

=2 (¥,-Y)%=(Y- V)%+

b RCORR ARV RN
(16)

(9 - sy) 2 +2(1- 1) sgsy

where
by 1 T .
Y =— Y,
Ti=1
1 T
= EYt
T =1
T . —,:2
s = £ (Y,-Y)
Y (=1 ¢
T 2
5y = 2 (Y, -Y)
Y o1t

1T . = _
-2 (Y,-Y)(Y,- Y
Tt=1(‘ )Y, - Y)

SYSy

The first term 15 zero only when the
means of actual and predicted van
ables are equal Errors that lead to a
positive value for this term can be
interpreted as a bias or central
tendency error The second term 1s
zero only when standard dewiations
of actual and predicted vanables

are equal A positive value for this
term can be interpreted as error due
to different vanation The third
term is zero only when the correla-
tion coefficient between predicted
and actual values 1s one Therefore,
a positive value for this term can be
interpreted as‘an error due to differ-
ent covanation To compare differ-
ent mode! decompositions, one
should convert the three compo-
nents to proporticnal terms by
dividing each by their sum

U(bias) =
(Y- ¥)? (17)
13 (¥,- Y,)2
S
U(vanation) =
- (S-‘} - SY)Z
- (18)
1T 2
r
U(covarnation) =
2{1- r)sySy
P (19)
L3 (¥, Y,)2
T FE
This imphes that
U(bias) + U(vanation) + (20)

U(covanation) = 1

5The equivalence of the numer
ator 15 demonstrated as follows

1T 5
T e Yo ” (YY)

[
S
T

R 2 1T 9
-Y, - Y, +Y, 02 - /=1 (3,- Y
R A R t-1) Tt=1(’ 0
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One expects U(bias) to be low If
1t 15 large, the average errors are
large and considerable bias exists
1n the simulatton Even if the 1n-
equality coefficient cannot attam
its opttmum level of zero, the most
desired level for U(bias) remains
zero One would like U(vanation)
to be low If U(vanation)is high,
predicted and actual values have
unequal standard deviations This
might suggest that the model struc
ture (or equation) underlying the
vanable in question 15 misspecified
The expectations regarding
U(covanation) differ It s unhkely
that any model can generate simula-
tions that are perfectly correlated
with actual outcomes, therefore,
one cannot expect U(covanation)
to be low As simulations will not
all be perfect, the goal should be the
lowest inequality coefficient possible
with a decomposition showing
U(bias) and U{vanetion) approaching
zero and U(covanation) approaching
one With this type of decomposi-
tion, systematic error 1s munimized
An alternative decomposition of
the square of the RMS error, that 1s

1T . 2 7 =9

- X (Y,-Y)*=(Y-Y)*+

7.5 0P -
(21)

(5= rsy)® + (1 - PP

can be evaluated in relation to the
regression equation defined in equa-
tion (12) The first term 15 the same
as that in equation (16) A perfect
simuilation generates a regression
equation with zero intercept and unit
slope

Y, =Y, +§ (22)

Because £, has zero mean by defim-
tion, Y must equal Y and the first
term of the decomposition becomes
zero Furthermore, the regression
slope 1n equation (12) can be defined
as

T . =
t§1 (Y, - Y)Y,- Y) rsy
rm T = e
Z (¥,- 9?2 ¥
t=1 (23)

For a perfect simulation, §, equals
one and this second decomposition
term also becomes zero These three
components can also be converted to
proportional terms

U{mean) = U{bias) =

(Y-7)2
) (24)
1T . 2
— Z (Y,-Y
Tt=1( e Yo
U(regression) =
(s.Y - rsY)2
(25)
1 T . 9
— Z (Y,- Y
Tz=1( e YD)
U{residual) =
2,.2
(1-r%)s
L (26)
1 T - 2
- Z(Y,-Y
o e YD

with

U(bias) + U(regression) +

U(residual) = 1 (27)

The objective 15 to generate a model
with the fowest Inequality coefficient
possible for each vanable, the de-
composition should show U(bias)
and U(regression) approaching zero
and U{residual) approaching one In
fact, if the two decompostf:lon terms
differ §|gnlﬁcantlg from zero, a hnear
correction factor® can be applied
that will generate the desired de-
composttion

Turning Point Errors

Another important goodness-of-
fit measure 1s how well actual turning
points are simulated dunng the
tustonical period Turning points are
important because many economic
time senes exhibit' positive serial
correlation For 2 model to be
superior to a sumple time trends
model, 1t must predict tuming
points

A simulation, with respect to
turning points, has four possible out-
comes A turning point will actually
exist and'the model will esther
predict or not predict 1t, or no turn-
1ng point will exist and the model
will exther predict or not predict
one These four posstbilities are
illustrated 1n the following diagram

6The optimal hinear correction
factor to Y, will be of the form f; +
By Y where 81 = rsy /s8¢ and fg =
? - ﬁl ?



ECONOMETRICS ANONYMOUS

One of the major trends of the past decade has been the proliferation
of redundant and useless econometric models and analyses This new
professional body has been formed lo enable an economust, when

he feels the urge to run multiple regressions far into the night, to
telephone a fellow member of E A who will come over and

sit up with him until the desire to regress passes

Leonard Silk
“New Remedies for Economists”™
— -1

Predicted
No
Turning
point’ | oS
Turning
= | Point fia faz
2
O INo
< Turning faq fan
Point

Each cell represents the frequency of
each alternative Perfect turming
point forecasting imphes f; o =
faq = 0, that 15, no turning point
errors If f15 or fpy are not equal
to zero, turning point errors are
occurnng Expressing these errors
1n proportional terms provides a
measure of turning point errot

A turning point error can be
defined as

TP error =

fia+fo1
fla*fia*7a1 *fag

(28)

A measure of error due to tuming
points missed 1s

f12
TPM error = (29)

f11*f12

A measure of error due to falsely
predicted turning points ts

fZl
TPF error = (30)

fo1*1

Each of these measures ranges be-
tween zero and one, small values
indicate good turning point simula-
tions

NET TRADE MODEL
VALIDATION

The world trade forecast modeling
system under development in the
International Economics Division
(IED), ESCS, centers on net trade
models The net trade model ac
counts for the interaction among
major trading countnes by cotn-
modity Each commodity model s a
system of export supply and 1mport
demand functions, by country, that
are solved simultaneously for net
trade (exports and imports) and
world pnice levels The net trade
functions are specified as functions
of own pnce, other commodity
pnices, production, income, popula-
tion, and other demand shifters Net
trade models for individual com-
modities are linked through cross
price vanables [ evaluate the wheat
and coarse grain net trade models
here These models were developed
to support the USDA world trade/
U S export outlook process (6)

Static Simutation Results

A static ssmulation of wheat and
coarse grain net trade models was
performed over 1964-75 The data
base for equation specification 1s,

1n general, 1960-75 The EEC wheat
threshold price senes used in the

EEC-6 wheat consumptton equation
starts in 1964 This imitation short-
ens the simulation penod to 1964-75

Table 1 presents a summary of
several measures of goodness of fit
for each vanable Generally, the
mean absolute relative errors and
root-mean-square percentage errors
are low, the slope coefficients of the
regressions of actual on predicted
values are close to one, the R-square
coefficients are high, and the Theil
mnequality coefficients are low

All Ug inequality coefficients are
substantially below one, therefore,
this model proved to be significantly
better than a no change forecast
model A decomposition of the in-
equality coefficients shows that er
rors are due pnmanly to differences
n the covanation between actual and
predicted values All U(covanation)
and U(residual) terms approach one
and other components approach
zero Tumning pomnts for all vanables
are, in general, forecasted accurately

In terms of the key vartables
concept suggested by Wallace, these
models were developed to forecast

"U S agncultural commodity trade
within the context of an integrated
world agncultural commodity trade
model Therefore, US exports and
world pnce level forecasts become
key vanables The MARE’s for U S
wheat (USWHEX) and coarse grain
(USCGRX) exports are 4 7 and 4 6
petrcent, respectively The corre-
sponding RMS percentage errors are
5 9 and 5 5 percent The MARE’s
for US wheat (PXWHEUS) and corn
(PXCORUSG) pnices are 9 4 and
4 2 percent, respectively The corre-
sponding price RMS percentage
errors are 12 0 and 5 3 percent



TYPICAL RESULTS ARE
SHOWN the best results are
shown

CORRECT WITHIN AN ORDER OF
o ' MAGNITUDE  wrong

Table 1 — Summary of goodness of-fi1 statistics for each endogenous variable, 1964 75 static simulation

RMS Theil's inequality
Model and vanz—zble1 Mean2 MARE percentage ﬁ1 H2 coefficients e:;zr
error
v U, U2
Wheat net trade model
ARWHEXC 2787 128 140 112 095 006 017 033 008
AUWHEXC 7109 66 74 108 a8 04 12 25 08
BRWHEM 24389 51 65 103 93 03 08 16 08
CAWHECON:! 4522 19 22 85 87 01 27 57 a3
CAWHEEK 15161 94 105 100 93 0s 24 50 0
CAWHEX 11991 121 137 82 51 a7 34 71 08
DEWHENM 1076 208 24 4 90 84 11 14 26 33
DEWHESTK 2493 138 166 71 53 08 27 50 17
EGWHENM 2682 36 41 100 96 02 17 33 08
E6WHECON 29855 21 27 100 75 01 35 62 a5
EEBWHEEK 5615 18 2 216 49 B 10 38 76 25
E6WHEMW 2620 117 141 103 82 07 17 32 08
EGBWHEXW 4876 45 57 109 96 03 10 19 08
FRWHENX 5524 110 128 115 91 06 18 35 17
INWHENM 4527 41 58 10 99 Q3 02 04 0
IRWHENM 483 241 284 10 92 10 .05 09 08
JPWHEM 4661 24 36 90 96 02 27 52 0
KRWHEM 1288 68 84 109 96 04 27 57 0
LAWHENMC 1940 63 83 a7 21 04 28 52 08
NAWHEM 1839 83 102 100 a4 04 16 34 25
PKWHENM 1317 117 146 95 17 07 20 39 17
PXWHEUS 234 94 120 97 94 05 24 50 17
RWWHENM 17155 37 48 103 96 02 09 19 17
UKWHEM 4205 68 78 88 76 c4 19 39 08
USWHEX 22776 47 59 104 a5 03 11 21 03
Coarse grawn net trade model

ARCGRNX 5942 82 94 095 087 005 g 15 028 017
AUCGRNX 1599 133 157 104 94 07 19 a 17
DECGRNM 4374 71 + 90 " 63 04 20 40 08
ESCGRNM 2891 122 151 109 70 o7 28 52 25
FRCGRNX 5167 96 124 105 91 06 21 43 0
ITCGRNM 5780 44 55 84 76 Q3 18 a5 17
JPCGRNM 9773 51 65 g9 a5 03 25 47 o8
PXCORUSG 178 472 53 100 98 Q2. 13 24 08
RWCGRNM 14265 68 865 100 96 04 24 46 25
* SACGRCON 5753 44 60 82 83 03 53 80 25
SACGRNX 1926 182 218 101 89 09 07 13 0
SVCGRNM 2166 205 298 99 a8 06 07 13 33
THCGRX 1652 50 60 95 97 03 10 20 17
UKCGRNM 3No 56 71 93 53 04 4 61 17
USCGRX 26672 46 55 100 98 03 12 23 0

1Var|ab|es are defined n table 8
Quantities are 1,000 metric tons except for PXWHEUS and PXCORWUSG which are in dollars per bushel



THREE OF TIIE SAMPLES

WERE CHOSEN FOR DETAILED
S1UDY the resulls on the others
didn’t make sense gnd were ignoled

INTUITIVELY OBVIOUS I
don’l understand it either

Cral tradition

Table 2 presents goodness of-fit
measures for the overall model
These measures are for the integrated
wheat and coarse grain model and for
both subcomponents of that model
separately To calculate the slope
coefficient, R-square, Theil inequal-
ity coefficients, and turning point
relative errors, T assume that the
responses of the several vanables
can be combined and treated as the
response of a single variable This
approach seems inappropnate for the
MARE and RMS percentage error
For these measures, a simple average
of respective indindual endogenous
variable measures 15 reported Thus,
the static stmulation of the wheat
and coarse grain model generally
exhibits an 8 8-percent average
MARE and a 10 9-percent average
RMS percentage error The regression

slope coefficient, R-square, and Theil
nequahty coefficient, including 1ts
decomposition, all indicate unbiased

forecasts and explain a major propor-

tion of the vanation in the actual
variables throughout the histoncal
pertod of fit

Dynamic'Simulation Results

A dynamtc simulation of the
wheat and coarse gram net trade
model was performed over 1964-75
Table 3 presents goodness of-fit
measures for each vanable These
results are stmilar to those from the
static simulation Some vanables
perform slightly worse, and ofhers,
shghtly better

Table 2 — Goodness-of-tit staustics wheat and coarse grain net trade maodels,
1964 75 static simulation

Wheat and Wheat Coarse grain
coarse grain net trade net trade
Goodness of it statrstic net trade madel model
modef component component
Average MARE 88 89 86
Average RMS percentage error 109 108 14
81 100 100 101
A2 99 99 99
Theit inequality coefficients
v 03 03 D3
U 05 05 [4.]
Uz 09 09 17
Ulcovariation) 9973 9987 9831
Ufresidual} 9999 9985 9910
Turning point errors
TP 13 13 14
TPt 12 10 14
TPE 14 13 14

The Ug inequahity coefficient
for South African coarse gran con-
sumption (SACGRCON) exceeds
one This signifies that the dynamie
forecast for this vanable 1s signifi-
cantly worse than a simple no-
change model forecast This poor
performance Is easily explained
South African consumption in the
model 1s a function of lagged con
sumption Between 1963 and 1964,
actual coarse grain consumptton
increased 30 percent Therefore,
starting the stmulation in 1964
creates a large forecast error, one
carried through all penods of the
simulation The static simulation
does not have this large error as
the 1965 forecast depends on actual
consumption levels in 1964 rather
than on levels forecast for 1964 As
South African coarse gramn net
exports (SACGRNX) are a function
of consumption, these large con
sumption errors generate large net
export errors These errors would
have been substantially reduced had
any year other than 1964 been
chosen for starting the dynamic
simulation

Korean wheat umports
(KRWHEM) exhibit a Ug inequality
coefficient close to one This simula-
tion forecasts a more rapid nse 1n
Korean imports throughout the
mid sixties than actually occurred
Because actual growth was slow in
the earlier years of the simulation,

a no-change forecast, on the average,
would have proved more accurate
However, imports did double during
the sixties and the model picked up
this phenomenon The other
goodness-of-fit measures indicate
that the Korean wheat import
simulation 1s satisfactory
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Table 3 — Goodness-of-fit statistics for each enddgenous variable, 1964 75 dynamic simulation

Theil's inequality

RMS
Model and \.'arlable1 MARE percentage ﬁ‘l H2 coefficients Te
error erros
U u, U,
Wheat net trade model
ARWHEXC 126 140 112 095 D06 017 033 008
AUWHEXC 67 78 120 89 04 12 23 08
BRWHEM 54 68 103 92 03 08 16 0
CAWHECON 18 23 77 a8 o1 30 63 08
CAWHEEK 77 103 102 a4 05 23 52 o}
CAWHEX 130 144 17 47 07 36 i 17
DEWHENM 209 2317 100 84 10 12 23 33
DEWHESTK 122 16 5 74 51 o8 25 47 08
EGWHENM 37 42 101 96 02 18 34 08
E6BWHECON 21 27 100 75 01 a5 62 2%
EBWHEEK 144 192 68 41 09 30 59 25
EEWHEMW 125 153 107 79 07 17 33 25
EGWHEXW 124 15 4 92 68 07 25 44 17
FRWEENX a8 133 112 90 06 16 30 08
INWHENM 43 59 103 99 03 03 06 s]
IRWHENM 294 361 101 87 13 15 27 08
JPWHEM 30 40 87 96 o0z 29 57 0
KRWHEM B6 114 11 95 05 35 92 0
LAWHENMC 65 86 a4 a1 04 30 57 08
NAWHEM 83 102 100 a4 04 16 34 25
PKWHENM 142 173 89 Yal 09 28 52 0
PXWHEUS 132 1523 106 90 07 30 62 17
RWWHENM 58 70 112 a3 03 15 32 17
UKWHEM 75 84 94 71 04 22 42 7
USWHEX 54 65 110 95 03 13 23 08
Coarse grain net trade mode!
ARCGRNX 96 108 098 082 005 017 031 008
AUCGRNX 12% 149 106 a5 06 17 35 o8
DECGRNM 71 90 71 63 04 20 40 08
ESCGRNM 121 148 110 72 07 27 51 25
FRCGRANM 118 157 102 86 07 22 42 0
ITCGRNM 44 55 83 77 03 17 33 25
JPCGANM 51 65 99 a5 03 25 47 08
PXCORUSG 59 72 102 a7 03 18 32 17
RWCGRNM 86 113 98 94 05 N 62 33
SACGRCON 188 201 181 88 11 78 198 75
SACGRNX B67 932 7 a6 29 33 94 25
SVCGRNM 259 324 a3 a9 06 11 22 25
THCGRX 50 60 a5 97 03 10 20 17
UKCGRNM 57 73 91 51 04 35 62 25
USCGRX 77 89 1 00 a7 04 20 38 o8

1

variables are defined in tahle 8



The MARE's for U8 wheat
{(USWHEX) and coarse gramn
(USCGRX)exportsare 54 and 7 7
percent, respectively The corre-
sponding RMS percentage errors
are 6 5 and B 9 percent The MARE’s
for US wheat {PXWHEUS) and com
(PXCORUSG) prices are 13 2 and
5 9 percent, respectively The corre-
sponding price RMS percentage
errors are 15 3 and 7 2 percent
Relative to the static simulation,
these errors are larger, especially for
U S coarse grain exports and wheat
prices

Table 4 presents several goodness-
of fit measures for the complete
model Generally, the dynamic
stmulation of the wheat and coarse
grain model exhibits an 11 7.percent
average MARE and a 17 5-percent
average RMS percentage error The
other measures indicate that the
dynamic model forecasts are un
brased and explain a major propor-
tion of actual vanation throughout
the histortcal penod of fit 7

Cross Simulation Comparison

The above evidence focuses on
goodness of fit of a particular model
simulatton Table 5 compares the
goodness-of-fit measures across the
three kinds of simulations discussed
Only two measures are broadly
comparable across the residual

TThe high Uy inequahity coeffi-
cient’for the coarse grain component
ts the result of the errors for South
Afrnica explained previously

Table 4 — Goodness-of-fit statistics, wheat and coarse grain nat trade modaels,

1964 75 dynamic simulation

Wheat and Wheat Coarse gramn
=y coarse grain net trade net trade
Goodness-of-fit statistic net trade model modal
model component component
Average MARE 17 97 151
Average RMS percentage error 175 174 176
i 101 100 . 104
R2 9g 99 a8
Theil inequality coefficients
u 04 G4 05
U 18 15 26
Ua 27 27 62
Ulcovariation) 9795 9967 8854
Ufresidual} 9924 9945 9234
Turning point errors
TP 15 12 2
TPm 12 09 16
TPE 16 13 22

check, static, and dynamic simula-
tion the R-square and the coeffi-
clent of vanatton The R-square for
the resadual check simulation 15
detived from the ordinary least
squares estimation procedure The *
R'square for the static and dynamic
sitnulation comes from the regression
of actual on predicted values In all
three cases, I derive the coefficient
of vanation by dividing the standard
error of the regression by the mean
of the dependent vanable The
residual check simulation measures in
table 5 are not completely compar-
able to the static and dynamic stmu-
lations The regression equations are
generally fitted over slightly longer
time penods The data, however,
broadly indicate behavior across
simulations The residual check
generally performs somewhat better
than the static stmulation, and the
static sumulation performs somewhat

better than the dynamic simulation
These results are expected, each
simulatior allows for an additional
source of errors

VALIDATION THROUGH
COMPARISON WITH
ALTERNATIVE MODEL
SPECIFICATION

Validation questions essentially
tefer to a model’s goodness of fit
The validation results discussed
eatlier are absolute measures of this
They all measure the degree of
goodness of fit relative to an 1deal
the perfect forecast model

Another way to validate a model
1s to compare 1ts specification with
those of other models Two Eypes of
simple models are good candidates
for comparison The first 15 the no-

11
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Table 5 — Three simulations of wheat and coarse grain net trade models

R-square Coefficient of variation
1
Model and variable Resigual Swatic Dynamic Residual Static Dynamic
check simulation simulation check simulation simularon

Whaat net trade model
ARWHEXC 085 095 085 25 15 15
AUWHEXC 80 83 89 1 8 9
ARWHEM 38 a3 92 a 7 7
CAWHECON 84 87 88 3 2 3
CAWHEEK 99 93 94 4 11 11
CAWHEX2 ‘51 47 15 16
DEWHENM 90 84 84 23 27 26
DEWHESTK 76 53 51 1 18 18
EGWHENM 97 a6 26 5 5 S
EGBWHECON 75 75 75 3 3 3
E6WHEEK?Z ~ 38 a1 24 21
E6WHEMW 88 82 79 16 15 17
EGWHEXW 26 96 68 10 6 17
FRWHENX 94 91 a0 15 14 15
INWHENM 98 9g 99 7 ] 6
IRWHENM 92 92 a7 33 31 40
JPWHEM 98 96 96 4 4 4
KRWHEM 93 96 95 1 9 12
LAWHENMC 95 91 91 9 ] 9
NAWHEM 93 94 94 16 11 1
PKWHENM a0 77 71 1 16 19
PXWHEUSZ 94 80 13 17
RWWHENM a3 96 a3 1 5 8
UKWHEM 92 76 ra 5] 9 9
USWHEX a2 | 95 a5 g 6 7

Coarse grain net trade mode!
ARCGRNX 087 087 082 13 10 12
AUCGRNX a3 94 95 20 17 16
DECGRNM 82 62 63 11 10 10
ESCGRNM 81 70 72 21 17 16
FRCGRNX 94 9 86 17 14 17
ITCGRNM 88 76 77 10 6 6
JPCGRNM 98 a5 95 1 7 7
PXCORUSG2 98 97 6 8
RWCGRNM 96 96 a4 1 9 12
SACGRCON 91 83 88 0 7 22
SACGRNX 93 89 86 1 24 102
SVCGANM 98 98 a9 19 33 36
THCGRX 97 a7 97 1 7 7
UKCGRNM 66 53 b1 8 8 8
WUSCGRX a7 488 97 8 6 10

1variables are defined in table 8
2No measures are available for the residusal check simulation These variables are not econometrically estimated but derived from
identity eguations and the stmultaneous nature of the net trade model



An economust can tell you what
will happen under any conditions
And his guess ts hable to be just as

good as anybody else’s

Will Rogers

change model, which assumes that
next year's forecast will be the same
as this year's actual level The second
type of model 15 a simple tume trends
model, where each endogenous van-
able 15 esttmated as a function of
time only If the net trade model is
no better than these relatively simple
models, it should be rejected as a use-
ful forecasting tool 8 However, the
net trade model proved supertor to
both alternatives

The Theil Uy statistic for the net
trade model provides a companson
to a no-change forecast model
Except for the special case of South
Afncan coarse grain consumphion,
all statistics are below 1 0

The time trends model provides
an interesting companson because
time trends are popular with fore
casters Equations in a trend model
can take numerous forms, but for
this analysis, I chose a ltnear time
trend With annual data for 1360-75,
far too few observations were avail-
gble for developing even moderately
sophisticated equations When
evaluating the linear trend results,
in all but a few cases which demon-
strated relatively rapid rates of
exponential growth, there appeared
to be no advantage to using other
functional forms

8The net trade model structure
ttself may be rejected as a forecast
tool but may still be accepted as a
valid modeling conatruct It can still
support a world modeling system
framework that, with better and
more complete country-sector detail,
provides both.a better forecast and
has explieit structural integrity

Table 6 presents linear trends
model results and table 7 shows
summary statistics for the net trade
and the linear trends models The
no-change model/iinear trends
model companson can be evaluated
solely based on a Uy inequality
coefficient For 7 of 40 variables
{CAWHEEK, INWHENM,
KRWHEM, PXWHEUS, PXCORUSG,
RWCGRNM, and UKCGRNM), the
Uy statistic exceeds 1 O for the
linear trends model, and the no-
change forecast 1s supenior U S
wheat and com prices are two varn
ables for which a forecast of no
change 1s better than a linear trend
forecast The average Ug inequality
coefficient 15 0 84 for wheat and
0 80 for coarse grain Thus, the
linear trends model 1s more accurate
than the no change model Table 7
indicates that the static sumulation
of the net trade model 15 supenor te

the linear trends model ? A more con-

clusive evaluation involves the net
trade model dynamic simulation as
the basis for comparison Dynamic
stmulation results put a model 1n the
warst possible hght The net trade
model again performs better than the
hinear trends model (table 7)

Rather naive trend models were
used Trend model results could

9Regressing actual values on
predicted values generated by a linear
trend does not provide a basis for
comparison When the ordinary least
squares procedure miniumnizes the sum
of squared deviations from the equa-
tion, an intercept of zero and a slope
of one 15 assured For the same rea-
son, the decomposition of the 1n-
equality coefficient provides lLittle
information

probably be improved if a commod-
ity analyst was careful in choosing
the appropnate trend equation for
each vanable rather than routmnely
choosing the hnear form for all the
vaniables When one’examines the
time series plots for all the endoge-
nous vanables'm the net trade model,
1t seems unhikely that any forecast
from a reasonably simple time seres
model will be better than the net
trade model’s The net trade model
also provides the core upon which a
detailed, structural world trade
modeling system can be buiit As it
provides equal or better forecasts as
well as a structural model frame-
work, the net trade model seems
supenor to any time series approach

CONCLUSION

The only true test of vahdity
tnvolves using the net trade model
1n an actual forecasting environment
However, how well the model
represents one’s perception of
reality, in hoth structural and his-
tonical tracking senses, provides some
preliminary validation Although
no definttive conclusions based on
statistical theory can be drawn from
such an analysis, impressions gath-
ered from 1t can increase one’s
confidence in the model

13



Table 6 — Summary of goodness of-fit statistics for each endogenous variable, hinear trends model

RMS

Theil's inequality

Coefficient

Model and varlable.| MARE percentage FI2 coefficients T af
error error variation
Y Up

Wheat net trade mode!
ARWHEXC 400 526 004 046 088 031 56
AUWHEXC 157 191 15 40 B6 12 20
BRWHEM 168 218 0B 44 Fa K} 23
CAWHECON 30 356 76 35 62 Kh 4
CAWHEEK 289 356 02 59 138 - 44 38
CAWHEX 173 200 04 45 83 31 21
DEWHENM 385 6517 09 41 70 25 b5
DEWHESTK 148 196 03 41 67 a 21
EGWHENM g2 t14 84 39 ra| 19 12
EEWHECON 27 38 63 54 a5 38 4
E6WHEEK 152 199 02 42 7 25 21
EGWHEMW 217 251 b8 40 70 67 27
E6WHEXW 176 223 65 42 72 06 24
FRWHENX 174 229 82 40 71 25 24
INWHENM 403 46 3 01 60 136 30 49
IRWHENM 634 851 28 44 82 25 91
JPWHEM 44 57 94 32 54 12 6
KRWHEM 207 237 74 55 116 19 25
LAWHENMC 128 160 73 43 81 12 17
NAWHEM 294 327 55 44’ BO 19 35
PKWHENM 230 267 05 40 68 25 29
PXWHEUS 293 348 36 55 124 40 3
RWHENM 144 193 26 48 94 38 21
UKWHEM 96 124 20 43 74 25 13
USWHEX 16 3 198 37 47 89 19 2

Coarse gramn net trade model
ARCGRNX 182 226 054 040 063 026 24
AUCGRNX: 379 441 55 45 88 % 47
DECGRNM 163 198 22 36 60 25 21
ESCGRNM 2286 247 A 46 a8 25 26
FRCGRNM 235 291 74 40 €8 06 31
ITCGRNM 144 171 48 49 98 06 18
YPCGRNM 54 71 98 28 52 06 8
PXCORUSG 219 272 61 55 121 40 29
RWCGRNM 258 313 49 55 125 12 33
SACGRCON 29 39 96 30 53 3 4
SACGRNX ‘60 8 54 9 09 42 71 19 59
SVYCGRNM 2027 2855 60 48 74 19 305
THCGRX 109 179 83 34 55 12 19
UKCGRNM 821 103 14 50 100 N 11
USCGRX 202 252 68 48 91 3 27

14

1Var|ab|es are defined In table 8



Table 7 — Average goodness-of-fit statistics alternative madel companison

- Net trade model
Goadness Linear trends model
of-fit Static simulation Dynamic simulation
statistic Wheat Wheat Wheat
Coarse and Coarse and Coarse and
Wheat grain coarse Wheat grain coarse Wheat grain coarse
gram gramn grain
MARE 89 86 88 97 151 117 209 321 251
RMS percentage error 106 114 109 174 176 175 261 41 4 318
U.I 19 20 20 22 25 22 45 43 44
U2 36 38 38 43 54 47 84 80 83
TP 13 21 12 12 21 15 28 24 27
Table 8 — Definitions of endogeneous variables in net trade model
First Frald Second field
AF Africa CGR Coarse grain
AR Argentina COR Corn
AU Austraha WHE Wheat
BR Braztl
CA Canada
DE Woest Germany
- EG Egypt
ES Spain Third Freld
EG Eurapean Economic Cammumity-6
FR France CON Consumption
, IN India EK Ending stocks
IR Iran M Imports
IT Italy MW Imparts excluding intraregronal trade
JP Japan NM Net imports
KR Korea NMC Net imparts, local crop vear
LA Other South America NX Net exparts
NA North Africa 5TK Stocks
PK Pakistan X Exports
RW Rest of the world xcC Exposts, local crop year
SA South Africa xXw Exports, excluding intraregional trade
Sv USSR
TH Thailand
UK United Kingdom
us United States

15
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