

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

AN ALLOCATION MODEL FOR CONSUMER EXPENDITURES

By Jitendar S Mann*

INTRODUCTION

The consumer's basic problem, as defined by economists, is how to allocate expenditures among different commodities, given their prices and the consumer's income When income and prices change, the consumer changes the income shares spent on different commodities For example, US food expenditures as a percentage of personal consumption expenditure declined from 21 percent in 1960 to about 18 percent in 1977 The share of expenditure on food purchased for use at home also fell, from 17 to about 13 percent

The objective here is to describe, analyze, and explan the behavor of budget shares (amount spent) for major commodity groups, with emphasis on food expenditures A complete system of demand equations for consumer expenditures is estimated, and a full matrix of direct and cross price elasticities and income elasticities is presented-

In studying expenditure allocation, the analyst must specify a complete system, which should allocate consumer expenditures among all categones The Rotterdam model used here (developed by Theil and his associates-(1-3, 11-13)) explains the quantity component of the variation in budget shares ${ }^{1}$

[^0]The Rotterdam model, a complete consumer demand system, was fitted to personal consumption expenditure data for 1949-77 to study the interaction of consumer expenditures A full matrix of direct and cross price elasticities and income elasticsties was estimated The 12 categories of expenditures were food at home, food away from home, alcohol and tobacco, clothing, housing, utilities, transportation, medical, durables, other nondurables, services, and miscellaneous

Keywords

Consumer expenditures Consumer demand Rotterdam model Price elasticities Income elasticities

BUDGET SHARES

The budget shares are defined as

$$
w_{1}=p_{1} q_{1} / m
$$

where w_{1} is the budget share of the $i^{\text {th }}$ commodity, p_{i}, its price, q_{t}, the quantity purchased, and m, the total expenditure The shares are non-negative and add up to one for all commodities The consumer expenditure data analyzed are Personal Consumption Expenditures (PCE), publıshed by the US Depart ment of Commerce The data are combined into 12 major commodity groups food at home, food away from home, alcohol and tobacco, clothing, housing, utilities, trans. portation, medical services, durables, other nondurables, services, and miscellaneous The detalls of expen-
diture items included in each category appear in an appendix

In this articie, total expenditure is per capita personal expenditure Saving is assumed exogenous and the terms "total expenditure" and "Income" are used synonymously Quantities are represented by per capita constant dollar PCE Because these data are in constant dollars, vanation in the time series is due to variation in quantities purchased only Prices are the implicit prices obtained by dividing current dollar expenditure by constant dollar expenditure The use of the impliat price deflator (instead of the Consumer Price Index) assures that pnce tımes quantity equals expenditure

The budget shares of the 12 expenditure categories for 1949.77 appear in table 1 The share of food consumed at home declined from about 19 percent in 1949 to about 13 percent in 1977 The share of food consumed away from home has remamed almost unchanged The share of alcohol and tobacco used has fallen steadily Clothing expenditure went from about 13 percent in 1949 to about 8 percent in 1977 While the share spent on housing increased, that for utilities remained steady Transportation increased slightly The share spent on medical services more than doubled The shares of durables and other nondurables did not change Services rose a bit during the period The miscellaneous category includes items which do not pass through the marketing system but are included in PCE to account for the output of certain sectors

The partial elasticities of budget share with respect to pnce, quantity,

Table 1-Budget shares of personal consumption expenditures

The share of food consumed at home declined from about 19 percent in 1949 to about 13 percent in 1977 The share of food consumed away from home has remaned almost unchanged
and income are 1,1 , and -1 , respectively To see this, take the total differential of the definition of w_{1}

$$
\begin{aligned}
d w_{i} & =\frac{q_{i}}{m} d p_{i}+\frac{p_{i}}{m} d q_{i}-\frac{p_{i} q_{i}}{m^{2}} d m \\
& =w_{i} d \log p_{i}+w_{i} d \log q_{i} \\
& -w_{i} d \log m
\end{aligned}
$$

This equation states that the change in the $t^{\text {th }}$ budget share is a weighted sum of logarithmic (relative) changes in price, quantity, and income, the weights being the budget share of the $i^{\text {th }}$ commodity Dividing by w_{1}, we obtain these elastacities

$$
\begin{aligned}
& \frac{\partial \log w_{1}}{\partial \log p_{1}}=1 \\
& \frac{\partial \log w_{1}}{\partial \log q_{1}}=1 \\
& \frac{\partial \log w_{1}}{\partial \log m}=-1
\end{aligned}
$$

The relative importance of the varia tion in prices and quantities gives us an idea of the vanation of relative shares These changes in prices and quantities appear in tables 2 and 3

Prices of these categones increased throughout 1949-77 food away from home, housing, transportation, medical services, and other services Demand for housing and medical services also rose steadily dunng the period The largest average annual pnce increase was for medical services-445 percent

The average price increase for food at home was 332 percent, for food away from home, 413 percent Large price increases in utilities (22 56 percent) and transportation services (1695 percent) during 1973.74 should be noted

The share spent on housing increased the most annually-387 percent During 1949-77, food at home rose 093 percent and food away from home, 116 percent

The components of change in the share of food consumed at home appear in table 4 Income (total PCE) went up each year from 1949, to 197 percent The price of food at home increased at an average annual rate of 332 percent, the quantities consumed increased 093 percent, and per capita income rose 549 percent Expenditures on food durng this period averaged 161 percent and declined about 02 percentage point annually

We want to know the relation. ship between income and price elasticity and the change in budget shares dunng the period First, assume that p is constant, and wnte the above differential as

$$
\begin{aligned}
d w_{1} & =w_{t} d \log q_{t}-w_{t} d \log m \\
& =w_{t}\left[\frac{d \log q_{i}}{d \log m}-1\right] d \log m
\end{aligned}
$$

From this we get the following expression

$$
\frac{d \log w_{t}}{d \log m} \quad p_{t}=\text { constant }=E_{1}-1
$$

where E_{i} is the income elasticity

For it to be positive, for w, to go up when m increases, we need

$$
\mathbf{E}_{\mathrm{r}}>1
$$

Now assume that m is unchanged, and

$$
\begin{aligned}
& \frac{d \log w_{1}}{d \log p_{t}} m=\text { constant } \\
& =\epsilon_{u}+1
\end{aligned}
$$

where ϵ_{u} is the price elasticity
For the share w, to go down when p_{1} increases, we need

$$
\epsilon_{u}>-1
$$

A luxury ss defined as a commodity with an income elasticity greater than 1 If a good is a luxury, its budget share goes up as income goes up with the price assumed constant This occurs because when $\mathrm{E}_{1}>1$, a given proportionate in crease in income has a larger proportionate effect on $p_{1} q_{1}$, the nu merator of w_{2}

THE MODEL

I now present a derivation of the absolute prices version of the allocation model for consumer expend. tures A more detailed derivation of the general model appears in (12)

The demand function for a com modity can be formulated in income and pnces

$$
\begin{aligned}
& q_{1}=q_{i}\left(m, p_{1}, \quad, p_{n}\right) \\
& i=1,2, \quad n
\end{aligned}
$$

Table 2-Relative changes in implicit price deflators, 194950 through 1976 77*

Year	Food at home	Food away from home	Alcohol and tobacco	Cloth ing	Hous ing	Un! ities	Trans-portation	Medical	Durables	Other nondurables	Ser vices	Miscel laneous
194950	148	229	-0 54	-063	344	166	468	111	289	063	151	093
195051	1052	716	270	846	398	221	538	263	486	756	630	1022
1951-52	175	57	619	-73	398	159	476	464	0	-191	637	33
1952-53	-179	0	83	15	532	255	520	483	135	44	536	-67
1953-54	0	189	180	29	335	70	337	329	-326	- 44	247	-204
1954-55	-193	93	0	-29	142	179	157	263	137	176	380	-86
1955-56	75	184	129	216	182	176	185	202	282	188	516	189
195657	322	375	206	156	179	252	404	392	453	351	508	268
195758	423	294	94	56	189	130	275	343	25	259	348	261
195859	-1 39	285	351	97	133	192	281	283	360	107	303	317
1959-60	97	245	267	151	157	176	247	307	49	159	438	201
1960-61	96	224	87	81	129	185	94	251	97	143	79	137
1961-62	68	265	130	40	115	0	93	200	155	77	295	194
$1962-63$	135	228	170	107	101	61	13	136	94	153	346	219
1963-64	173	164	154	119	100	-85	13	208	105	175	205	186
1964-65	235	234	206	92	. 99	49	351	261	-46	49	243	266
1965-66	516	467	281	257	134	97	277	420	23	98	415	353
1966 -67	- 49	498	401	411	180	132	270	573	184	253	320	315
1967-68	351	499	495	511	236	142	239	493	369	386	599	406
1968-69	476	594	494	552	321	198	428	621	239	371	576	556
196970	519	715	612	398	409	384	551	486	254	390	512	459
197071	192	502	464	311	455	644	502	516	349	396	567	567
1971-72	545	408 !	305	212	336	387	192	471	101	212	471	587
1972-73	1441	816	40	344	421	723	440	497	178	237	440	871
1973-74	1604	1156	618	673	496	2256	1695	855	656	1134	800	1352
1974-75	739	812	731	381	498	11.95	634	1292	821	1237	699	932
1975 -76	95	645	468	342	532	912	780	908	560	562	404	574
1976-77	379	659	367	379	577	984	756	820	416	525	456	851
Average	332	413	292	236	290	366	401	445	230	295	433	388

*Changes in logs multuplied by 100

Table 3-Relative changes in quantities, 1949-50 through 1976-77*

[^1]Table 4-Components of change in share of food consumed at home 1949-50 through 197677

where q, is the quantity of the $i^{\text {th }}$ commodity demanded, p_{1}, its price, and m, consumer income (equal to total expenditure) Taking the differentsal of the loganthm of the above demand function, we obtain

$$
d\left(\log q_{i}\right)=\frac{\partial\left(\log q_{i}\right)}{\partial(\log m)} d(\log m)
$$

$$
\begin{aligned}
& +\sum_{j=1}^{n} \frac{\partial\left(\log q_{i}\right)}{\partial\left(\log p_{j}\right)} d\left(\log p_{j}\right) \\
& t=1,2, \quad n
\end{aligned}
$$

Derivations on the right-hand side of this equation are the elasticities The pince elasticities are not sym metric To obtain symmetry of the
coefficients, multiply both sides of the equation by the budget share of the $t^{\text {th }}$ commodity

$$
\begin{aligned}
& w_{1}=\frac{p_{i} q_{i}}{m} \\
& w_{1} d\left(\log q_{i}\right)=\left(\frac{p_{i} q_{i}}{m} \frac{\partial q_{i}}{\partial m} \frac{m}{q_{1}}\right) d(\log \tilde{m}) \\
& +\sum_{j=1}^{n}\left(\frac{p_{i} q_{i}}{m} \frac{\partial q_{i} p_{i}}{\partial p_{,} q_{i}}\right) d\left(\log p_{i}\right) \\
& =p_{i} \frac{\partial q_{i}}{\partial m} d(\log m) \\
& +\sum_{j=1}^{n} \frac{p_{i} q_{j}}{m} \frac{m_{1} \partial q_{1}}{\partial p_{j}} d\left(\log p_{j}\right)
\end{aligned}
$$

The coefficients of $d\left(\log p_{j}\right)$ are now symmetnc The left-hand side of this equation is the quantity component (endogenous) of a change in the consumer's budget shares In the microeconomic theory of consumer behavior, prices and income are considered given and the quantities are the endogenous variables Therefore, $w_{i} d\left(\log q_{t}\right)$ is the endogenous component of variations in budget shares

Let us define

$$
\mu_{1}=p_{1} \frac{\partial q_{i}}{\partial m}
$$

$$
\pi_{1 J}=\frac{p_{i} q_{j}}{m} \frac{\partial q_{i}}{\partial p_{j}}
$$

so that

$$
\begin{aligned}
& w_{i} d\left(\log q_{i}\right)=\mu_{i} d(\log m) \\
& +\sum_{j=1}^{n} \pi_{i j} d\left(\log p_{j}\right) l=1,2, \quad, n
\end{aligned}
$$

The coefficient μ_{1} is called the marginal budget share of the $i^{\text {th }}$ commodity It represents the addrtional amount spent on the commodity when income (total expendi ture) increases by 1 dollar It is also called the marginal propensity to. spend, and it is the income elasticity weighted by the value share These coefficients satisfy the restriction

$$
\sum_{i=1}^{n} \mu_{1}=1
$$

This is the adding up property of the demand system The μ 's do not have to be positive For an inferior commodity, the marginal propensity to spend is negative However, for broad commodity groups, the μ 's are expected to be positive Multiplying both sides of the definition of μ_{t} by $\frac{m}{q_{i}}$, we obtain

$$
\frac{m}{q_{i}} \mu_{i}=p_{1} \frac{\partial q_{i}}{\partial m} \frac{m}{q_{i}}
$$

or

$$
\frac{m \mu_{i}}{p_{i} q_{i}}=\frac{\partial q_{i}}{\partial m} \frac{m}{q_{i}}
$$

or

$$
\mathrm{E}_{1}=\frac{\mu_{1}}{w_{1}},
$$

where E_{i} is the income elasticity of demand for the ${ }^{\text {th }}$ commodity

The parameters $\pi_{i j}$ are the compensated price elasticity (Slutsky) weighted by the budget shares Dividing both sides of the definıtion of $\pi_{i j}$ by q_{i}, we get

$$
\frac{\pi_{u}}{q_{1}}=\frac{p_{1} p_{1}}{m} \frac{\partial q_{1}}{\partial p_{j}} \frac{1}{q_{1}}
$$

or

$$
\frac{\partial q_{1} p_{1}}{\partial p_{1}} \frac{\pi_{i}}{q_{1}}=\frac{q_{1} p_{i}}{m}
$$

or

$$
\eta_{i j}=\frac{\pi_{i j}}{w_{1}},
$$

where $\eta_{i j}$ is the price elasticity of demand of commodity l for the $J^{\text {th }}$ price The coefficients π_{j} are called the Slutsky coefficients, and the elasticities η_{ν} are the pure substitution elasticities under a compensating income change to keep utility constant

The pnce coefficients, π_{1}, form a symmetric, negative, semidefinite matrix of order n Also

$$
\sum_{j=1}^{n} \pi_{i j}=0 \quad i=1,2, \quad, n
$$

The sum of these coefficients for each commodity is zero This equation represents the homogenerty condition for the demand equations

Substitutes and complements can be defined simply in terms of the sign of π_{11} (6) If π_{11} is positive,
goods l and \jmath are substitutes, if $\pi_{i j}$ is negative, they are complements

The Slutsky coefficients are defined as

$$
\pi_{j j}=\frac{p_{p_{j}} p_{j}}{m} \frac{\partial q_{i}}{\partial p_{j}}
$$

where $\frac{\partial q_{i}}{\partial p_{j}}$ are the quantity price slopes with utility unchanging

$$
\left(\frac{\partial q_{i}}{\partial p_{j}}\right) u=\text { constant }
$$

The traditional formulation of the Slutsky equation is

$$
\begin{aligned}
& \frac{\partial q_{i}}{\partial p_{j}}=\left(\frac{\partial q_{i}}{\partial p_{j}}\right) u=\text { constant } \\
& -q_{J} \frac{\partial q_{i}}{\partial m}
\end{aligned}
$$

from which we get

$$
\begin{aligned}
& \left.\frac{\partial q_{i}}{\partial p_{j}}\right) u=\text { constant } \\
& =\frac{\partial q_{i}}{\partial p_{j}}+q_{j} \frac{\partial q_{i}}{\partial m}
\end{aligned}
$$

Substitute this in the above definstion,

$$
\pi_{i j}=\frac{p_{1} p_{j}}{m}\left[\frac{\partial q_{i}}{\partial p_{j}}+q_{j} \frac{\partial q_{i}}{\partial m}\right]
$$

The uncompensated cross price elasticities, however, do not tell us whether the goods are substitutes or complements

Change to elastıcities

$$
\begin{aligned}
& \eta_{1 j}=\frac{\pi_{\mathrm{j}}}{w_{1}}=\frac{m}{p_{i} q_{i}} \frac{p_{i} p_{j}}{m}\left[\frac{\partial q_{i}}{\partial p_{j}}\right. \\
& \left.+q_{j} \frac{\partial q_{1}}{\partial m}\right]=\left[\frac{p_{j}}{q_{i}} \frac{\partial q_{i}}{\partial p_{j}}\right. \\
& \left.+\frac{p_{j} q_{j}}{m} \frac{\partial q_{i}}{\partial m} \frac{m}{q_{i}}\right]=\left[\epsilon_{i j}+w_{j} E_{i}\right]
\end{aligned}
$$

where ϵ_{u} are the uncompensated price elasticities This equation gives the relationship between'the uncompensated and compensated elasticities The commonly estimated elasticities are generally uncompensated ($2,3,5,10$) The uncompensated cross price elasticities, however, do not tell us whether the goods are substitutes or complements

ESTIMATION

To apply the model, we take changes in logs, and use the symbol (D) as the log-change operation

$$
D p_{t}=\log p_{t}-\log p_{t-1}
$$

The demand model is thus

$$
\begin{aligned}
& w_{i t}^{*} \mathrm{D} q_{i t}=\mu_{i} \mathrm{D} q_{t}+\sum_{j=1}^{n} \pi_{i j} \mathrm{D} p_{j t} \\
& +\mathrm{U}_{i t} \imath=1, \quad n
\end{aligned}
$$

where

$$
1 \quad w_{i t}^{*}=\frac{w_{i t-1}+w_{i t}}{2}, \mathrm{D} q_{t}
$$

$$
=\sum_{i=1}^{n} w_{i t}^{*} \mathrm{D} q_{i t}
$$

and U is a random error term with the following properties

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{U}_{1 t}\right)=0 \\
& \mathrm{E}\left(\hat{\mathrm{U}}_{1 t} \mathrm{U}_{\jmath s}\right)=\begin{array}{ll}
\omega & \text { If } s=t \\
o & \text { If } s \neq t
\end{array}
\end{aligned}
$$

The random errors do not correlate over time but do correlate across demand equations for each observation It can be shown that the sum of n disturbances $U_{i t}$ equals zero for each time period, and that the matrix $\omega_{1 j}$ is of rank $n 1$

The vanable $\mathrm{D} q_{t}$ is a weighted sum of the logarithm of quantities demanded It is the sum of the left-hand side of all the demand equations $\mathrm{D} q$, measures relative change in total consumption and can be used to measure the relative change in real income Formally, we have 12 demand equations

$$
\begin{aligned}
& w_{i t}^{*} \mathrm{D} q_{t t}=\mu_{1} \mathrm{D} q_{t}+\sum_{J=1}^{12} \pi_{i j} \mathrm{D} p_{J t} \\
& +\mathrm{U}_{1 t} l=1,2, \quad, 12
\end{aligned}
$$

However, it can be shown that only 11 equations are independent
Summing the first 11, we get

$$
\begin{aligned}
& \sum_{t=1}^{11} w_{t t}^{*} \mathrm{D} q_{\mathrm{It}}=\left(\sum_{t=1}^{11} \mu_{t}\right) \mathrm{D} q_{t} \\
& +\sum_{j=1}^{12}\left(\sum_{t=1}^{11} \pi_{i j}\right) \mathrm{D} p_{t t}+\sum_{t=1}^{11} \mathrm{U}_{t t}
\end{aligned}
$$

The left hand side is $\mathrm{D} q_{t}-w_{12}^{*}$ $\mathrm{Dq}_{12 t}$ because

$$
\mathrm{D} q_{t}=\sum_{t=1}^{12} w_{i j}^{*} \mathrm{D} q_{i t}
$$

The first term on the right-hand side is $\left(1-\mu_{12}\right) \mathrm{D} q_{t}$, because

$$
\sum_{t=1}^{12} \mu=1
$$

From

$$
\sum_{t=1}^{12} \pi_{t j}=\sum_{j=1}^{12} \pi_{J t}=0
$$

and symmetry, we have

$$
\sum_{j=1}^{11} \pi_{i j}=-\pi_{j 12}=-\pi_{12 j}
$$

Because the sum of $\mathrm{U}_{i t}$ is zero for each t,

$$
\sum_{i=1}^{11} \mathrm{U}_{i t}=-\mathrm{U}_{12}
$$

Using these values we obtain

$$
\begin{aligned}
& \mathrm{D} q_{t}-w_{12}^{*} \mathrm{D} q_{11 t}=\left(1-\mu_{12}\right) \\
& \mathrm{D} q_{t}-\sum_{j=1}^{12} \pi_{12,} \mathrm{D} p_{\jmath t}-\mathrm{U}_{12 t}
\end{aligned}
$$

which is the 12 th equation In other words, we can leave out the 12 th equation because all the information is contained in the other 11 Also, Barten has shown that it makes no difference which equation is left out, the estimates of the coefficients will be the same (3)

Here, the equation for the miscellaneous category was omitted, being of little interest because the

As uthlity prices rise, food consumption goes up, while that of alcohol and tobacco, clothing, other nondurables, and services dechnes Low income elastrcity of food consumed at home explains the fall in the budget share of this category from 1949 to 1977

Items are included in the PCE for accounting purposes only

We can impose homogeneity on the model by using the miscellaneous price as a deflator for the other 11 prices Estimates of the coefficients were obtained in several stages First, the model was fitted without symmetry restrictions and with and without the intercepts The model without the intercepts gave positive price elasticities for the clothing, medical services, and durables cate gones The model with intercepts also gave a positive pnce elasticity for clothing Estımates of price elasticities for medical and durables were negative, however, while the income elasticity estımate for durables was high

Second, the model was fitted with the symmetry constraint, estimates of price coefficients were required to be symmetric Again, positive estımates were obtained for price elasticities for the medical services and durables categories So this problem could be overcome, the negative price elasticities from an unconstrained system with intercepts were included as pnor estimates in a symmetric system The model also includes the theoretical restriction implied by the homogeneity, addingup, and symmetry conditions

RESULTS

As discussed above, the demand system was fitted by including pror own price coefficients for medical services (-001176) and durables (-0 10426) (table 5) Because the Slutsky matrix is symmetric, only the upper triangle
of the price coefficient matrix appears Values in parentheses under the coefficients in table 5 are the t values All the income coefficients have high t values, as do the own price coefficients (except for a priori medical services and durables) Estımates of all the price and income'elas ticities appear in table 6

All the income elasticities are positive in table 6 , which means that all goods are normal One expects this behavior at this level of aggregation The following categones have income elasticity estimates greater than one, which shows they are luxunes food away from home (116), medical services (1 289), durables (2 459), non durables (1 275), and services (1009)

The positive sign of cross elasticity means substitutability, the negative sign indicates complementanty between two goods Food consumed at home substitutes for food away from home, alcohol and tobacco, clothing, housing, utilities, medical, other nondurables, and services Food at home shows complementanty with transportation and durables Food away from home substitutes for food at home, alcohol and tobacco, clothing, housing, utilities, and other nondurables Food away from home shows complementarity with the transportation, medical, and services categones The estimates of income and pnce elasticutes for food at home are 0364 and -0463 , respectively The elasticity estimates for food consumed away from home are 116 (income) and -0 917 (price) The income elasticity of demand for food consumed at home is, not
surprisingly, the smallest of all the expenditure categones

The cross elasticities in table 6 show that utilities substitute for food consumed at home and food away from home As utility prices rise, food consumption goes up, while that of alcohol and tobacco, clothing, other nondurables, and services declines Higher priced trans portation services, a major part of which is oil and gasoline, are associated with lower use of food at home, food away from home, housing, medical, durables, and other nondurables A rise in the prices of medical services is associated with a decline in consumption of food away from home, alcohol and tobacco, transportation, and nondurables

Low income elasticity of food consumed at home explains the fall in the budget share of this category from 1949 to 1977 The income elasticity of food consumed away from home is close to one, which agrees with the almost constant budget share

LIMITATIONS

The analysis and resuits presented here have three drawbacks limitations of the general approach, the specific model, and the data

The general approach, based on classical consumer demand theory, explains variations in consumption in terms of consumer income and prices Although the model is a "complete system," it does not account for all the possible vanables Thus, specification error could occur in, for example, the equation for durables The demand for durables, which is complex, depends on many

Tabie 5-Estımates of the coefficients of a demand system for consumer expenditures

Item	Marginal shares	Slutsky coefficients										
		Food at home	Food away from home	Alcohol and tobacco	Clothing	Housing	Utilites	Transportation	Medical	Durables	Other nondurables	Servicès
Food at home	$\begin{gathered} 005863 \\ \text { (91508) } \end{gathered}$	$\begin{aligned} & -007456 \\ & (662960) \end{aligned}$	$\begin{gathered} 001013 \\ (131471) \end{gathered}$	$\begin{gathered} 000848 \\ (167941) \end{gathered}$	$\begin{gathered} 001304 \\ (147319) \end{gathered}$	$\begin{gathered} 001820 \\ (194207) \end{gathered}$	$\begin{gathered} 001175 \\ (272088) \end{gathered}$	$\begin{gathered} -000890 \\ (195838) \end{gathered}$	$\begin{gathered} 001052 \\ (107927) \end{gathered}$	$\begin{array}{r} -001106 \\ (66704) \end{array}$	$\begin{gathered} 002019 \\ (3 \mathbf{1 4 7 6 2)} \end{gathered}$	$\begin{aligned} & 000543 \\ & (62554) \end{aligned}$
Food away from home	$\begin{gathered} 04780 \\ (550558) \end{gathered}$		$\begin{gathered} -03777 \\ (235581) \end{gathered}$	$\begin{gathered} 00650 \\ (86211) \end{gathered}$	$\begin{gathered} 00824 \\ (63824) \end{gathered}$	$\begin{gathered} 00161 \\ (14739) \end{gathered}$	$\begin{gathered} 01856 \\ (304852) \end{gathered}$	$\begin{gathered} -01523 \\ (205569) \end{gathered}$	$\begin{gathered} -00839 \\ (75708) \end{gathered}$	$\begin{array}{r} 01599 \\ (150829) \end{array}$	$\begin{gathered} 01439 \\ (155846) \end{gathered}$	$\begin{array}{r} -00487 \\ (49808) \end{array}$
Alcohol and tobacco	$\begin{gathered} 01911 \\ (356263) \end{gathered}$			$\begin{gathered} -01594 \\ (224856) \end{gathered}$	$\begin{gathered} -01215 \\ (144359) \end{gathered}$	$\begin{gathered} 00005 \\ (00713) \end{gathered}$	$\begin{gathered} -00622 \\ (152223) \end{gathered}$	$\begin{array}{r} 00526 \\ (113153) \end{array}$	$\begin{gathered} -00674 \\ (96656) \end{gathered}$	$\begin{gathered} 03769 \\ (510675) \end{gathered}$	$\begin{gathered} -01799 \\ (288649) \end{gathered}$	$\begin{gathered} -00807 \\ (1 \quad 22929) \end{gathered}$
Clothing	$\begin{gathered} 06616 \\ (652404) \end{gathered}$				$\begin{gathered} -03933 \\ (215044) \end{gathered}$	$\begin{gathered} =01373 \\ (110681) \end{gathered}$	$\begin{gathered} -00688 \\ (103315) \end{gathered}$	$\begin{gathered} 00122 \\ (16839) \end{gathered}$	$\begin{gathered} 00826 \\ (66061) \end{gathered}$	$\begin{gathered} 03721 \\ (274923) \end{gathered}$	$\begin{gathered} -00083 \\ (08521) \end{gathered}$	$\begin{array}{r} 00300 \\ (26591) \end{array}$
Housing	$\begin{array}{r} 12540 \\ (1083640) \end{array}$					$\begin{gathered} -03169 \\ (198882) \end{gathered}$	$\begin{gathered} 01014 \\ (175852) \end{gathered}$	$\begin{gathered} -00873 \\ (128231) \end{gathered}$	$\begin{gathered} 00741 \\ (60499) \end{gathered}$	$\begin{gathered} -02250 \\ (164094) \end{gathered}$	$\begin{gathered} 00878 \\ (99544) \end{gathered}$	$\begin{gathered} 03809 \\ (348907) \end{gathered}$
Utilites	$\begin{gathered} 03496 \\ (741158) \end{gathered}$						$\begin{gathered} -01843 \\ (404832) \end{gathered}$	$\begin{array}{r} 00965 \\ (230511) \end{array}$	$\begin{gathered} 00976 \\ (165818) \end{gathered}$	$\begin{gathered} 00853 \\ (134284) \end{gathered}$	$\begin{gathered} -00031 \\ (05964) \end{gathered}$	$\begin{gathered} -00985 \\ (177126) \end{gathered}$
Transportation	$\begin{array}{r} 05615 \\ \left(11 \begin{array}{l} 16300 \end{array}\right) \end{array}$							$\begin{gathered} -02075 \\ (338544) \end{gathered}$	$\begin{gathered} -01383 \\ (220837) \end{gathered}$	$\begin{gathered} =01226 \\ (184286) \end{gathered}$	$\begin{gathered} -00389 \\ (67674) \end{gathered}$	$\begin{gathered} 03135 \\ (5 \text { 29064) } \end{gathered}$
Medical	$\begin{gathered} 08444 \\ (669910) \end{gathered}$								-01176 (a priori)	$\begin{gathered} 01569 \\ (97996) \end{gathered}$	$\begin{gathered} -02901 \\ (328437) \end{gathered}$	$\begin{gathered} 01346 \\ (131675) \end{gathered}$
Durables	$\begin{gathered} 30808 \\ (972334) \end{gathered}$									- 10426 (a priori)	$\begin{gathered} 01963 \\ (196979) \end{gathered}$	$\begin{gathered} -00073 \\ (05275) \end{gathered}$
Nondurables	$\begin{gathered} 06626 \\ (951261) \end{gathered}$										$\begin{gathered} -03552 \\ (332586) \end{gathered}$	$\begin{gathered} 02858 \\ (355683) \end{gathered}$
Services	$\begin{array}{r} 10626 \\ (1023920) \end{array}$											$\begin{gathered} -08789 \\ (594478) \end{gathered}$

Table 6-Estimates of income and price elasticities

Item	Income efasticities	Price elasticities										
		Food at home	Food away from home	Alcohol and tobacco	Clothing	Housing	Utilites	Trans portation	Medical	Durables	Other nondurables	Services
Food at home	0364	-0463	0063	0053	0081	0113	0073	-0055	093	-0 069	0125	0034
Food'away from home	1160	246	-917	158	200	391	450	- 370	-204	388	349	- 118
Alcohol and tobacco	373	166	127	-311	-237	001	- 121	103	- 132	736	-351	- 158
Clothing	665	131	083	- 122	-395	- 138	-069	013	083	374	-008	030
Housing	941	137	012	000	$=103$	- 283	076	- 065	056	- 169	066	286
Utitutes	964	324	511	- 171	- 190	279	-507	266	269	235	- 009	-271
Transportation	743	- 118	- 202	070	016	- 116	128	-275	-183	- 162	-052	415
Medical	1289	161	- 128	- 103	126	113	149	- 211	- 180	240	-443	205
Durables	2459	-088	128	301	297	- 180	068	- 098	125	-832	157	-006
Nondurables	1275	388	277	-346	-016	169	-006	-075	- 558	378	-683.	550
Services	${ }^{1009}$	052	-046	-077	028	361	- 093	288	128	-007	271	-834

other vanables besides prices and income An elaborate model for durables would include credit avallability, interest rate, average life of the equipment, and so on

The specific model used here, the Rotterdam Model, is based on the prnciple of maximization of utility without restriction on the functional form Therefore, it is more realistic and general than other complete systems, such as the Innear expenditure system or the indirect addilog model However, the Rotterdam Model assumes that marginal budget shares ($\mu_{i e}$) and the Slutsky coefficients ($\pi_{i j}$) are constant, that is, they'are independent of prices and income The rapid rise in prices since 1972 makes this a restrictive assumption A model encompassing variable parameters for these two elements must await further developments in the theory of consumer demand

The third category of limitations is inherent in the Persoñal Consumption Expenditure data used here The PCE represents the most comprehensive sernes available on consumer expenditure, but it has many limitations when considered for use in demand analysis Developed as a part of the national income accounts, the PCE must fit into these accounts' requirements and definitions

For example, the PCE on durables is obtained by multiplying the number of pieces of equipment sold by an average pnce and allocating the expenditure between personal consumption and producer durable equipment What consumers actually pay during any given year is the installment payment Any difference between the PCE and the amount of equipment sold is a source of error

PCE expenditure on medical service measures the expenditure by the private sector In recent years, the proportion of health expenditure financed by the Government has increased considerably According to U S Department of Health, Education and Welfare estimates, public expenditure on health services increased from 20 percent in 1950 to 42 percent in 1976 (6) See (8) for a critique of personal consumption expenditure data for food

The study reported on here represents, despite these limitations, a major step in studying food demand as part of an interrelated system of consumer demand equations Earlier studies have usually treated food demand in isolation from consumers' other allocation decisions Hassan and others made the only other application of the Rotterdam model to U S data known to this author (7) They fitted the relative prices versions of the model to PCE' data for 1929:65, and, to estimate the coefficients, they incorporated the separability hypothesis Recent revisions of the U S national income accounts (15) provided additional motivation for the present work

REFERENCES

(1) Barten, A P, "Consumer Demand Functions Under Conditions of Almost Additive Preferences,' Econometrica, Vol 32, No 1-2, JanuaryApril 1964, pp 1-38
(2) Barten, A P , "Estımating Demand Equations," Econometrica, Vol 36, No 2, April 1968, pp 213-251
(3) Barten, A P, "Maximum Likelihood Estimation of Complete System of Demand Equations," European Economic Review, Vol 1, No 1, Fall 1969, pp 7.73
(4) Brandow, G E , Interrelations Among Demand for Farm Products and Implications for Control of Market Supply, Pennsylvania Agricultural Experiment Station Bul 680, University Park, 1961
(5) George, P S, and G A Kıng, Consumer Demand for Food Commodities in the Ünited States with Projections for 1980, Gianninı Foundation Monograph No 26, March 1971
(6) Gıbson, Robert M, and Marjorie Smith Mueller, "National Health Expenditure Highlights, Fiscal Year 1976," Research and Statistics Note, No 27, U S Department of Health, Education and Welfare, December 22, 1976
(7) Hassan, Z A, S R Johnson, and R M Finley, "Further Evidence on the Structure of Consumer Demand in the United States An Application of the Separability Hypothess," Southern Economic Journal, Vol 41, No 2, October 1974, pp 244-257
(8) Manchester, Alden C, and Richard A King, U S Food Expenditures, 1954-78 New Measures at Point of Sale by Type of Purchases, Economics, Statistics, and Cooperatives Service, U S Department of Agriculture, AER-431, August 1979
(9) Mann, Jitendar S, and George E St George, Estimates of Elasticities for Food in the United States, Economics, Statistics, and Cooper-

atives Service, U S Department of Agriculture, TB-1580, March 1978
(10) Samuelson, Paul Anthony, Foundation of Economic Analysis, Harvard University Press, 1947
(11) Theil, Henri, Economics and Information Theory, NorthHolland Publishing Co , Amsterdam, the Netherlands, 1967
(12) Thell, Henri, Theory and Measurement of Consumer Demand, Vol 1, 1975, Vol 2, 1976, North-Holland Publeshing Co , Amsterdam, the Netherlands
(13) Thel, Ḣenrı, Principles of Econometrics, John Wiley \& Sons, New York, 1971
(14) Waugh, Fredenck V, Demand and Price Analysis, Economic Research Service, U S Department of Agriculture, TB-1316, November 1974
(15) US Department of Commerce, Bureau of Economic Analysis, Survey of Current Business, Vol 56, No. 1, Part I, January 1976

APPENDIX: THE DATA

Data used here are per capita U S personal consumption expenditures for 1949.77 , divided into 12 commodity groups
(1) Food at home includes food purchased for off-premise consumption excluding alcohol
(2) Food away from home includes purchased meals and beverages
(3) Alcohol and tobacco.
(4) Clothing includes shoes, and other footwear, shoe cleaning and reparr, clothing and accessones except footwear, cleaning, laundering, dyeing, pressing, alteration, storage, and repair of garments, and jewelry and watches
(5) Housing includes owneroccupied nonfarm dwellings and tenant-occupied nonfarm dwellıngs
(6) Utility includes electricity, gas, fuel onl, and coal
(7) Transportation includes tires, tubes, accessones, and other parts, reparr, greasing, washing, parking, storage and rental, gasoline and oul, bridge, tunnel, ferry, and toll roads, insurance premiums less claims pard, purchased local transportation, and purchased intercity transportation
(8) Medical care expenses include drug preparations and sundries, physician, dentast, and other professional services, and privately controlled hospitals and sanitariums, medical care and hospitalization insurance, income loss insurance, and workmen's compensation insurance
(9) Durable goods include furnsture, mattresses, and bedsprings, kitchen and other household applıances, china, glassware, tableware, and utensils, other durable house furnishings, books and maps, wheel goods, durable toys, sports equipment, boats, and pleasure arrcraft, radio and television receivers, new autos,
net purchases of used autos, and other motor vehicles
(10) Other nondurable goods include toilet articles and preparations, semidurable household furnishings, cleaning and polishing preparations, miscellaneous household supplies and paper products, stationery and whting supplies, magazines, newspapers, and sheet music, nondurable toys and sport supplies, and flowers, seeds, and potted plants
(11) Other services include personal business expenditures, barber shops, beauty shops, and baths, water and other sanitary services, telephone and telegraph, domestic service, other household operations, radio and television reparr, admissions to spectator amusements, clubs and fraternal organizations, parimutual net receipts, other recreation, and commercial participant amusements
(12) Miscellaneous includes private education and research, religious and welfare activities, net foreign travel, food furnushed employees, food produced and consumed on farms, clothing fumished military, rental value of farm dwellings, other housing, and ophthalmic products and orthopedic appliances
Detailed expenditures from the Commerce Department public use tapes were aggregated into these 12 categones Dividing the current dollar expenditure by the constant dollar expenditure produced implicit price deflators.

[^0]: *The author is an agricultural economist in the National Eco nomics Division, ESCS
 ${ }^{1}$ Italicized numbers in parentheses refer to items in References at the end of this article

[^1]: *Changes in logs multiplied by 100

